Χρονοσειρές Μάθημα 3. Γραμμικές στάσιμες διαδικασίες. Γραμμική χρονοσειρά (στοχαστική διαδικασία) Z Z ~ WN(0, ) είναι στάσιμη. Θεωρούμε μ=0 E[ X ] 0

Σχετικά έγγραφα
Χρονοσειρές Μάθημα 3

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου

Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Διαφορική Παλµοκωδική Διαµόρφωση (DPCM)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές

ΚΕΦΑΛΑΙΟ 5 ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΕΣ ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ, ΥΠΟΔΕΙΓΜΑΤΑ ARIMA ΚΑΙ SARIMA, ΜΕΘΟΔΟΛΟΓΙΑ BOX-JENKINS

Χρονοσειρές - Μάθημα 5

Χρονικές σειρές 9 Ο μάθημα: Μεικτά μοντέλα ARMA

Χρονοσειρές - Μάθημα 5

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

1. Ποιες είναι οι διαφορές μεταξύ αυτοπαλίνδρομων υποδειγμάτων (AR) και υποδειγμάτων κινητού μέσου (MA);

Μάθημα 2: Mη-στάσιμη χρονοσειρά, έλεγχος μοναδιαίας ρίζας και έλεγχος ανεξαρτησίας

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Στάσιμα στοχαστικά μοντέλα μιας μεταβλητής

Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008

Χρονοσειρές Μάθημα 2. Μη-στασιμότητα. Τάση? Εποχικότητα / περιοδικότητα? Ασταθή διασπορά? Αυτοσυσχέτιση?

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑΤΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΑΝΑΛΥΣΗ ΜΟΝΤΕΛΩΝ ΧΡΟΝΟΛΟΓΙΚΩΝ ΣΕΙΡΩΝ

Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)

Χρονοσειρές - Μάθημα 4

Χρονοσειρές Μάθημα 1

Μάθημα 1: Εισαγωγή στην ανα λυση χρονοσειρω ν, στασιμο τητα και αυτοσυσχε τιση

2 Ανάλυση Χρονοσειρών στο Πεδίο των Συχνοτήτων

Μάθημα 4: Πρόβλεψη χρονοσειρών Απλές τεχνικές πρόβλεψης Πρόβλεψη στάσιμων χρονοσειρών με γραμμικά μοντέλα Πρόβλεψη μη-στάσιμων χρονοσειρών Ασκήσεις

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Χρονοσειρές, Μέρος Β 1 Πρόβλεψη Χρονικών Σειρών

Χρονοσειρές - Μάθημα 8. Μη-γραμμική ανάλυση χρονοσειρών

Χρονοσειρές Μάθημα 6

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΟΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

min Προσαρμογή AR μοντέλου τάξη p, εκτίμηση παραμέτρων Προσδιορισμός τάξης AR μοντέλου συσχέτιση των χωρίς τη συσχέτιση με

Χρονικές σειρές 3 Ο μάθημα: Βασικές στοχαστικές διαδικασίες Μη στάσιμες χρονοσειρές Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

ΤΕΛΕΣΤΕΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΑΝΑΛΥΣΗΣ ΧΡΟΝΟΣΕΙΡΩΝ

ΥΔΡΟΛΟΓΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΚΑΙ ΠΡΟΓΝΩΣΗ Ενότητα 3: Υδρολογική πρόγνωση 3.2. Μοντέλα Χρονοσειρών

ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Χρονικές σειρές 4 Ο μάθημα: Μη στάσιμες χρονοσειρές Μετασχηματισμός σε στάσιμες Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Κεφάλαιο 7 ΑΝΑΛΥΣΗ ΒΙΟΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ ΣΤΟ ΠΕ ΙΟ ΤΟΥ ΧΡΟΝΟΥ

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

Χρονοσειρές Μάθημα 1

Χρονοσειρές - Μάθημα 7. Μη-γραμμική ανάλυση χρονοσειρών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Ολοκληρωμένα Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΧΡΟΝΟΣΕΙΡΑΣ

Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ (AUTOCORRELATION)

Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΤΩΝ ΑΠΟΦΑΣΕΩΝ

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο και Δευτεροβάθμιο Υπόδειγμα

.Π.Μ.Σ.: ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

Στοχαστικές Μέθοδοι στους Υδατικούς Πόρους Φασματική ανάλυση χρονοσειρών

Έλεγχος των Phillips Perron

Οικονομικές εφαρμογές υπολογιστικών πακέτων. Στοχαστικά υποδείγματα

Στοχαστικά Σήµατα και Εφαρµογές. ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής

ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Κουγιουμτζής Δημήτρης

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ & ΕΡΓΑΣΤΗΡΙΟ

Χρονικές σειρές 11 Ο μάθημα: Προβλέψεις

Ανάλυση Χρονοσειρών. Κεφάλαιο Ανάλυση Χρονοσειρών

ΘΕΜΑ: Ανδρέας Λαγγούσης. Αθήνα, Ιούλιος 2003 Επιβλέπων:. Κουτσογιάννης, Αναπληρωτής Καθηγητής

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία

Επίλυση Υποδειγμάτων με Ορθολογικές Προσδοκίες. Το Πρωτοβάθμιο Υπόδειγμα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 4

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

Γραμμικά Μοντέλα Χρονοσειρών και Αυτοσυσχέτισης ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σταυρούλα Γαζή

Στοχαστικά Σήµατα και Εφαρµογές

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΕΜΠΤΟ-ΑΥTOΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ(AR(p))

ΚΕΦΑΛΑΙΟ 6 ΠΡΟΒΛΕΨΕΙΣ ΜΕ ΥΠΟΔΕΙΓΜΑΤΑ ΧΡΟΝΟΣΕΙΡΩΝ

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Ογενικός(πλήρης) έλεγχος των Dickey Fuller

Αριθμητική Ανάλυση και Εφαρμογές

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης, Ημ/νία: 27 Μαΐου 2013

Μαθηµατικό Παράρτηµα 5 Επίλυση Υποδειγµάτων µε Ορθολογικές Προσδοκίες

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

Ο μετασχηματισμός Fourier

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Χρονοσειρές - Μάθημα 9 Aνάλυση χρονοσειρών και δυναμικά συστήματα

Transcript:

Γραμμικές στάσιμες διαδικασίες Γραμμική χρονοσειρά (στοχαστική διαδικασία) ~ WN(, ) i i i E[ ] είναι στάσιμη? i () Θεωρούμε μ= i i i Χρονοσειρές Μάθημα 3 i Θεωρώντας τον τελεστή υστέρησης: ( B) ( B) ib i i Γραμμικό φίλτρο ( B) Αν για i< i Γραμμική χρονοσειρά ως i i i i i i i i ( B) ( B) κινούμενου μέσου MA( ) [moving average rocess] αυτοπαλινδρόμησης AR( ) [auoregressive rocess] είναι αντιστρέψιμη το τυχαίο στοιχείο μπορεί να εκφρασθεί ως προς την ( B) παρούσα και τις προηγούμενες ( B) παρατηρήσεις

Αυτοπαλινδρομούμενες διαδικασίες αυτοπαλινδρόμηση AR( ) i i i Περιορίζουμε την αυτοπαλινδρόμηση στους πιο πρόσφατους όρους ( B B B ) Συνθήκη στασιμότητας ~ WN(, ) ( B) Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() i ( B) B B B ( B) B χαρακτηριστικό πολυώνυμο Ρίζες του ( ) να είναι έξω από το μοναδιαίο κύκλο ή Ρίζες του να είναι εντός του μοναδιαίου κύκλου i i

Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() Διαδοχικές προς τα πίσω αντικαταστάσεις: 4 i i Var[ ] ( ) Αυτοσυσχέτιση? (υποθέτουμε στασιμότητα) i i i E[ ] E[ ] E[ ] ( ) ( ) E[ ] E[ ] E[ ] ( ) ( ) () Συνθήκη στασιμότητας: ~ WN(, ) () ().5.5 () () -.5 -.5-4 6 8-4 6 8.8.8

Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() ~ WN(, ) Συνθήκη στασιμότητας Ρίζες του ( B) B B να είναι εκτός του μοναδιαίου κύκλου ή εναλλακτικά οι ρίζες του Ρίζες: B, 4 B, να είναι εντός του μοναδιαίου κύκλου? 3 Saionariy condiion for AR() real disinc roos comlex roos real single roo δύο πραγματικές ρίζες: 4 μία διπλή πραγματική ρίζα: 4 - - -3-3 - - 3 8 συζυγείς μιγαδικές ρίζες: 4 Συζυγείς μιγαδικές ρίζες σε AR() ορίζουν ψευδο-περιοδικότητα στην αυτοσυσχέτιση

Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() Αυτοσυσχέτιση? (υποθέτουμε στασιμότητα) E[ ] E[ ] E[ ] E[ ] () () () () E[ ] E[ ] E[ ] E[ ] () () () () Για υστέρηση τ: ( ) ( ) ( ) μπορεί να υπολογιστεί επαναληπτικά ( B B ) χαρακτηριστικό πολυώνυμο ( ) πραγματικές ρίζες: εκθετική πτώση μιγαδικές ρίζες: φθίνουσα ημιτονοειδή συνάρτηση διασπορά () ()

Αυτοσυσχέτιση.5 (α) λ =.8+.5i λ =.8-.5i () =.6 =-.89.5 (γ) λ =.8 λ =.8 () =.6 =-.64.5 (ε) λ =.8 λ =.95 () =.75 =-.76.5 (ζ) λ =-.8 λ =.95 () =.5 =.76 () () -.5 -.5 -.5-5 5-5 5-5 5 (β) λ =-.8+.5i λ =-.8-.5i (δ) λ =-.8 λ =-.8.5 () =-.6 =-.89.5 () =-.6 =-.64 () () () () -.5-5 5 (στ) λ =.8 λ =-.95 (η) λ =-.8 λ =-.95.5 () =-.5 =.76.5 () =-.75 =-.76 () () -.5 -.5 -.5 -.5-5 5-5 5-5 5-5 5

Συνθήκη στασιμότητας Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() ( B B B ) ~ WN(, ) Ρίζες του ( B) B B B να είναι εκτός του μοναδιαίου κύκλου Αυτοσυσχέτιση? (υποθέτουμε στασιμότητα) Για υστέρηση τ: E[ ] E[ ] E[ ] E[ ] E[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) B πραγματικές ρίζες: εκθετική πτώση μιγαδικές ρίζες: φθίνουσα ημιτονοειδή συνάρτηση 9 Συνθήκες στασιμότητας για τους συντελεστές φ, φ, φ 3, της διαδικασίας AR(3)

Αυτοπαλινδρομούμενη διαδικασία τάξης, AR() Εξισώσεις Yule-Walker 3 Διασπορά () () ( )

Εξισώσεις Yule-Walker k k k 3 Μερική αυτοσυσχέτιση k k k k k 3 k k 33 3 kk Για κάθε k υπολογίζουμε τον συντελεστή k kk k k3 k k k3 k k k k3 k k k k3 μερική αυτοσυσχέτιση για υστέρηση (τάξη) k Επαναληπτικός αλγόριθμος των Durbin-Levinson οι συντελεστές του AR(),,,, υπολογίζονται επαναληπτικά, όπου για κάθε τάξη k οι συντελεστές υπολογίζονται από τους συντελεστές τάξης k-

(,) (,) (,) (,) (,) (,) (,) (,) Μερική αυτοσυσχέτιση (α) λ =.8+.5i λ =.8-.5i (γ) λ =.8 λ =.8 (ε) λ =.8 λ =.95 (ζ) λ =-.8 λ =.95 () =.6 () =.6 () =.75 () =.5.5 =-.89.5 =-.64.5 =-.76.5 =.76 -.5 -.5 -.5 -.5-5 5-5 5-5 5-5 5 (β) λ =-.8+.5i λ =-.8-.5i (δ) λ =-.8 λ =-.8 (στ) λ =.8 λ =-.95 (η) λ =-.8 λ =-.95.5 () =-.6 =-.89.5 () =-.6 =-.64.5 () =-.5 =.76.5 () =-.75 =-.76 -.5 -.5 -.5 -.5-5 5-5 5-5 5-5 5

Διαδικασίες κινούμενου μέσου ii κινούμενου μέσου MA( ) i Περιορίζουμε του όρους του λευκού θορύβου στους q πιο πρόσφατους όρους ~ WN(, ) i i q q B B B ( B) ( q q ) Διαδικασία κινούμενου μέσου τάξης q, ΜΑ(q) ( ) B B B B χαρακτηριστικό πολυώνυμο ΜΑ(q) είναι στάσιμη? q q ΜΑ(q) είναι αντιστρέψιμη αν ( B) Συνθήκη αντιστρεψιμότητας Ρίζες του ( ) να είναι έξω από το μοναδιαίο κύκλο

Διαδικασία κινούμενου μέσου τάξης, MA() Συνθήκη αντιστρεψιμότητας: ~ WN(, )... ( )... () 3... ()? / Για κάποιο υπάρχουν δύο λύσεις για θ? και μόνο η μία θα πληρεί τη συνθήκη αντιστρεψιμότητας Παράδειγμα.4.5.9 και / έχουν την ίδια αυτοσυσχέτιση Αν η ρίζα του B είναι έξω από το μοναδιαίο κύκλο η ρίζα του / B είναι μέσα στο μοναδιαίο κύκλο

Διαδικασία κινούμενου μέσου τάξης, MA() (,) (,) Μερική αυτοσυσχέτιση.8 () (), 4 ().5.5 3 3 3,3 4 6 ( ), ( ), -.5-4 6 8 () -.5.8-4 6 8 () - ϕ ττ του ΜΑ() φθίνει όπως ρ τ του AR() ().5.5 - ρ τ του ΜΑ() φθίνει όπως ϕ ττ του AR() - αλλά για MA(), ρ τ και ϕ ττ είναι πάντα.5 -.5-4 6 8 -.5-4 6 8

Διαδικασία κινούμενου μέσου τάξης, MA() B ( ), ~ WN(, ) ( B) B B χαρακτηριστικό πολυώνυμο MA() είναι πάντα στάσιμη MA() είναι αντιστρέψιμη αν οι ρίζες του θ(β) είναι εκτός του μοναδιαίου κύκλου Διασπορά ( ) Αυτοσυσχέτιση ( ) Συνθήκες αντιστρεψιμότητας για τους συντελεστές θ, θ, καθώς και για τις αυτοσυσχετίσεις ρ, ρ, της διαδικασίας MA() Μερική αυτοσυσχέτιση, 3 ( ) 3,3 ( ),... πολύπλοκη έκφραση

λ =.8+.5i λ =.8-.5i Αυτοσυσχέτιση.8.6.4 () =.6 =-.89. () (,) λ =-.8+.5i λ =-.8-.5i.8.6.4 () =-.6 =-.89. -. -. -.4 -.4 -.6 () (,) λ =.8 λ =.95.8.6.4. -.6 () (,) (,) λ =.8 λ =-.95 () =.75 =-.76.8.6.4 () =-.5 =.76. () -. -. -.4 -.4 -.6 -.6 -.8 5 5 -.8 5 5 -.8 5 5 -.8 5 5 Μερική αυτοσυσχέτιση.8.6.4 () =.6 =-.89.8.6.4 () =-.6 =-.89.8.6.4 () =.75 =-.76.8.6.4 () =-.5 =.76.... -. -. -. -. -.4 -.4 -.4 -.4 -.6 -.6 -.6 -.6 -.8 5 5 -.8 5 5 -.8 5 5 -.8 5 5 - ϕ ττ του ΜΑ() φθίνει όπως ρ τ του AR() - ρ τ του ΜΑ() φθίνει όπως ϕ ττ του AR() - αλλά για MA(), ρ τ και ϕ ττ είναι πάντα.5

Διαδικασία κινούμενου μέσου τάξης q, MA(q) ( B) q q ~ WN(, ) ( ) χαρακτηριστικό πολυώνυμο q B B B qb Διασπορά ( ) q Αυτοδιασπορά q ( q q),,, q Αυτοσυσχέτιση q q q,,, q q Η μερική αυτοσυσχέτιση φθίνει με μορφή που καθορίζεται από τις ρίζες του χαρακτηριστικού πολυωνύμου Οι εκφράσεις των ϕ ττ ως προς τους συντελεστές θ, θ,..., θ q είναι πολύπλοκες