ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

Σχετικά έγγραφα
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

Ενότητα 6 η : Μεταβατική αγωγή Θερμότητας

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) :

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

2 ln P. AS H = n H S P P0 V T. nt A nt P nt P P P. nt P. AS ln P 7 R.

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 1: Εισαγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 2 η : Αγωγή Μονοδιάστατη αγωγή

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 2: Αγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ (ΜΜ618)

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.

Κεφάλαιο 4 : ΤΡΟΠΟΙ ΜΕΤΑ ΟΣΗΣ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ. τρόπους µετάδοσης της θερµότητας :

Δισδιάστατη Αγωγή Θερμότητας: Γραφικές Μέθοδοι Ανάλυσης

Φαινόμενα Μεταφοράς Μάζας θερμότητας

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

2.2. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα.

1 η ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΑΠΛΟ ΤΟΙΧΩΜΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας

Ασκηση 1: Να διατυπώσετε το πρόβλημα οριακών τιμών το οποίο απαιτείται για τη μαθηματική επίλυση του φυσικού μοντέλου που φαίνεται στο σχήμα: y Λ 2

ΑΣΚΗΣΗ m 5.13 ΛΥΣΗ. Α. (Γυμνός αγωγός) ΤΕΙ ΚΡΗΤΗΣ Τμήμα Μηχανολογίας ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Καθηγητής : Μιχ. Κτενιαδάκης - Σπουδαστής : Ζάνη Γιώργος

Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

ΕΝΤΑΣΗ (ή λαμπρότητα - radiance)

R 1. e 2r V = Gauss E + 1 R 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1

ΘΕΡΜΟΜΟΝΩΣΗ. ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΘΕΡΜΟΠΕΡΑΤΟΤΗΤΑΣ, U (W / m 2.Κ)

Η ΕΠΙΔΡΑΣΗ ΤΩΝ ΘΕΡΜΟΓΕΦΥΡΩΝ ΣΤΙΣ ΘΕΡΜΙΚΕΣ ΑΠΩΛΕΙΕΣ ΑΠΟ ΤΟ ΚΕΛΥΦΟΣ ΤΟΥ ΚΤΙΡΙΟΥ

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton):

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK

Μόνιμη Μονοδιάστατη Αγωγή Θερμότητας Χωρίς Παραγωγή Θερμικής Ενέργειας

Κύματα. Ζαχαριάδου Αικατερίνη Τμήμα Ηλεκτρολόγων και Ηλεκτρονικών Μηχανικών Πανεπιστήμιο Δυτικής Αττικής

14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΘΕΡΜΟΓΡΑΦΙΑ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΔΟΜΗΣΙΜΩΝ ΥΛΩΝ 5 ΟΥ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ - ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ 4 ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ

Κύματα (Βασική θεωρία)

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΠΕΡΙΕΧΟΜΕΝΑ Σελίδα 1. Εισαγωγή Βασικές έννοιες Αγωγή

ΦΥΣΙΚΗ -ΚΛΙΜΑΤΙΚΗ ΑΛΛΑΓΗ ΚΑΙ ΓΕΩΡΓΙΑ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ

ΑΚΤΙΝΟΒΟΛΙΑ. Χαρακτηρίζεται από το µήκος κύµατος η τη συχνότητα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

( ) ( ) ( ) ( ) ( ) ( )

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 3: Συναγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ιανοµή θερµοκρασίας και βαθµός απόδοσης πτερυγίων ψύξης

6. ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

ΤΕΙ ΚΑΒΑΛΑΣ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ

Μακροσκοπική ανάλυση ροής

Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων

Κεφάλαιο 5: ΙΑΧΥΣΗ Υ ΡΑΤΜΩΝ Η υγροπροστασία των κατασκευών Βασικές έννοιες

Σιδηρές Κατασκευές ΙΙ

Η Λ Ι Α Κ Η ΕΝ Ε Ρ Γ Ε Ι Α. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τοµέας Περιβαλλοντικής Μηχανικής & Επιστήµης ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΗΣ ΚΑΤΑ ΚΑΝ.ΕΠΕ. ΜΕ ΤΗ ΧΡΗΣΗ ΕΛΑΣΤΙΚΩΝ, ΑΝΕΛΑΣΤΙΚΩΝ ΚΑΙ ΠΡΟΣΕΓΓΙΣΤΙΚΩΝ ΜΕΘΟΔΩΝ

Χειμερινό εξάμηνο

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

ΘΕΡΜΟΜΟΝΩΣΗ. ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΘΕΡΜΟΠΕΡΑΤΟΤΗΤΑΣ, U (W / m 2.Κ)

Μελέτη Ενεργειακής Απόδοσης

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

ηλεκτρικό ρεύµα ampere

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα

2.1. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας ( )

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

Μηχανική Τροφίµων. Θερµικές Ιδιότητες Τροφίµων. Η έννοια του «τροφίµου»

ΑΣΚΗΣΗ ΜΕΤΑ ΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΣΥΝΘΕΤΑ ΤΟΙΧΩΜΑΤΑ

παραγωγή θερμότητας T=T1

Περιεχόµενα Παρουσίασης 2.9

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας

Τυπολόγιο Φυσικής Γʹ Λυκείου

ηλεκτρικό ρεύμα ampere

Σεµινάριο Αυτοµάτου Ελέγχου

Κεφάλαιο Η5. Ρεύμα και αντίσταση

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ

Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright: Κτενιαδάκης Μιχάλης, Eκδόσεις Zήτη, Ιούνιος 2010, Θεσσαλονίκη

Κεφάλαιο 6 Τυπικές συναρτήσεις κατανομής στην τεχνική υδρολογία

Θερμομονωτική Επάρκεια - Θερμογέφυρες

Α Σ Κ Η Σ Η 2 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩΔΟΥΣ ΥΓΡΟΥ ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Μεταφορά θερµότητας Εναλλάκτες θερµότητας

ΦΥΕ34 Λύσεις 6 ης Εργασίας Ασκήσεις

Η Φυσική των ζωντανών Οργανισμών (10 μονάδες)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΙΙ

Εισαγωγή στην Μεταφορά Θερμότητας

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

Κεφάλαιο 5 Eναλλάκτες Θερμότητας

Φυσική για Μηχανικούς

ΘΕΡΜΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΗ ΣΥΓΚΟΛΛΗΣΗ

Transcript:

ηµήτρης Τσίνογου ρ. Μηχανοόγος Μηχανικός ΤΕΙ Σερρών Τµήµα Μηχανοογίας

Αγωγή Μόνιµη κατάσταση Κεφάαιο 3 ΤΕΙ Σερρών Τµήµα Μηχανοογίας

Το επίπεδο τοίχωµα Τοιχοποιία σπιτιών (τοίχοι, παράθυρα, στέγες) Τοιχώµατα φούρνων, εβήτων, ψυγείων εδοµένα: Υικό Οριακές συνθήκες θερµοκρασίες στα τοιχώµατα συντεεστές συναγωγής θερµορροή Ζητούµενα θερµοκρασίες στα τοιχώµατα Θερµορροή Βετιστοποίηση πάχους υικού και επιογής υικού -µόνωσης Τµήµα Μηχανοογίας 3

4 Τµήµα Μηχανοογίας Το από επίπεδο τοίχωµα Γενική εξίσωση θερµοκρασιακού πεδίου Μονοδιάστατη, µόνιµη θερµική αγωγή σε επίπεδο τοίχωµα ρ α ρ α Φ c T c z y x, 0 C C x x

5 Τµήµα Μηχανοογίας Το από επίπεδο τοίχωµα Γνωστές θερµοκρασίες στις πευρές του τοιχώµατος Γραµµική µεταβοή θερµοκρασίας ) / ( C, C 0, x x x C x C ( ) x x dx d - Η πυκνότητα θερµορροής µεγαώνει όσοαυξάνειηδιαφοράθερµοκρασίας Η πτώση της θερµοκρασίας στο τοίχωµα µεγαώνει όσο αυξάνει η πυκνότητα θερµορροής

Θερµικές αντιστάσεις Τµήµα Μηχανοογίας 6

Θερµικές αντιστάσεις Ο υποογισµός της θερµορροής σε σύνθετα τοιχώµατα µπορεί να εκφραστεί µε τρόπους Με χρήση του συνοικού συντεεστή θερµοπερατότητας k Q k k ( )... [W/m Ο συνοικός συντεεστής θερµοπερατότητας εκφράζει τη θερµική αγωγιµότητα του σώµατος Με χρήση της θερµικής αντίστασης Q (... ), Ηθερµική αντίσταση εκφράζει την αντίσταση που προβάει το σώµα στη µετάδοση θερµότητας K] [m K/W] Τµήµα Μηχανοογίας 7

8 Τµήµα Μηχανοογίας Το σύνθετο επίπεδο τοίχωµα Στρώµατα παράηα στις πευρές του τοιχώµατος ( ) ( ) ( ) Q Q... Q Q... ) ( ) ( 3 ( ) Q,... ) ( ( ) K] [W/m k k Q...

9 Τµήµα Μηχανοογίας Το σύνθετο επίπεδο τοίχωµα Στρώµατα παράηα στις πευρές του τοιχώµατος... ) ( 3 m

0 Τµήµα Μηχανοογίας Το σύνθετο επίπεδο τοίχωµα Στρώµατακάθεταστιςπευρές του τοιχώµατος........., ) ( ) ( ) ( Q Q total total total total total

Τµήµα Μηχανοογίας Το σύνθετο επίπεδο τοίχωµα Γνωστός συντεεστής συναγωγής στις δύο πευρές του τοιχώµατος Η µετάδοση θερµότητας µε συναγωγή στις πευρές του τοιχώµατος αµβάνεται υπόψη µε χρήσητης ισοδύναµης θερµικής αντίστασης εν σειρά ( ) ( ) a Q a a Q,... ) ( ) ( σ σ σ Η αντίστοιχη σχέση µε χρήση του οικού συντεεστή θερµοπερατότητας γίνεται ( ) K] [W/m a a k k Q...

Τµήµα Μηχανοογίας Το σύνθετο επίπεδο τοίχωµα Γνωστή πυκνότητα θερµορροής στη µία πευρά του τοιχώµατος Η πυκνότητα θερµορροής είναι σταθερή. Ζητούνται οι θερµοκρασίες του τοιχώµατος Σύνθετο τοίχωµα µε παράηα στρώµατα ( ) ( ) a a a a a,

Το κυινδρικό τοίχωµα Σωηνώσεις µεταφοράς ρευστών Εναάκτες (ψυγεία, έβητες, κιµατιστικά, βιοµηχανικοί εναάκτες) Τµήµα Μηχανοογίας 3

Το κυινδρικό τοίχωµα εδοµένα: Υικό Οριακές συνθήκες θερµοκρασίες στα τοιχώµατα συντεεστές συναγωγής θερµορροή Ζητούµενα θερµοκρασίες στα τοιχώµατα Θερµορροή Βετιστοποίηση πάχους υικού και επιογής υικού Τµήµα Μηχανοογίας 4

5 Τµήµα Μηχανοογίας Το από κυινδρικό τοίχωµα Γενική εξίσωση θερµοκρασιακού πεδίου Μονοδιάστατη, µόνιµη θερµική αγωγή σε κυινδρικό τοίχωµα ρ α ρ φ α Φ c T c z, l 0 C C

6 Τµήµα Μηχανοογίας Το από κυινδρικό τοίχωµα Γνωστές θερµοκρασίες στις πευρές του τοιχώµατος ( ) ( ) l l l l l, C, ) / ( C Μη γραµµική µεταβοή της θερµοκρασίας

Το από κυινδρικό τοίχωµα Γνωστές θερµοκρασίες στις πευρές του τοιχώµατος d Q πl d Q πl ( ) l Q l πl l d d Q πl ( ) l Πυκνότητα θερµορροής αντιστρόφως ανάογη της ακτίνας Θερµορροή ανεξάρτητη της ακτίνας Τµήµα Μηχανοογίας 7

Το από κυινδρικό τοίχωµα Γνωστοί συντεεστές συναγωγής στις πευρές του τοιχώµατος Q a πl l ( ) a Τµήµα Μηχανοογίας 8

Λεπτότοιχο κυινδρικό τοίχωµα Για επτότοιχα κυινδρικά τοιχώµατα ( /.8) l l Q π ( ) Σύνθετα επτότοιχα κυινδρικά τοιχώµατα µε γνωστούς συντεεστές συναγωγής Q ( ) kπl [W/m K] k a a : η ακτίνα της πευράς µε το µικρότερο συντεεστή συναγωγής Τµήµα Μηχανοογίας 9

Κρίσιµη ακτίνα κυινδρικού τοιχώµατος Όταν αυξάνεται η εξωτερική ακτίνα ενός κυινδρικού τοιχώµατος Αυξάνεται η επιφάνεια µετάδοσης θερµότητας Μειώνεται ο συντεεστής θερµοπερατότητας k Κρίσιµη ακτίνα κρ a Αν > κρ, αυξάνοντας την εξωτερική ακτίνα η θερµορροή αυξάνει όγω αύξησης του Α Αν < κρ, αυξάνοντας την εξωτερική ακτίνα η µειώνεται, όγω µείωσης του k Επιογή θερµοµονωτικού υικού κρ µ a Τµήµα Μηχανοογίας 0

Επίπεδο τοίχωµα µε πηγές θερµότητας Επίπεδο τοίχωµα µε οµοιόµορφη πηγή θερµότητας Φ [W/m 3 ] στο εσωτερικό του ιαφορετικός συντεεστής συναγωγής σε κάθε πευρά Ίδιος συντεεστής συναγωγής σε κάθε πευρά Η µία πευρά αδιαβατική Τµήµα Μηχανοογίας

Επίπεδο τοίχωµα µε πηγές θερµότητας Γνωστή θερµοκρασία στις πευρές του τοιχώµατος Κατανοµή θερµοκρασίας Φ ( h x ) Πυκνότητα θερµορροής που εγκαταείπει κάθε πευρά Φ h Γνωστός συντεεστής συναγωγής Κατανοµή θερµοκρασίας Φh a Φ ( h x ) Η πυκνότητα θερµορροής εξαρτάται µόνο από την πηγή θερµότητας και τις διαστάσεις του σώµατος Τµήµα Μηχανοογίας

Πήρης κύινδρος µε πηγέςθερµότητας Γνωστή θερµοκρασία στην εξωτερική επιφάνεια του κυίνδρου Κατανοµή θερµοκρασίας Φ 4 ( ) J,α J Πυκνότητα θερµορροής που εγκαταείπει τον κύινδρο Γνωστός συντεεστής συναγωγής Φ o Κατανοµή θερµοκρασίας Φ a Φ 4 ( ) Η πυκνότητα θερµορροής εξαρτάται µόνο από την πηγή θερµότητας και τις διαστάσεις του σώµατος Τµήµα Μηχανοογίας 3

Αγωγή σε περισσότερες από µία διαστάσεις Σε ποές τεχνικές εφαρµογές απαιτείται ο υποογισµός της θερµικής αγωγής σε ή 3 διαστάσεις Εναακτικές µέθοδοι: Αναυτικές µέθοδοι: Επιύουν τη διαφορική εξίσωση του θερµοκρασιακού πεδίου αναυτικά. Απαιτούν πούποκους µαθηµατικούς χειρισµούς και η εφαρµογή τους συχνά είναι εφικτή µόνο σε σώµατα µεαπήγεωµετρία Γραφικές µέθοδοι: Στηρίζονται σε µια γραφική απεικόνιση του θερµοκρασιακού πεδίου για τον υποογισµό τηςθερµορροής. Είναι αποτεεσµατικές για την εποπτική κατανόηση του προβήµατος, αά η ακρίβειά τους είναι πού περιορισµένη Αριθµητικές µέθοδοι: Χωρίζουν (διακριτοποιούν) το στερεό σε στοιχειώδη τµήµατα σταθερής θερµοκρασίας και επιύουν τη µετάδοση θερµότητας µεταξύ αυτών σε µία διάσταση. Περιαµβάνουν πού µεγάο αριθµό πούαπώνµαθηµατικών πράξεων, γιαυτό είναι κατάηες για την επίυση της µετάδοσης θερµότητας µεη/υ. Τµήµα Μηχανοογίας 4

Αγωγή σε περισσότερες από µία διαστάσεις Γραφικές µέθοδοι. Εντοπίζονται όες οι ισόθερµες που προκύπτουν από τη δεδοµένη γεωµετρία (π.χ. πευρές µε γνωστή θερµοκρασία είναι ισόθερµες). Εντοπίζονται όες οι γραµµές συµµετρίας και θεωρούνται αδιαβατικές 4. Σχεδιάζονται γραµµές θερµορροής ώστε να τέµνονται κάθετα µε τις ισόθερµες και να σχηµατίζουν καµπυόγραµµα παραηόγραµµα, στα οποία οι απέναντι πευρές έχουν το ίδιο άθροισµα µήκους 3. Σχεδιάζονται οι υπόοιπες ισόθερµες καµπύες ώστε να τέµνονται κάθετα µε τις αδιαβατικές 5. Η θερµοκρασιακή κατανοµή υποογίζεται µε βάση τις αποστάσεις µεταξύ των ισόθερµων. Ηπυκνότηταθερµορροής υποογίζεται από τη θερµοκρασιακή κατανοµή Τµήµα Μηχανοογίας 5

Αγωγή σε περισσότερες από µία διαστάσεις Αριθµητικές µέθοδοι Το στερεό χωρίζεται (διακριτοποιείται) σε στοιχειώδη τµήµατα σταθερής θερµοκρασίας και επιύεται η µετάδοση θερµότητας µεταξύ αυτών σε µία διάσταση. Τµήµα Μηχανοογίας 6

Αγωγή σε περισσότερες από µία διαστάσεις Αριθµητικές µέθοδοι Εσωτερικός κόµβος m, m, m, m, 4 m, 0 Κόµβος σε εσωτερική γωνία µε συναγωγή ( ) ( ) m, a x m, 3 m, a x m, m, 0 Κόµβος σε εξωτερικό επίπεδο τοίχωµα µε συναγωγή a x ( ) 0 m, m, m, m, a x Τµήµα Μηχανοογίας 7