6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ



Σχετικά έγγραφα
Εισαγωγή στην Πληροφορική

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

2. ΛΟΓΙΚΕΣ ΠΥΛΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR

K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

Λογική Σχεδίαση Ψηφιακών Συστημάτων

K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων

Αρχιτεκτονικές Υπολογιστών BOOLEAN ALGEBRA

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

Εισαγωγή στην Πληροφορική

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η)

ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. ιδάσκων : ρ. Β. ΒΑΛΑΜΟΝΤΕΣ. Πύλες - Άλγεβρα Boole 1

Περίληψη ΗΜΥ-210: Λογικός Σχεδιασµός. Λογικές Πύλες. BUFFER, NAND και NOR. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 2005

Εισαγωγή στην Πληροφορική

Ελίνα Μακρή

Κεφάλαιο 4. Λογική Σχεδίαση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

Ψηφιακά Συστήματα. 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΩΝ ΚΑΙ ΚΩ ΙΚΕΣ 1

3. Απλοποίηση Συναρτήσεων Boole

Οικουμενικές Πύλες (ΝΑΝD NOR), Πύλη αποκλειστικού Η (XOR) και Χρήση KarnaughMaps

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ

Ενότητα 4 ΛΟΓΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΔΥΟ ΕΠΙΠΕΔΩΝ

ΚΕΦΑΛΑΙΟ 3 ο Αλγεβρα BOOLE και Λογικές Πύλες

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

Εισαγωγή στην Πληροφορική

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3

επανενεργοποιηθεί Βιομηχανικά Ηλεκτρονικά - Κ.Ι.Κυριακόπουλος Control Systems Laboratory

Εργαστήριο Ψηφιακών Συστηµάτων ΗΜΥ211

4. ΝΟΜΟΙ ΔΥΑΔΙΚΗΣ ΑΛΓΕΒΡΑΣ

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στην Πληροφορική

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

12. ΚΑΤΑΧΩΡΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδυαστική Λογική / Κυκλώματα

4.1 Θεωρητική εισαγωγή

Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.

Συνδυαστικά Λογικά Κυκλώματα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 17: Αναδιατασσόµενη Λογική Προγραµµατιζόµενο Υλικό

Ενότητα 2 ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΕΣ ΠΥΛΕΣ

C D C D C D C D A B

1.1 Θεωρητική εισαγωγή

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.

Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

6.1 Θεωρητική εισαγωγή

Ενότητα 5 ΑΠΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΔΥΟ ΕΠΙΠΕΔΩΝ

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Αριθμητική περιοχή της ALU 2.5: Κυκλώματα Υπολογιστών

Βασικές CMOS Λογικές οικογένειες (CMOS και Domino)

Εισαγωγή στην Πληροφορική

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ

Παράσταση αριθμών «κινητής υποδιαστολής» floating point

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφική Σχεδίαση

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Πράξεις με δυαδικούς αριθμούς

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014

Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI

Ψηφιακά Συστήματα. 3. Λογικές Πράξεις & Λογικές Πύλες

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

Ψηφιακά Συστήματα. 6. Σχεδίαση Συνδυαστικών Κυκλωμάτων

7. ΥΑ ΙΚΗ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ

Ψηφιακή Λογική και Σχεδίαση

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση

Κεφάλαιο 3. Λογικές Πύλες

3. ΛΟΓΙΚΕΣ ΠΡΑΞΕΙΣ & ΛΟΓΙΚΕΣ ΠΥΛΕΣ

ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX)

Ψηφιακά Συστήματα. 5. Απλοποίηση με χάρτες Karnaugh

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΑΣΚΗΣΗ 9. Tα Flip-Flop

ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο Κυκλώματα CMOS. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

2. Άλγεβρα Boole και Λογικές Πύλες

7.1 Θεωρητική εισαγωγή

ΚΕΦΑΛΑΙΟ Συνδυαστικά Κυκλώµατα. 3.2 Σχεδιασµός Συνδυαστικής Λογικής 3.3 ιαδικασία Ανάλυσης 3.4 ιαδικασία Σχεδιασµού.

Εισαγωγή στην Πληροφορική

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

"My Binary Logic" Ένας προσομοιωτής λογικών πυλών στο Scratch

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ.

ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΡΑΓΚΙΑΟΥΡΗΣ ΝΙΚΟΛΑΟΣ

Transcript:

6. ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΠΕ ΩΝ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 2

ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΥΟ ΕΙΣΟ ΩΝ Οι πύλες NAND και NOR δυο εισόδων ονοµάζονται οικουµενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωµα µπορεί να υλοποιηθεί µόνο µε πύλες NAND δυο εισόδων ήµόνοµεπύλες NORδυοεισόδων. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 3

ΟΙΚΟΥΜΕΝΙΚΗ ΠΥΛΗ NAND Κάθε πύλη NOT και AND και OR δυο εισόδων µπορεί να αντικατασταθεί από ένα ισοδύναµο κύκλωµα µε αποκλειστική χρησιµοποίηση πυλών NAND δυο εισόδων. Στο παρακάτω σχήµα βλέπουµε τα κυκλώµατα που είναι ισοδύναµα µε τις βασικές πύλες NOT, AND και OR, χρησιµοποιώντας µόνο πύλες ΝΑND δυο εισόδων. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 4

ΟΙΚΟΥΜΕΝΙΚΗ ΠΥΛΗ NOR Κάθε πύλη NOT και AND και OR δυο εισόδων µπορεί να αντικατασταθεί από ένα ισοδύναµο κύκλωµα µε αποκλειστική χρησιµοποίηση πυλών NOR δυο εισόδων. Στο παρακάτω σχήµα βλέπουµε τα κυκλώµατα που είναι ισοδύναµα µε τις βασικές πύλες NOT, AND και OR, χρησιµοποιώντας µόνο πύλες NOR δυο εισόδων. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 5

ΣΧΕ ΙΑΣΗ ΣΥΣ ΥΑΣΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΥΛΕΣ NAND/NOR 2 ΕΙΣΟ ΩΝ Αν θέλουµε να σχεδιάσουµε και να κατασκευάσουµε ένα κύκλωµα µε οικουµενικές πύλες NAND ή NOR δυο εισόδων, µπορούµενατοσχεδιάσουµεπρώταµεπύλες NOT, ANDκαι OR και στη συνέχεια να αντικαταστήσουµε την κάθε πύλη µε το ισοδύναµο κύκλωµα. Αν στο κύκλωµα υπάρχουν δυο διαδοχικές πύλες NAND ή NOR που αντιστοιχούν σε πύλες ΝΟΤ, τότε οι δυο διαδοχικές πύλες διαγράφονται και το κύκλωµα απλοποιείται. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 6

ΠΑΡΑ ΕΙΓΜΑ ΣΧΕ ΙΑΣΗΣ ΣΥΣ ΥΑΣΤΙΚΟΥ ΚΥΚΛΩΜΑΤΟΣ ΜΕ ΠΥΛΕΣ NAND 2 ΕΙΣΟ ΩΝ Θέλουµε να σχεδιάσουµε µε οικουµενικές πύλες NAND δυο εισόδων το συνδυαστικό κύκλωµα που υλοποιεί τη λογική συνάρτηση: Z=A B+C Σχεδιάζουµεστηναρχήτοκύκλωµαµεπύλες NOT, ANDκαι OR: ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 7

Στη συνέχεια αντικαθιστούµε την κάθε πύλη µε το ισοδύναµο κύκλωµα µε πύλες NAND δυο εισόδων: ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 8

Στο κύκλωµα αυτό παρατηρούµε ότι υπάρχουν διαδοχικές πύλες NAND δυο εισόδων που αντιστοιχούν σε πύλες ΝΟΤ. Αυτές οι δυο διαδοχικές πύλες διαγράφονται και το κύκλωµα απλοποιείται: ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 9

ΠΑΡΑ ΕΙΓΜΑ ΣΧΕ ΙΑΣΗΣ ΣΥΣ ΥΑΣΤΙΚΟΥ ΚΥΚΛΩΜΑΤΟΣ ΜΕ ΠΥΛΕΣ NOR 2 ΕΙΣΟ ΩΝ Θέλουµε να σχεδιάσουµε µε οικουµενικές πύλες NOR δύο εισόδων το συνδυαστικό κύκλωµα που υλοποιεί τη λογική συνάρτηση: Z=A B+C Αν προχωρήσουµε την επεξεργασία της εξίσωσης χρησιµοποιώντας το θεώρηµα De Morgan έχουµε: Z=A B+C=((A B) C ) =((A+B )C ) =(A+B )+C=(((A+B )+C) ) H συνάρτηση αυτή υλοποιείται αποκλειστικά µε πύλες NOR δύο εισόδων: ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 10

ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ Οι πύλες NAND και NOR πολλαπλών εισόδων ονοµάζονται οικουµενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωµα µπορεί να υλοποιηθεί µόνο µε πύλες NAND πολλαπλών εισόδων ή µόνο µε πύλες NOR πολλαπλών εισόδων. ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 11

ΣΧΕ ΙΑΣΗ ΣΥΝ ΥΑΣΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΥΛΕΣ NAND/NORΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ - έκφραση των συναρτήσεων εξόδου του συνδυαστικού κυκλώµατος ως αθροίσµατα γινοµένων, όταν απαιτείται υλοποίηση µε πύλες NAND ως γινόµενα αθροισµάτων, όταν απαιτείται υλοποίηση µε πύλες NOR - πύλες πρώτου επιπέδου σε κάθε γινόµενο αντιστοιχεί µία πύλη NAND µε εισόδους τους παράγοντες του γινοµένου, όταν απαιτείται υλοποίηση µε πύλες NAND σεκάθεάθροισµααντιστοιχείµίαπύλη NORµεεισόδουςτουςόρουςτου αθροίσµατος, όταν απαιτείται υλοποίηση µε πύλες NOR - πύλη δεύτερου επιπέδου µία πύλη µε εισόδους που τροφοδοτούνται από τις εξόδους των πυλών του πρώτου επιπέδου - διαγραφή κάθε πύλης του πρώτου επιπέδου που τροφοδοτείται από µία είσοδο και αντικατάσταση της εισόδου µε το συµπλήρωµά της, µε το οποίο τροφοδοτείται η πύλη του δεύτερου επιπέδου (ισχύει η υπόθεση ότι οι είσοδοι είναι διαθέσιµοι τόσο στην κανονική όσο και στη συµπληρωµατική τους µορφή) ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 12