ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Σχετικά έγγραφα
Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Μαθηματικά Α Τάξης Γυμνασίου

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738)

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

x 2 + y 2 x y

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Β ΛΥΚΕΙΟΥ. ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) c πάνω στην οποία κινείται το σημείο Μ. M x, y. x 2λ 1 και. 3 λ Υπάρχει λ ώστε.

ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50

3, ( 4), ( 3),( 2), 2017

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΟΠ- Γ ΓΕΛ 12:50

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ds ds ds = τ b k t (3)

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ : ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Συστήματα συντεταγμένων

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΙΙ

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ

ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Β Λυκείου - Ασκήσεις Συστήματα. x = 38 3y x = 38 3y x = x = = 11

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΥΚΛΟΣ

Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος:

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Μαθηματικά Γ Γυμνασίου

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ


ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

1.1. Διαφορική Εξίσωση και λύση αυτής

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Μαθηματικά Κατεύθυνσης (Προσανατολισμού)

ΑΠΑΝΤΗΣΕΙΣ. lim f(x) έχουμε P(x) 2x (1 ). Επειδή. lim ( 2x )

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

2.5 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

Ιστορία της Γραμμικής Άλγεβρας

Μαθηματικά προσανατολισμού Β Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

Ιστορία των Μαθηματικών

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Transcript:

Εαρινό εξάμηνο 2012 6.05.14 Χ. Χαραλάμπους

0 1 1 2 2 4 3 8 4 16 5 32 6 64 7 128 8 256 9 512 16 * 32 αντίστοιχοι εκθέτες 4, 5 άθροισμα εκθετών 9, αντίστοιχη δύναμη 512 Ένας τέτοιος πίνακας με δυνάμεις του 2 δε μπορεί να χρησιμοποιηθεί αποτελεσματικά για πολλαπλασιασμούς αφού οι δυνάμεις του 2 έχουν μεγάλη απόσταση μεταξύ τους.

John Napier (1550 1617) Σκωτία Ξεκίνησε τη μελέτη το 1594. ημοσίευσε το 1614 το Mirafici logarithmorum o canonis descriptio Και το 1619 Mirafici logarithmorum canonis constructio

Mirifici logarithmorum canonis descriptio (1614). 57 σελίδες εξήγηση Και 90 σελίδες με πίνακες

Αν τότε L είναι ο λογάριθμος Napier του Ν (για ευκολία τον γράφουμε Nap log Ν) Έτσι Nap log 10,000,000000 000 = 0 Nap log 9,999,999=1 ενώ

αν a : b=c : d τότε Nap log a Nap log b = Nap log c Nap log d. Το πρώτο βιβλίο ββ του Napier εκδόθηκε μετά από 20 χρόνια υπολογισμών: έδωσε τον πίνακα των λογαρίθμων για τους αριθμούς από το 5-10 εκατομμύρια.

σήμερα Ο Briggs (1561-1630, Άγγλος) μετά από συνεννόηση με τον Napier κατασκεύασε πίνακες με βάση 10 έτσι ώστε log 1=0

Ο επίσημος ορισμός του Napier Έστω ευθύγραμμο τμήμα BY (μήκος ή r= 10,000,000= 000 000 10 7 ) Έστω ημιευθεία AX. Τα P και Q ξεκινούν ταυτόχρονα από το Α και B. Η ταχύτητα του P παραμένει σταθερή, και ίση με 10 7. Η ταχύτητα του Q όμως ελαττώνεται ανάλογα με την απόσταση του Q από την άλλη άκρη Y. Έστω ότι σε κάποιο χρόνο το P φτάνει στο C ενώ το Q φτάνει στο D. Τότε ο λογάριθμος του DY είναι το AC. Με άλλα λόγια AC= Naplog DY

Έστω ότι πέρασε χρόνος t για να φτάσει P στο C. Έτσι y=ac=10 7 t. Αντίστοιχα έστω x=dy. (Σύγχρονα) θα γράφαμε ότι η ταχύτητα του Q, δηλ. dx/dt ικανοποιεί την ισότητα dx/dt=-x ενώ η αρχική της τιμή είναι 10 7 Nap log x= y: Όταν t είναι πολύ μικρό, 10-7 τότε y=1 ενώ x= 9,999,999.

Jobst Burgi (1552 1632) Ελβετός Η δουλειά του όμως δημοσιεύτηκε 1620. Έδωσε πίνακες με 23,027 στοιχεία, με λόγο 1+10-4

Εκτός από τους αριθημητικούς υπολογισμούς, οι λογάριθμοι επηρέασαν την εξέλιξη των μαθηματικών όταν το 1647 ο Βέλγος μοναχός St. Vincent (1854 1667) 1667) βρήκε ότι υπάρχει σχέση ανάμεσα στους λογαρίθμους και το εμβαδόν κάτω από τη καμπλύλη xy=1

René Descartes (Γαλλία) 1596 1650 5 φιλόσοφος φ Cogito ergo sum Σκέφτομαι άρα υπάρχω

1637 La dioptrique, Les meteores, La geometrie

Καρτεσιανή γεωμετρία=αναλυτική γεωμετρία Στόχος του: «κάθε πρόβλημα της γεωμετρίας μπορεί εύκολα να μετατραπεί έτσι ώστε η γνώση των μηκών ορισμένων ευθύγραμμων τμημάτων να αρκεί για την κατασκευή του.» Συστηματική χρήση της συμβολικής άλγεβρας: σύγχρονος ος αλγεβρικός συμβολισμός σμός είναι βασισμένος στον συμβολισμό του Descartes. (μετατροπή ρ ή ενός γεωμετρικού προβλήματος σε αλγεβρικό) γβρ )

Descartes θεωρούσε τις παραμέτρους και τους αγνώστους ευθύγραμμα τμήματα. Για παράδειγμα: x τετράγωνο και x κύβος ερμηνεύονται και αυτά ως ευθύγραμμα τμήματα. AB=1, τότε BD BC= BE Μπορεί κανείς να ερμηνεύσει με τον ίδιο τρόπο και ριζικά?

Λύση: LM=b, LN=a/2 (Geometrie) z=om

Χρήση συντεταγμένων: Παράδειγμα: Για τη λύση του προβλήματος του Απολλώνιου: όλες οι γραμμές δίνονται αναφορικά με δύο: EG (x), CT (y)

Απολλώνιο πρόβλημα: κατασκευή κύκλων (με κανόνα και διαβήτη), που είναι εφαπτόμενοι σε τρεις δεδομένους δ κύκλους στο επίπεδο. Το πρόβλημα έθεσε ο Απολλώνιος ο Περγαίος (περ. 262 π.χ. περ. 190 π.χ.) στο έργο του «Επαφαί».

«Ελπίζω ότι το μέλλον θα με κρίνει με ευγενικά όχι μόνο για τα πράγματα που εξήγησα, αλλά και για αυτά που παρέλειψα για να αφήσω σε άλλους τη χαρά της ανακάλυψης.»