ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α A Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα και ένα εσωτερικό σημείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι: f ( ) = Μονάδες A ίνεται συνάρτηση f ορισμένη στο Πότε η ευθεία y=λ+β λέγεται ασύμπτωτη της γραφικής παράστασης της f στο + ; Μονάδες 5 A3 Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α) Για κάθε μιγαδικό αριθμό z ορίζουμε z = β) Μια συνάρτηση f:a λέγεται συνάρτηση -, όταν για οποιαδήποτε, A ισχύει η συνεπαγωγή: αν, τότε f( ) f( ) γ) Για κάθε = { συν=} ισχύει: ( εφ ) = συν ημ δ) Ισχύει ότι: lim = + ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ε) Οι γραφικές παραστάσεις C και C των συναρτήσεων f και f είναι συμμετρικές ως προς την ευθεία y= που διχοτομεί τις γωνίες Oy και Oy ΘΕΜΑ Β Έστω οι μιγαδικοί αριθμοί z και w με ικανοποιούν τις σχέσεις: z 3i + z + 3i = και w = z 3i + Μονάδες z 3i, οι οποίοι z 3i B Να βρείτε τον γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών z B Να αποδείξετε ότι z + 3i = z 3i Μονάδες 7 Μονάδες 4 B3 Να αποδείξετε ότι ο w είναι πραγματικός αριθμός και ότι w B4 Να αποδείξετε ότι: z w = z Μονάδες 8 Μονάδες 6 ΘΕΜΑ Γ ίνεται η συνάρτηση f :, δύο φορές παραγωγίσιμη στο f = f () =, η οποία ικανοποιεί τη σχέση:, με ( ) για κάθε ( f () + f () ) = f () + f () ΤΕΛΟΣ ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ Γ Να αποδείξετε ότι: f () = ln( ), Μονάδες 8 Γ Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία και τα ακρότατα Μονάδες 3 Γ3 Να αποδείξετε ότι η γραφική παράσταση της f έχει ακριβώς δύο σημεία καμπής Μονάδες 7 Γ4 Να αποδείξετε ότι η εξίσωση ln( ) = συν έχει π ακριβώς μία λύση στο διάστημα, ΘΕΜΑ Μονάδες 7 ίνονται οι συνεχείς συναρτήσεις f, g :, οι οποίες για κάθε ικανοποιούν τις σχέσεις: i) f()> και g()> ii) iii) f () g() = = t dt g( + t) t dt f ( + t) Να αποδείξετε ότι οι συναρτήσεις f και g είναι παραγωγίσιμες στο και ότι f() = g() για κάθε Να αποδείξετε ότι: f() =, Μονάδες 9 Μονάδες 4 ΤΕΛΟΣ 3ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ 3 Να υπολογίσετε το όριο: lim ln f () f Μονάδες 5 4 Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική παράσταση της συνάρτησης F() = f (t τους άξονες και y y και την ευθεία με εξίσωση = )dt Μονάδες 7 Ο ΗΓΙΕΣ (για τους εξεταζομένους) Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα) Να μην αντιγράψετε τα θέματα στο τετράδιο Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν εν επιτρέπεται να γράψετε καμιά άλλη σημείωση Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα 3 Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα 4 Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες 5 Να μη χρησιμοποιήσετε χαρτί μιλιμετρέ 6 Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή 7 ιάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων 8 Χρόνος δυνατής αποχώρησης: πμ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ ΤΕΛΟΣ 4ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση ότι: z 3i+ z+ 3i= () Όµως z+ 3i= z+ 3i= z 3i () Οπότε από τις () και () προκύπτει ότι: z 3i + z 3i = z 3i = z 3i = (3) Αν z = + yi η (3) γράφεται: + y i = + y = ( 3) ( 3) Εποµένως ο γεωµετρικός τόπος των εικόνων των z είναι κύκλος µε κέντρο το σηµείο Κ(,3) και ακτίνα ρ = Β Από το ερώτηµα Β έχουµε: z 3i= Οπότε ( ) z 3i = ( z 3 i) ( z 3 i) = ( z 3 i) z + 3i = z + 3i = z 3i Β3 Σύµφωνα µε την προηγούµενη ισότητα ο w γράφεται B4 Είναι: w = z 3 i + = 3 3 R( ) 3 z i + z i z + i = z + z = z R Όµως από τον γεωµετρικό τόπο των εικόνων των z έχουµε ότι: Και επειδή = R(z) προκύπτει ότι: R( z) Οπότε: R( z) Άρα w z w = z z + 3i 3i 3i z 3 i z z z 3i = z 3i = = =
ΘΕΜΑ Γ Γ Η δοσµένη σχέση γράφεται: ( ) f ( ) + f ( ) ( ) = ( f ( )) ( f ( ) ) = ( f ( )) f ( ) = f ( ) + c, c R Για = προκύπτει: f () f () c = + και λόγω των δεδοµένων αρχικών συνθηκών είναι c= Γ Είναι Η τελευταία σχέση έτσι γράφεται: (*) f ( ) = f ( ) f ( )( ) = f ( ) = f ( ) = ln( ) f ( ) = ln( ) + c Για = προκύπτει c = Έτσι f ( ) = ln( ) (*) Αν θέσουµε h( ) =, R, είναι: h ( ) =, R ( ) h = = = = ( ) h > > > > ( ) h < < < < Έτσι η h έχει ολικό ελάχιστο στη θέση = την τιµή h ηλαδή h( ) >, για κάθε R f ( ) = ln( ) = h + + h () = = Λόγω της παρατήρησης (*) του ερωτήµατος Γ οι ρίζες και το πρόσηµο, συνεπώς ο πίνακας µεταβολών της f εξαρτάται µόνον από τις ρίζες και το πρόσηµο του αριθµητού h ( ) = Συνεπώς f ( ) = =
Γ3 Είναι: f ( ) > > f ( ) < < Άρα η f είναι: γνησίως φθίνουσα στο (,], γνησίως αύξουσα στο [, + ) και παρουσιάζει ολικό ελάχιστο στη θέση = την τιµή ( ) ( ) ( )( ) ( ) f ( ) = = = ( ) ( )( ) ( ) ( ) ( ) ( ) = = = ( + ) ( ) = = ( ) ( ) Θέτουµε ϕ ( ) = ( ), R Είναι: φ () = + ( ) = ( ) φ () = = φ () > < φ () < > Φ Φ 3 + - + f () = ln( ) = ln = Προκύπτει ότι η φ είναι γνησίως αύξουσα στο (, ], γνησίως φθίνουσα στο [, + ) και έχει ολικό µέγιστο φ () = > Βρίσκουµε τώρα τα όρια της φ στα, + : limϕ( ) = lim ( ) = + + + ( ) + lim ( ) = lim = lim = lim Έτσι ϕ( ) = lim ( ) = lim =
Λόγω της συνέχειας και της µονοτονίας της φ είναι ϕ (( ]) = ( ϕ( ) ϕ( ) = ( ], lim,, ([ + )) = ( ϕ( ) ϕ( ) = ( ] ϕ, lim +,, Παρατηρούµε ότι: ϕ( (,]) άρα υπάρχει (,] ώστε ϕ ( ) = Εν τω µεταξύ η φ είναι γνησίως αύξουσα, άρα εκατέρωθεν του αλλάζει πρόσηµο ιότι µε < είναι φ() < φ( ) φ( ) < Ενώ µε > > είναι φ() > φ( ) φ() > Έτσι ισοδύναµα (επειδή ( ) > για κάθε R ) η f έχει µία µόνο ρίζα στο (,], εκατέρωθεν της οποίας αλλάζει πρόσηµο Όµοια τώρα ϕ( [, ]) + άρα υπάρχει [, + ), ώστε ϕ ( ) = Εν τω µεταξύ η φ είναι γνησίως φθίνουσα άρα εκατέρωθεν του αλλάζει πρόσηµο ιότι µε < < είναι φ() > φ( ) φ() > Ενώ µε > είναι φ() < φ( ) φ() < Έτσι η f έχει επίσης µία µόνο ρίζα στο [, + ), εκατέρωθεν της οποίας αλλάζει πρόσηµο Άρα τελικά, η f έχει ακριβώς δύο σηµεία καµπής στις θέσεις, Γ4 Θέτουµε g( ) = ln( ) συν = f ( ) συν, R π Ύπαρξη : Η g είναι συνεχής ως διαφορά συνεχών στο R, άρα και στο, Είναι g() = f () συν() = < π π π π g = f συν = f π π π Όµως f στο [, + ), άρα είναι > f > f () f > Έτσι g() g π <, οπότε λόγω του Θ Bolzano η g έχει µία ρίζα στο π διάστηµα, 4
ΘΕΜΑ Μοναδικότητα: π Θα δείξουµε ότι η g είναι γνησίως αύξουσα στο,, οπότε η ρίζα θα είναι µοναδική π Έστω,, µε < τότε f ( ) < f ( ) διότι f στο [, + ) συν π > συν διότι συν στο, Άρα συν< συν Έτσι όµως f ( ) συν < f ( ) συν, άρα g( ) < g( ) π Άρα g γνησίως αύξουσα στο, Παρατήρηση ( ος τρόπος για τη µονοτονία): Η µονοτονία της g στο [, π/] µπορεί να προκύψει και ως εξής: g () = f () + ηµ Όµως f () >, για κάθε (, + ) άρα και για κάθε (, π/), ενώ επίσης ηµ > για κάθε (, π/) Άρα g () > για κάθε (, π/) και εποµένως g γνησίως αύξουσα στο [, π/] Έχουµε ότι: t f ( ) = dt g( + t) Θέτουµε: + t = u t = u Οπότε: dt = du Ακόµη για t = έχουµε u = και για t = έχουµε u = Εποµένως: u u u f ( ) = du du du = g( u) = g( u) g( u) u u ( ) du ( ) du f = f = g( u) g( u) 5
Άρα u f ( ) = + du () g( u) Με ανάλογο τρόπο προκύπτει ότι: u g( ) = + du () f ( u) Επειδή οι συναρτήσεις g u συµπεραίνουµε ότι οι συναρτήσεις u u και ( ) f( u) 6 είναι συνεχείς στο [, ] µε R u u du και du g( u) f ( u) είναι παραγωγίσιµες στο R, εποµένως και οι συναρτήσεις f και g είναι παραγωγίσιµες στο R f ( ) = και g ( ) = g( ) f ( ) f ( ) g = και g ( ) f ( ) = οπότε ( ) άρα ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) > f g = g f f g g f ( ) = g f ( ) g( ) g ( ) f ( ) f ( ) = = g ( ) g( ) Από την τελευταία προκύπτει ότι: και επειδή Άρα f( ) = g( ) ()&() f( ) c g( ) = f () = g() =, θα είναι c = Επειδή είναι: f ( ) = (Ερώτηµα ) f( ) ( ) ( ) f ( ) f ( ) = f ( ) f ( ) = f ( ) = Σύµφωνα µε γνωστό θεώρηµα (συνέπεια του ΘΜΤ) έχουµε: f ( ) = + c Όµως f () =, οπότε c= Άρα [ ] f ( ) = f( ) = f( ) =
3 Είναι Και επειδή f ( ) >, προκύπτει ότι f ( ) = ln f ( ) ln lim = lim = lim = lim = lim = ( D L ' Hospital) (*) f lim lim = = (*): Θέτουµε = y οπότε το lim 7 y = lim : + y y 4 Είναι F ( ) = f ( ) > Άρα η F στο [,] Άρα για θα είναι F( ) F() και επειδή F () =, προκύπτει ότι F( ) [,] Εποµένως [,], θα είναι: [ ] E = F( ) d = F( ) d = F( ) + F ( ) d = = F() + f ( t ) d = f ( )d = = d= d= ( ) d ( ) = = = τµ +