DETERMINAREA TEMPERATURII CORPURILOR PE BAZA LEGII LUI PLANCK

Σχετικά έγγραφα
DETERMINAREA TEMPERATURII CORPURILOR PE BAZA LEGII LUI PLANCK

Aplicaţii ale principiului I al termodinamicii la gazul ideal

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

a. 11 % b. 12 % c. 13 % d. 14 %

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Problema a II - a (10 puncte) Diferite circuite electrice

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

STUDIUL UNOR LEGI ALE RADIAŢIEI TERMICE

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Metode iterative pentru probleme neliniare - contractii

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

Curs 4 Serii de numere reale

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"


V O. = v I v stabilizator

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

Curs 2 DIODE. CIRCUITE DR

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

Sisteme diferenţiale liniare de ordinul 1

FENOMENE TRANZITORII Circuite RC şi RLC în regim nestaţionar

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

MARCAREA REZISTOARELOR

Curs 1 Şiruri de numere reale

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Subiecte Clasa a VIII-a

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

Integrala nedefinită (primitive)

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Măsurări în Electronică şi Telecomunicaţii 4. Măsurarea impedanţelor

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

IV. CUADRIPOLI SI FILTRE ELECTRICE CAP. 13. CUADRIPOLI ELECTRICI

VII.2. PROBLEME REZOLVATE

5.4. MULTIPLEXOARE A 0 A 1 A 2

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Metode de interpolare bazate pe diferenţe divizate

M. Stef Probleme 3 11 decembrie Curentul alternativ. Figura pentru problema 1.

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

riptografie şi Securitate

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

Exemple de probleme rezolvate pentru cursurile DEEA Tranzistoare bipolare cu joncţiuni

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

Seria Balmer. Determinarea constantei lui Rydberg

Tranzistoare bipolare şi cu efect de câmp


Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Electronică STUDIUL FENOMENULUI DE REDRESARE FILTRE ELECTRICE DE NETEZIRE

Stabilizator cu diodă Zener

Asupra unei inegalităţi date la barajul OBMJ 2006

PROBLEME DE ELECTRICITATE

Circuite electrice in regim permanent

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

Seminar 5 Analiza stabilității sistemelor liniare

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

4. Măsurarea tensiunilor şi a curenţilor electrici. Voltmetre electronice analogice

L2. REGIMUL DINAMIC AL TRANZISTORULUI BIPOLAR

Laborator 11. Mulţimi Julia. Temă

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili

Fig. 1 A L. (1) U unde: - I S este curentul invers de saturaţie al joncţiunii 'p-n';

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

1. PROPRIETĂȚILE FLUIDELOR

Functii Breviar teoretic 8 ianuarie ianuarie 2011

LUCRAREA NR. 1 STUDIUL SURSELOR DE CURENT

Electronică anul II PROBLEME

8 Intervale de încredere

Subiecte Clasa a VII-a

Proiectarea filtrelor prin metoda pierderilor de inserţie

Esalonul Redus pe Linii (ERL). Subspatii.

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

Transformări de frecvenţă

L1. DIODE SEMICONDUCTOARE

Difractia de electroni

REDRESOARE MONOFAZATE CU FILTRU CAPACITIV

Curs 2 Şiruri de numere reale

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

Reflexia şi refracţia luminii.

Lucrul mecanic. Puterea mecanică.

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

SIGURANŢE CILINDRICE

Determinarea momentului de inerţie prin metoda oscilaţiei şi cu ajutorul pendulului de torsiune. Huţanu Radu, Axinte Constantin Irimescu Luminita

Conice - Câteva proprietǎţi elementare

Transformata Laplace

LUCRAREA NR. 4 DETERMINAREA INDICELUI DE REFRACŢIE AL UNUI SOLID CU AJUTORUL PRISMEI

Lucrarea Nr. 5 Circuite simple cu diode (Aplicaţii)

L.2. Verificarea metrologică a aparatelor de măsurare analogice

prin egalizarea histogramei

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

A1. Valori standardizate de rezistenţe

Transcript:

UNIVERSIAEA "POLIEHNICA" DIN BUCUREŞI DEPARAMENUL DE FIZICĂ LABORAORUL DE OPICĂ BN - 1 A DEERMINAREA EMPERAURII CORPURILOR PE BAZA LEGII LUI PLANCK

DEERMINAREA EMPERAURII CORPURILOR PE BAZA LEGII LUI PLANCK 1. Scopul lucrării 1.1. Utilizarea formulei lui Planck la determinarea temperaturii unui corp cu ajutorul pirometrului optic cu dispariţie de filament; 1.. Calculul coeficienţilor liniar şi pătratic de variaţie cu temperatura ai rezistenţei electrice a filamentului unei lămpi cu incandescenţă.. eoria lucrării Corpurile încălzite emit unde electromagnetice prin transformarea energiei de agitaţie termică a particulelor în energie de radiaţie. Radiaţia electromagnetică a unui corp în echilibru termodinamic se numeşte radiaţie termică. Numim putere spectrală de emisie a corpului mărimea E ν,, numeric egală cu densitatea superficială a puterii radiate termic, pentru un interval de frecvenţă de lărgime unitate: dw Eν, = (1) d ν unde dw este energia radiaţiei termice emisă de unitatea de suprafaţă a corpului în unitatea de timp în intervalul de frecvenţă cuprins între ν şi ν + d ν. Puterea emisivă spectrală depinde de temperatură, frecvenţă, de materialul din care este făcut corpul, de forma sa şi de starea suprafeţei. Numim factor spectral de absorbţie al corpului mărimea A ν,, care arată fracţiunea din energia dw inc transmisă în unitatea de timp unităţii de suprafaţă a corpului de undele electromagnetice incidente cu frecvenţa cuprinsă între ν şi ν + d ν, care este absorbită de către corp: dwabs Aν, = () dwinc Un corp este numit corp negru dacă la orice temperatură absoarbe integral toată energia undelor electromagnetice incidente: negru A ν, = 1 (3) Între puterile spectrale emisivă şi absorbantă ale unui corp netransparent oarecare există relaţia: Eν, = εν, (4) Aν, adică pentru o frecvenţă şi o temperatură arbitrare raportul dintre puterea spectrală de emisie şi factorul spectral de absorbţie este acelaşi pentru toate corpurile şi egal cu puterea emisivă spectrală a corpului negru, ε ν,, aceasta fiind o funcţie dependentă doar de frecvenţă şi temperatură (legea lui Kirchhoff sub formă diferenţială). eoria lui Planck asupra cuantelor de energie electromagnetică conduce la următoarea expresie pentru puterea emisivă spectrală a corpului negru: πν hν εν, = (5) hν c ek 1 1

Dacă dorim să exprimăm puterea spectrală de emisie a corpului negru raportându-ne la un interval infinitesimal d λ pentru lungimea de undă, ţinând cont de relaţia c = λν, obţinem o altă expresie pentru formula lui Planck: d ν πc h ελ, = εν, = (6) d λ 5 hc λ e kλ 1 Întrucât domeniul de temperatură în care se va lucra nu va depăşi 3000 K, putem folosi aproximaţia Wien, valabilă pentru frecvenţe înalte ( h ν >> k ): hc πhc ε k e λ λ, (7) 5 λ Pentru un corp oarecare, puterea spectrală de emisie se va scrie aşadar: E λ, = Aλ, ελ, (8) Definim temperatura de strălucire (pentru un interval îngust de lungimi de undă) a unui corp cu temperatura reală, ca temperatura S a corpului negru care, pentru aceeaşi lungime de undă, are puterea de emisie spectrală egală cu cea a corpului la temperatura. ε E (9) λ, = S λ, hc Notând C1 = πhc şi C =, rezultă egalitatea: k C C 5 λ C λ e S = A C e λ 1 λ, 1 (10) de unde: C 1 1 ln A = λ, (11) λ S Obţinem în final legătura între temperatura reală şi temperatura de strălucire a unui corp cu factorul spectral de absorbţie A λ, : = S λln A (1) λ, 1+ S C Măsurându-se experimental, cu ajutorul pirometrului, temperatura de strălucire S şi cunoscând Aλ, = 0,40 pentru wolfram, C = 1,438 10 m grad, şi λ = 0, 655μm, se calculează temperatura reală cu ajutorul formulei de mai sus. 3. Descrierea instalaţiei experimentale În lucrarea de faţă, măsurarea temperaturii de strălucire se face cu ajutorul unui pirometru optic monocromatic cu dispariţie de filament, al cărui principiu de funcţionare se bazează pe compararea şi egalarea strălucirilor a două izvoare de radiaţie. În figura 1 este dată schema de principiu a pirometrului utilizat. Corpul incandescent S, a cărui temperatură se măsoară, îşi formează imaginea cu ajutorul obiectivului O1 într-un plan în care este aşezat filamentul unei lămpi electrice de comparaţie L. Observatorul privind prin ocularul O vede imaginea filamentului proiectată pe fondul imaginii corpului incandescent. Filtrul roşu FR lasă să treacă numai o parte, aproape monocromatică, din radiaţia emisă de corp şi filamentul L.

Fig. 1. Astfel, un observator poate compara strălucirea corpului (în cazul acestei lucrări, corpul incandescent de studiu este filamentul unui bec) cu aceea a filamentului pirometrului. El poate distinge trei cazuri schiţate în figura, şi anume: strălucirea filamentului să fie mai mare decât cea a imaginii corpului (fig.a), mai mică (fig.c) sau cele două străluciri să fie egale (fig.b), caz în care imaginea filamentului "dispare" pe fondul imaginii corpului. Fig.. La temperaturi înalte ale corpului ar trebui să se folosească un curent electric de intensitate mare prin filamentul pirometrului, ceea ce ar provoca o uzură rapidă, cât şi o scădere a preciziei aparatului. Acest inconvenient a fost înlăturat prin folosirea filtrului neutru FN montat între obiectiv şi lampa de comparaţie pentru a reduce strălucirea imaginii corpului. 4. Modul de lucru Pentru a măsura temperatura reală a filamentului incandescent de wolfram al unui bec şi a studia variaţia rezistenţei sale cu temperatura se realizează montajul din figura 3. Pentru a măsura temperatura de strălucire a filamentului lui B se va proceda astfel: a) Cu ajutorul autotransformatorului Atr. se aplică becului o tensiune de 60 V. b) Se vizează cu pirometrul optic (fixat pe un stativ) filamentul becului şi se reglează poziţia obiectivului O1 până vom observa, prin ocularul O, imaginea clară a filamentului în planul lămpii L. În această observaţie filtrul neutru FN se va găsi pe treapta 1, iar filtrul roşu FR este aşezat în faţa ocularului (se va observa punctul roşu de pe el). c) Se conectează lampa L a pirometrului la aparatul de măsură (scala 0-400 ma) şi la bateria de 4,5 V prin rotirea spre dreapta a manşonului M. Când lampa este conectată se va observa că miliampermetrul va indica o valoare, iar filamentul ei se înroşeşte. d) Se aşează pirometrul astfel încât filamentul lămpii L să se suprapună peste imaginea filamentului becului (sursei) pusă la punct. e) Se roteşte manşonul M până când strălucirea filamentelor este aceeaşi (situaţia din figura b). În această situaţie se citeşte curentul indicat de miliampermetrul pirometrului şi pe tabelul anexat la el se citeşte temperatura de strălucire corespunzătoare curentului citit şi treptei alese. Pentru a nu se face erori prea mari în aprecierea egalităţii strălucirilor se repetă operaţia de egalizare şi citire de cel puţin 5 ori. Se citesc tensiunea şi curentul aplicate becului B. 3

Fig. 3. f) Se schimbă tensiunea aplicată la becul B din 0 în 0 V până la 00 V şi se procedează în mod analog, ca la punctul a). Pentru tensiunile aflate în intervalul 60-140 V se lucrează cu filtrul FN pe treapta 1, iar pentru 160-00 V pe treapta. 5. Indicaţii pentru prelucrarea datelor experimentale a) Cu ajutorul tabelului ce furnizează temperaturile de strălucire corespunzătoare unor anumite valori pentru curentul prin lampa pirometrului se trasează pe un grafic curba de etalonare a aparatului S ( I L ). Folosind această curbă se vor găsi temperaturile de strălucire ale filamentului becului pentru valorile de curent citite pe miliampermetrul lămpii L la egalizarea strălucirilor. b) emperaturile de strălucire luate din grafic, transformate în Kelvini, se introduc în relaţia (1) şi se calculează temperaturile reale. Întrucât în intervalul în care se măsoară temperatura de strălucire a filamentului de wolfram factorul spectral de absorbţie variază foarte puţin, acesta se va considera constant şi egal cu 0,40. c) Datele experimentale se vor trece în tabelul 1. d) Cunoscând că rezistenţa filamentului becului variază cu temperatura după o lege de tipul: R t = R0 ( 1+ αt + βt ) (13) se calculează coeficienţii α şi β în felul următor: Se trasează graficul rezistenţei R în funcţie de temperatură. Se aleg două puncte (R 1,t 1 ) şi (R, t ) de pe partea concavă a curbei şi se introduc în relaţia (13). Se obţine sistemul: R1 = R0 ( 1+ αt1 + βt1 ) (14) R = R0 ( 1+ αt + βt ) Rezistenţa la t = 0 C se consideră cunoscută, R 0 = 5 Ω? Din sistem se determină coeficienţii α şi β. A ν, 4

Nr. crt. U bec (V) I bec (A) R =U / I i (ma) i (ma) t S ( C) S (K) (K) abelul 1. t ( C) 5. Întrebări 1. Definiţi termenii din expresia pirometru optic monocromatic cu dispariţie de filament.. Ce este curba de etalonare a pirometrului şi la ce foloseşte ea? 3. Cum se defineşte temperatura de strălucire a unui corp? Cum este aceasta faţă de temperatura reală a corpului? 4. Justificaţi folosirea aproximaţiei de frecvenţe înalte în relaţia (7), ţinând cont de ordinul de mărime al frecvenţelor din spectrul optic. R= R 1+ α t + β t? 5. Care este semnificaţia mărimilor din ecuaţia 0 ( ) 6. Descrieţi figura vazută prin ocularul pirometrului înainte de reglarea curentului prin filamentul său şi după reglare? Cum aţi determinat practic temperatura de strălucire a filamentului becului? 7. Indicaţi sursele posibile de erori care pot afecta rezultatele măsurătorilor. 5

ANEXA Curentul prin filamentul pirometrului i (ma) emperatura de strălucire a filamentului pirometrului t S ( C) i (ma) t S ( C) abelul de etalonare a pirometrului pentru filtrul neutru 1 173 175 180 185,5 190 00 10 0 30 40 50 60 70 80 93 800 80 861 900 933 1000 105 1105 1150 1194 138 177 1314 1351 1400 abelul de etalonare a pirometrului pentru filtrul neutru i (ma) 190 00 05 10 0 30 40 50 60 70 80 90 98 t S ( C) 100 198 1338 1385 1467 1547 16 1689 1761 184 1889 1949 000 abelul de etalonare a pirometrului pentru filtrul neutru 3 i (ma) 0 10 0 30 40 50 60 70 80 t S ( C) 1600 1716 1836 1956 067 18 9 385 490 i (ma) 90 300 310 30 330 336 t S ( C) 588 675 768 857 941 3000 Aceste tabele corespund diagramelor de etalonare furnizate de producătorul pirometrului, care se găsesc lîngă ansamblul experimental. 6