ON THE KIENZLER-DUAN FORMULA FOR THE HOOP STRESS AROUND A CIRCULAR VOID

Σχετικά έγγραφα
1 3D Helmholtz Equation

Chapter 7a. Elements of Elasticity, Thermal Stresses

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

DYNAMICS OF CHANGE WITHIN LIVESTOCK SUB-SECTOR IN CHAD : a key-study of raw milk commodity chain in N Djamena

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Solutions - Chapter 4

4.2 Differential Equations in Polar Coordinates

Lecture 34 Bootstrap confidence intervals

# %&! & (%!) +!, (.! & / # ( %. 0! 0 %&! 0 0% 1(&! &!. 2,, / , 7 /,8, 8 / 9 7,, 2 /! 5 78 (.! && / 9.& +! (1 & : / # ( %.! %& &)!

Laplace s Equation in Spherical Polar Coördinates

ANTENNAS and WAVE PROPAGATION. Solution Manual

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Fundamental Equations of Fluid Mechanics

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Curvilinear Systems of Coordinates

K r i t i k i P u b l i s h i n g - d r a f t

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Chapter 6 BLM Answers

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1)

! # % &! () +,./ % 0 1 % % % 4 5 / 6##7,+ 84,8, 0 %,, 9 :,9,

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Example 1: THE ELECTRIC DIPOLE

The Friction Stir Welding Process

The Laplacian in Spherical Polar Coordinates

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις

Problems in curvilinear coordinates

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Ιστοσελίδα:

= +. 2 c = JK = evk, S E V V ( ) 1 2

Optimal Placing of Crop Circles in a Rectangle

(a) Individually finned tubes (b) flat (continuous) fins on an array of tubes

2. KOLOKVIJ IZ MATEMATIKE 1

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

ELEKTROTEHNIČKI ODJEL

Tutorial Note - Week 09 - Solution

Chapter 1 Fundamentals in Elasticity

Airfoil Characteristics

Strain gauge and rosettes

= 2 (α z)(ˆα z) = z. [z k ]a(z) = ak [βkz k ]a(z) = β 1 ,... f0 = 0, f1 = 1, fk = fk 1 + fk 2, k 2. 5a(z) a(z) = k 0. 1 z k = k 0.

Analytical Expression for Hessian

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Ασκήσεις κοπής σε τόρνο

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

Areas and Lengths in Polar Coordinates

Uniform Convergence of Fourier Series Michael Taylor

A MATEMATIKA Zadana je z = x 3 y + 1

rs r r â t át r st tíst Ó P ã t r r r â


Course Reader for CHEN 7100/7106. Transport Phenomena I

Oscillatory integrals

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

Numerical Analysis FMN011

Solutions_3. 1 Exercise Exercise January 26, 2017

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Matrix Hartree-Fock Equations for a Closed Shell System

Matematka 1 Zadaci za drugi kolokvijum

Lecture 26: Circular domains

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

SPECIAL FUNCTIONS and POLYNOMIALS

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

D Alembert s Solution to the Wave Equation

Cascading failure model of complex networks based on tunable load redistribution

FURIJEOVI REDOVI ZADACI ( II

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010

Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

ΜΗΧΑΝΟΥΡΓΙΚΗ ΤΕΧΝΟΛΟΓΙΑ 1

r = x 2 + y 2 and h = z y = r sin sin ϕ

Exercises to Statistics of Material Fatigue No. 5

Solutions to Exercise Sheet 5

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

P n ( x) = ( 1) n P n (x), P n (x)p l (x)dx = 2. P n (x)dx =

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Αναπαραστάσεις οµάδων: παραδείγµατα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

Chapter 7 Transformations of Stress and Strain

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Transcript:

13 ЦРНОГОРСКА АКАДЕМИЈА НАУКА И УМЈЕТНОСТИ ГЛАСНИК ОДЈЕЉЕЊА ПРИРОДНИХ НАУКА, 21, 216. ЧЕРНОГОРСКАЯ АКАДЕМИЯ НАУК И ИСКУССТВ ГЛАСНИК ОТДЕЛЕНИЯ ЕСТЕСТВЕННЫХ НАУК, 21, 216 THE MNTENEGRIN AADEMY F SIENES AND ARTS PREEDINGS F THE SETIN F NATURAL SIENES, 21, 216. UDK 621.8:517.443 Vldo Lubd * N THE KIENZLER-DUAN FRMULA FR THE HP STRESS ARUND A IRULAR VID Abstt The deivtion of the Kienzle-Dun fomul fo the hoop stess ound iul void used b eithe emote loding o neb intenl soue of stess is pesented bsed on the Fouie seies nlsis without efel to the Poisson oeffiient of ltel onttion, s in the oiginl deivtion b Kienzle nd Dun (1987). The fomul fo the longitudinl stess below the fee sufe of hlf-spe due to neb intenl soue of stess is lso deived b mens of the limiting poess fom the solution to the poblem of n intenl soue of stess ne n infinitel lge iul void, nd b n independent nlsis without efel to the fome poblem. The use of the deived fomuls in the dislotion nd inlusion poblems of mehnis of solids nd mteils siene is disussed. KIENZLER-DUANVJ FRMULI ZA BRUČNI NAPN K KRUŽNG TVRA Sžetk Kienzle-Dunov fomul z obučni npon oko kužnog otvo usljed spoljšnjeg opteećenj ili unutšnjeg izvo npon je izveden n bzi Fouieove nlize, bez uvođenj u nlizu Poissonovog koefiijent elstičnosti koji je koišćen u du Kienzle i Dun (1987). Fomul z uzdužni npon ispod slobodne povšine poluposto usljed obližnjeg unutšnjeg izvo npon je izveden ko gnični slučj unutšnjeg izvo npon u blizini beskončno velikog otvo, * Pof. D. V. A. Lubd, The Montenegin Adem of Sienes nd Ats, Montenego, nd Univesit of lifoni, Sn Diego, A 9293-448, USA.

14 Vldo Lubd ztim nezvisnom nlizom ne pozivjući se n ješenje poblem beskončnog posto oslbljenog kužnim otvoom. Diskutovn je znčj ovih fomul z nlizu dislokionih poblem i inkluzij u mehnii čvstih tijel i nui o mteijlim. σ θ (, θ) = 2[σ θ(, θ) σ (, θ) + 1 2 [σ θ(,θ)+σ (,θ). (, θ) J M σ zθ (, θ) =2σ zθ(, θ).

n the Kienzle-Dun Fomul fo the Hoop Stess ound iul Void 15 = σ (,) = 2[σ (,) σ (,). d Φ = Φ(, θ) σ = 1 Φ + 1 2 Φ 2 θ 2, σ θ = 2 Φ 2, σ θ = 1 2 Φ θ 1 2 Φ θ. σ(, θ) σθ (, θ) σ θ (, θ) = ˆσ (, θ) = σ(, θ) ˆσ θ (, θ) = σθ (, θ) σ (, θ) =σ (, θ)+ˆσ (, θ) σ θ (, θ) σ θ (, θ)

16 Vldo Lubd q q d d h h q q d d h h d (, θ) d (, ) (ξ,η) (, θ) (, ) (ξ,η) σθ σθ (, θ) (, θ) = = σ(, θ) σ(, θ) = = = = Φ = A 2 + 3 f 1 (θ)+ n f n (θ)+ n+2 B n g n (θ). Φ = A 2 + 3 [ f 1 (θ)+ n f n (θ)+ n+2 B n g n (θ). f n (θ) =A n os nθ + n sin nθ, g n (θ) =B n os nθ + D n sin nθ, f n (θ) =A n os nθ + n sin nθ, g n (θ) =B n os nθ + D n sin nθ, = = = (, [ θ) =2A +2f (θ) n(n 1) n 2 (θ)+(n 1)(n 2) σ (θ) (, θ) =2A +2f 1 (θ) n(n 1) n 2 f n (θ)+(n + 1)(n 2) n g n (θ), θ(, [ θ) =2A +6f (θ)+ n(n 1) n 2 (θ)+(n 1)(n 2) σ (θ) θ(, θ) =2A +6f 1 (θ)+ n(n 1) n 2 f n (θ)+(n + 1)(n + 2) n g n (θ), θ(, θ) = 2f 1(θ) [ σ (n 1) n 2 n(θ)+(n 1) n(θ) θ(, θ) = 2f 1(θ) (n 1) n 2 f n(θ)+(n + 1) n g n(θ),

n the Kienzle-Dun Fomul fo the Hoop Stess ound iul Void 17 () θ = () () = () σ(,θ)=2a = () 2f 2 (θ), σθ(,θ)=2a +2f 2 (θ), σθ(,θ)= f θ = 2(θ). = (,θ)=2a 2f 2 (θ) θ(,θ)=2a +2f 2 (θ) θ(,θ)= f 2(θ) (,θ)=2a 2f 2 (θ) θ(,θ)=2a +2f 2 (θ) θ(,θ)= f 2(θ) (,θ)=2a 2f 2 (θ) θ(,θ)=2a +2f 2 (θ) 2(θ) σ 2A (,θ)=2a 2A /2 (,θ)+σ 1 2f 2 (θ), σ θ(,θ)=2a +2f 2 (θ), σθ(,θ)= f 2(θ). /2 1 2A (,θ)+σ θ (,θ) 2A 1 /2 1 2A (,θ)+σ θ (,θ) 2A 2A 2A 1 /2 1 (,θ)+σ θ 2A (,θ) 2A 2A 1 /2 1 2A θ (,θ) (, θ)dθ = I1 /2 I1 = σ(,θ)+σ θ (,θ) θ(, θ)dθ =2A (, θ)dθ 2A 2A θ(, θ)dθ =2A (, θ)dθ 2A θ(, θ)dθ =2A (, θ)dθ θ(, θ)dθ =2A (, θ)dθ 1 θ(, θ)dθ =2A σ (, θ)dθ = 1 σ θ(, θ)dθ =2A. θ(, θ) 2σ(, θ) =2f (θ)+ 3n(n 1) n 2 (θ)+(3n 2)(n 1) (θ) θ(, θ) 2σ(, θ) =2f 1 (θ)+ 3n(n 1) n 2 n (θ)+(3n 2)(n 1) n n (θ) θ(, θ) 2σ(, θ) =2f 1 (θ)+ 3n(n 1) n 2 n (θ)+(3n 2)(n 1) n n (θ) θ(, θ) 2σ(, θ) =2f 1 (θ)+ 3n(n 1) n 2 n (θ)+(3n 2)(n 1) n n (θ) θ) 2σ(, θ) =2f 1 (θ)+ [ 3n(n 1) n 2 n (θ)+(3n 2)(n 1) n n (θ) σθ(, θ) 2σ(, θ) =2f 1 (θ)+ 3n(n 1) n 2 f n (θ)+(3n 2)(n + 1) n g n (θ). σ σθ σθ σθ θ σ σθ θ (, (, θ) θ) (, θ) (, θ) (, θ) (, θ) ˆσ ˆσ (, θ) = σ(, θ) ˆσ θ (, θ) (, θ) = σ(, θ) ˆσ θ (, θ) ˆσ (, θ) = σ(, θ) ˆσ θ (, θ) ˆσ (, θ) = σ(, θ) ˆσ θ (, θ) ˆσ (, θ) = σ(, θ) ˆσ θ (, θ) ˆσ (, θ) = σ(, θ) ˆσ θ (, θ) = ˆΦ =Â ln 1 ˆf1 (θ)+ n ˆfn ˆΦ (θ)+ n+2 (θ) =Â ln 1 ˆf1 (θ)+ n ˆfn (θ)+ n+2 n (θ) ˆΦ =Â ln 1 ˆf1 (θ)+ n ˆfn (θ)+ n+2 n (θ) ˆΦ =Â ln 1 ˆf1 (θ)+ n ˆfn (θ)+ n+2 n (θ) ˆΦ =Â ln 1 ˆf1 (θ)+ [ n ˆfn (θ)+ n+2 n (θ) ˆΦ =Â ln + 1 ˆf1 (θ)+ n ˆfn (θ)+ n+2 ĝ n (θ), ˆf n (θ) =Ân os nθ Ĉn sin nθ n (θ) ˆB n os nθ ˆD n sin nθ ˆf n (θ) =Ân os nθ Ĉn sin nθ n (θ) ˆB n os nθ ˆD n sin nθ ˆf n (θ) =Ân os nθ Ĉn sin nθ n (θ) ˆB n os nθ ˆD n sin nθ ˆf n (θ) =Ân os nθ Ĉn sin nθ n (θ) ˆB n os nθ ˆD n sin nθ ˆf n (θ) =Ân os nθ + Ĉn sin nθ, ĝ n (θ) = ˆB n os nθ + ˆD n sin nθ. ˆσ (, θ) =Â 2 ˆf 3 1 (θ) n(n+1) n 2 ˆfn (θ)+(n 1)(n+2) n n (θ) ˆσ (, θ) =Â 2 ˆf 3 1 (θ) n(n+1) n 2 ˆfn (θ)+(n 1)(n+2) n n (θ) ˆσ (, θ) =Â 2 ˆf 3 1 (θ) n(n+1) n 2 ˆfn (θ)+(n 1)(n+2) n n (θ) ˆσ (, θ) =Â 2 ˆf 3 1 (θ) n(n+1) n 2 ˆfn (θ)+(n 1)(n+2) n ˆσ θ (, θ) = Â 2 n (θ) ˆσ (, θ) =Â 2 2 ˆf [ 3 1 (θ) n(n+1) ˆf n 2 ˆfn (θ)+(n 1)(n+2) n ĝ n (θ), 3 1 (θ)+ n(n+1) n 2 ˆfn (θ)+(n 1)(n 2) n n (θ) ˆσ θ (, θ) = Â 2 ˆf 3 1 (θ)+ n(n+1) n 2 ˆfn (θ)+(n 1)(n 2) n n (θ) ˆσ θ (, θ) = Â 2 ˆf 3 1 (θ)+ n(n+1) n 2 ˆfn (θ)+(n 1)(n 2) n n (θ) ˆσ θ (, θ) = Â 2 ˆσ θ (, θ) ˆf 3 1(θ)+ (n 1) n 2 ˆf n (θ)+(n 1) n n(θ) ˆσ θ (, θ) ˆf 3 1 (θ)+ n(n+1) n 2 ˆfn (θ)+(n 1)(n 2) n n (θ) ˆσ θ (, θ) = Â 2 + 2 ˆf 3 1(θ)+ (n 1) n 2 ˆf n (θ)+(n 1) n n(θ) ˆσ θ (, θ) ˆf [ 3 1 (θ)+ n(n+1) n 2 ˆfn (θ)+(n 1)(n 2) n ĝ n (θ), ˆf 3 1(θ)+ (n 1) n 2 ˆf n (θ)+(n 1) n n(θ) ˆσ θ (, θ) ˆf 3 1(θ)+ (n 1) n 2 ˆf n (θ)+(n 1) n n(θ) ˆσ θ (, θ) = 2 ˆf [ 3 1(θ)+ (n + 1) n 2 ˆf n (θ)+(n 1) n ĝ n(θ).

18 Vldo Lubd s q s ^ s q ^ s q q = ˆσ (, θ) = σ(, θ) ˆσ θ (, θ) = σθ (, θ) σ (, θ) σθ (, θ) = = σ(, θ) σθ (, θ) = ˆσ (, θ) = σ(, θ) ˆσ θ (, θ) = σθ (, θ) Â 2 2 3 ˆf 1 (θ) = 2A 2f 1 (θ), = [ n(n + 1) n 2 ˆfn (θ)+(n 1)(n + 2) n ĝ n (θ) [ n(n 1) n 2 f n (θ)+(n + 1)(n 2) n g n (θ). 2 3 ˆf 1(θ) =2f 1(θ), [ (n+1) n 2 ˆf n (θ)+(n 1) n ĝ n(θ) = [ (n 1) n 2 f n(θ)+(n+1) n g n(θ).

n the Kienzle-Dun Fomul fo the Hoop Stess ound iul Void 19 Â = 2 2 A, Â 1 = 4 A 1, Ĉ 1 = 4 1, n(n + 1) n 2 Â n (n 1)(n + 2) n ˆBn = n(n 1) n 2 A n +(n + 1)(n 2) n B n, n(n + 1) n 2 Â n + n(n 1) n ˆBn = n(n 1) n 2 A n + n(n + 1) n B n. (Ân, ˆB n ) (Ĉn, ˆD n ) ( n,d n ) n 2 Â n =(n 1) n 2 A n + n n B n, n ˆBn = n n 2 A n (n + 1) n B n, (Ĉn, ˆD n ) ( n,d n ) [ ˆσ θ (, θ) =2A +2f 1 (θ)+ 3n(n 1) n 2 f n (θ)+(3n 2)(n+1) n g n (θ). ˆσ θ (, θ) =2A + σ θ(, θ) 2σ (, θ), 2A = 1 2 [σ θ(,θ)+σ (,θ). σ θ (, θ) =σ θ(, θ)+ˆσ θ (, θ), σ θ (, θ) = 2[σ θ(, θ) σ (, θ) + 1 2 [σ θ(,θ)+σ (,θ).

2 Vldo Lubd b = σ (,) = 2[σ (,) σ (,) σ (,) = = = σ (,) σ (,) σ τ σ (,)=σ σ (,)+σ τ (,).

n the Kienzle-Dun Fomul fo the Hoop Stess ound iul Void 21 s s s s = σ σ = ˆσ (,)= σ σ (,)+σ τ (,). ˆσ (,) σ (,)= 2σ σ (,), σ = σ (,). σ σ (,)=σ (,). ˆσ (,)=σ (,) 2σ (,). σ (,) σ (,)=σ (,)+ˆσ (,),

22 Vldo Lubd s s s =s s = = σ(,)=σ (,) σ (,) 1 s (-,).8 σ/σ.6.4.2 1 5 5 1 / µ(b /)/[π(1 ν) σ (, ) / σ =

σ (, ) / σ = µ(b /)/[π(1 ν) n the Kienzle-Dun Fomul fo the Hoop Stess ound iul Void 23 σ (,) = 2[σ (,) σ (,). b σ (, ) = µb ( 2 2 ) (1 ν) ( 2 + 2 ) 2, µb ( 2 +3 2 ) σ (, ) = (1 ν) ( 2 + 2 ) 2, σ (, ) = σ 4η 2 (1 + η 2 ) 2, σ = µ(b /) π(1 ν), η = / = ± σ σ (, ) = σ /2 σ (, ) =

24 Vldo Lubd J 1 J 2 L M

n the Kienzle-Dun Fomul fo the Hoop Stess ound iul Void 25