Probability theory. Distributions. Inequalities. Convergence. E, Var, E k k. f[ ] (2 ) k ~ [, ] E[ [ ]( )] E[ [ ]]

Σχετικά έγγραφα
Chapter 15 Identifying Failure & Repair Distributions

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

FORMULAE SHEET for STATISTICS II

Chapter 1 Fundamentals in Elasticity

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Exam Statistics 6 th September 2017 Solution

LAPLACE TRANSFORM TABLE

On Quasi - f -Power Increasing Sequences

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

!"!# ""$ %%"" %$" &" %" "!'! " #$!

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

Latent variable models Variational approximations.

The one-dimensional periodic Schrödinger equation

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

On Zero-Sum Stochastic Differential Games

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

S 5 S 1 S 2 S 6 S 9 S 7 S 3 S 4 S 8

Déformation et quantification par groupoïde des variétés toriques

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Solve the difference equation

Α Ρ Ι Θ Μ Ο Σ : 6.913

Latent variable models Variational approximations.

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Note: Please use the actual date you accessed this material in your citation.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.


arxiv: v1 [math.pr] 13 Jul 2010

1. For each of the following power series, find the interval of convergence and the radius of convergence:

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Estimators when the Correlation Coefficient. is Negative

( ) ρ ρ + + = + d dt. ME 309 Formula Sheet. dp g dz = ρ. = f +ΣΚ and HS. +α + z = +α + z. δ =δ = δ =θ= τ =ρ =ρ. Page 1 of 7. Basic Equations.

Reflection Models. Reflection Models

Other Test Constructions: Likelihood Ratio & Bayes Tests

x E[x] x xµº λx. E[x] λx. x 2 3x +2

ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ. Αρτέμιος Αποστόλου Στρογγύλης

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Homework 8 Model Solution Section

Parts Manual. Trio Mobile Surgery Platform. Model 1033

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Αλληλεπίδραση ακτίνων-χ με την ύλη

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

A A O B C C A A. A0 = A 45 A 1 = B Q Ak 2. Ak 1

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Chap. 6 Pushdown Automata

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

LAD Estimation for Time Series Models With Finite and Infinite Variance

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

tel , version 1-7 Feb 2013

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 30ής ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

The Neutrix Product of the Distributions r. x λ

UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA) FOR THE CURRENT DISTRIBUTION

Homework for 1/27 Due 2/5

Analytical Expression for Hessian

Το άτομο του Υδρογόνου

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

CONSULTING Engineering Calculation Sheet

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

ITU-R P (2009/10)

! " #$% & '()()*+.,/0.

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

17 Monotonicity Formula And Basic Consequences

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

Refined Hyers-Ulam approximation for Jensen and Euler-Lagrange Mappings

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

Example 1: THE ELECTRIC DIPOLE

6. MAXIMUM LIKELIHOOD ESTIMATION

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

Ρομποτικός Έλεγχος Δύναμης / Μηχανικής Αντίστασης

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Στοχαστικές διαδικασίες. Γραµµικά συστήµατα. Αλυσίδες Markov. Θεωρία πληροφοριών. Γιάννης Α. Φίλης

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê


Fourier Series. Fourier Series

Ορισμός : Η συνάρτηση X : Ω είναι μετρήσιμη εάν 1. της τυχαίας μεταβλητής X : Ω, είναι το πεδίο τιμών της X. Δηλαδή είναι το υποσύνολο του { }

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

Transcript:

Pobably heoy Mgf of s [ E M e h: E M [ If Y eee he M + Y[ M[ MY[ Chaacesc fuco: φ [ E e fomaos: Y g If scee he fy[ y f[ x I[ g[ x y If couous v he ao Ξ A A ( P[ A ) efe g[ x g[ x x A so ha each g s moooous he fy[ y f [ { : } g y y g y y Ψ y x A y g x If co s veco v a Y g[ he efe ao Ξ A A ( P[ A ) so ha g [ x g[ x x A a each g s oe-o-oe he fy[ y f [ g y J whee J s a Jacoba of vese fomao: J g y y Covoluo: f Y eee he f ± Y[ z f[ w fy[ ± ( zw) w [ z f Y z f w fy[ w w f w / Y[ z f[ zw fy[ w w w If ~ [ µ Y ~ ν [ τ eee he Y µ ν τ LIE: E[ Y E[E[ Y Va[ Y E[Va[ Y + Va[E[ Y Dsbuos + ~ [ + + If ~ [ Po Y ~ P Bomal: P[ C ( ) E Va ( ) M ( e + ) Posso: P[ e λ λ! E λ Va λ M e λ Ufom: f [ x ( ba) x [ a; b α x α Γ[ α α E ( b+ a) Va ( b a) ( e ) α o λ eee he + Y ~ Po [ + λ Gamma: f x x e x > > > E α Va α M ( ) < Ces: γ[ χ γ[ ex[ Ch-squae: z Σ z ~ χ [g Σ x f[ x Γ [ e x x> E Va If z ~ [ I A emoe he zaz ~ χ [g A If z ~ [ Σ he x λ Exoeal: f[ x e x> λ > E Va E λ λ λ! omal: Bea: Logomal: λ f[ x e E Va E[ µ µ ()!! π ( xµ ) ( ) α f x x x x > > E Va E Γ [ α+ α Γ[ α Γ[ (;) α Exoeal famly: Mulomal omal: Iequales f x e x > E e Va e e (l ) ( xµ ) πx α Γ [ α+ Γ [ α+ α+ ( α+ ) ( α+ + ) Γ[ a Γ [ α+ + µ + ( + ) + f [ x h[ x cex w x w w he E l Va l E c c w ( x µ Σ ( x µ ) x π Σ e If ~ [ he y µ Σ Σ f Chebychev: P[ g ε ε E g[ x µ Σ Σ y x ~ [ µ + Σ Σ x µ Σ Σ Σ Σ ξ 9 ε ε ξ 8 3 Vysochĭ-Peu: ~ f umoal efe ξ E[( α) fo ay α he P[ α > ε ξ 9 ε 3 ε ξ 8 3 Se s lemma: Höle: f µ g µ g ~ [ E[ E[ q q + q he E Y (E ) (EY ) Cauchy-Schwaz: E Y E E Y Mows: E[ + Y E[ + E[ Y (?): E[ + Y max[ (E + E Y ) Jese: f g[ x covex he E g g[e s Laouov: Covaace equaly-ii: f g h boh o-ceg o o-eceg he E[ g[ h E[ g E[ h Covegece { } coveges almos suely o v f P ω lm [ ω [ ω { } coveges L o v f lm E[ { } coveges obably o v f fo ε > lm P[ > ε { } coveges sbuo o v f lm P[ x P[ x fo all x whee F [ x s couous L L E E < s elaosh: q fo q L h: f fo λ sequece of scala v s λ λ he Couous mag heoem: f a h[ s couous he h [ h Ma&Wal: If g : l s couous he g[ g[ ; g[ g[ ; g[ g Slusy: f Y α he + Y + α ; Y α Y α ; Y α Y α whe P[e Y Dela-meho: f cos [ l Σ g : s coff a he ( g[ g) [ GΣG whee G g[ x WLL (wea law of lage umbes): Le be wh E µ < he µ LL Kolmogoov (): Le { } be a E[ exss he E[

LL Kolmogoov (): Le { } be e wh Va a < he E LL Bhoff-Khch (egoc): Le { } be saoay a egoc he E[ CL Lebeg-Lévy: Le { } be wh E[ µ a Va[ he ( µ ) [ CL Laouov: Le { } be e wh E[ µ Va[ CL Lebeg-Felle: Le { } be e wh E[ µ ( ) ( µ ) [ a E[ µ ν Va[ CL Bllgsley: If { } saoay & egoc magale ffeece sequece he 3 3 If ( ) ( ν) lm Defe C ( ) If fo ε > E[ < he CL Aeso: Le { } be saoay & egoc wh w Cov[ < he Daa euco [ + z ( ) wz E [ ( µ ) ( ) [ x µ F x lm C xµ εc Paamec moel: P { : Θ} Paamee: ay mag ν : P (aual aameezao: ν ) Paamee ν s efable f P P P ν[ P ν[ P Paamee s efable f P P o equvalely P P P Sc ay meuable fuco of he aa [ Sc s suffce fo f [ oes o ee o Sc S s acllay fo f fs[ oes o ee o Sc S s oe acllay fo f E S oes o ee o Sc s mmal suffce f fo ay ohe suffce sc S we ca f fuco such ha [ S[ Sc [ s comlee f! g such ha g [ s fs-oe acllay Facozao h: sc : Τ s suffce fo f g : Θ a h : such ha f [ x g[ [ x h[ x fo x Θ h: f [ s such ha xy ao f[ x f[ y oes o ee o ff [ x [ y he s mmal suffce fo h: fo ex famly f[ x h[ xex h sc x B [ s comlee f η[ Θ co a oe se Bu h: f s comlee a mmal suffce he s eee of ay acllay sc h: f mmal suffce sc exss he ay comlee sc wll also be mmal suffce f ( ) Esmao oees Esmao ay meuable fuco of he aa φ [ Esmao φ[ s ube fo aamee g[ f fo Θ E[ g[ Ube esmao φ[ s a UMVUE (ufomly mmum vaace ube esmao) f Va [ φ < a fo ay ohe ube δ [ we have Va φ[ Va δ[ Camé-ao eq: Le { } ~ f[ x a φ[ be ube fo g[ s E[ φ oe of eg & ff s echageable he I CLB whee l f[ x l f[ x l f[ x I[ E [ E [ (Fshe Ifomao max) ψ ψ Va [ φ CLB aame: Le { } ~ a W s ube fo τ[ he a CLB ff a W[ x τ l L[ x fo some a[ Hausma cle: W s UMVUE of τ[ ff W s ucoelae wh all ube esmaos of ao-blacwell h: Le W be ube es of τ[ a W be suffce sc fo he φ E[ W s UMVUE of τ[ Lehma-Scheffé h: Le be a comlee suffce sc fo he φ [ be oly o s he uque UMVUE of E φ [ Hyoheses esg Hyohess ay saeme abou moel aamee ull hyohess: Θ aleave hyohess: Θ whee φ P he Θ Θ Aco sace A {} whee s eeco of ull Loss fuco: l[ a I [ Θ es fuco: δ : {} Ccal ego: C { x : δ[ x } ye-i eo o a eec H whe Θ ye-ii eo o acce H whe Θ Powe fuco: P [ δ[ Θ (obably o coecly eec whe Θ ) Sze of es: sze su Θ δ Level of es s α f su Θ δ α P-value of es: ˆ[ fα (;): C α If es s δ I [ c he efe α[ c su Θ P[[ c a -value s α[ [ x es φ s ube of level α f φ α Θ a es φ α Θ c C s ufomly mos oweful cls C f c fo c C Θ Famly { P Θ } s moooe lelhoo ao famly f fo > P P f[ x a f[ x s a moooe fuco of some [ x es φ s α-smla o Θ Θ f φ α Θ Mag S : s ( α) cofece ego fo aamee ν[ f P [ S[ { ν} α eyma-peo h: cose H: vs H : a lelhoo-ao es fuco [ [ [ { f f x f f x [; f f x φ x > < } he ) φ s MP cls of all level δ f [ x f[ x f[ x α E φ[ x ess; ) fo α exss MP level α of he fom φ ; 3) f a es φ s MP he h fom of φ Kal-ub h: suose { P Θ } s ML ceg [ x Defe δ [ x I [ [ x > he ) b δ [ s ceg ; ) δ s UMP level α E [ δ[ x fo esg H : ag H: > h: cose a ex famly f[ x e [ x A a a es level α fo esg H: vs H: ff E [ φ α a E [ φ αe φ [ x { f x < c x > c f x ( c c) γ [ xf x c} he hs es s UMPU Dualy h: Le δ be level α es of : a A[ { x : δ [ x } Defe S[ x { Θ: x A[ } he S[ s ( α) cofece se H Covesely f S[ s ( α) cofece se he A [ { x : S[ x} s acceace ego of a level α es of H: α H

Dualy h fo ML: suose { P Θ } s ML ceg [ x a F [ s co s If F [ α h soluo l[ α Θ a F [ α h soluo u[ α Θ he α α: α+ α < eval [ l[ α u[ α s a ( α α) cofece eval fo OLS Moel: y x + ε ; sace fom: y + ε Assumos: E[ ε (sc exogeey); E[ εε I (homoscecy); P[g (o mulcolleay) OLS esmaos: ˆ ( ) y ˆ εε ˆ ˆ s ˆˆ εε whee yˆ ˆ Py εˆ y ˆ My P ( ) M IP Paoe egesso: y + + ε he ˆ M M y ˆ ( M ) My Fsch-Waugh h: ˆ fom y s he same fom egesso y whee y ae esuals y a ae esuals Coollay: f egesso co ece you ca fs emea a he cay ou egesso h: f z s oe of egessos he aal coelao zy zz yy + #f sg[ whee z s -sc fo z yz z z SSegesso sum of squaes SSoal --"-- ESSeos --"-- If co ι he L I ιι a ( ) Whe z s ae o egesso he z + ( ) yz Fe samle oees E[ ˆ ˆ Va[ ( ) x x x a SS SS > wll cee oly f z y My Ause y Ly : E[ s Cov[ ε Gauss-Maov h: ˆ s BLUE (bes lea ube esmao) Ue omaly sumo: ˆ ~ [ s ~ χ [ ( Va[ s ) a ˆ s ae eee es H : b usg ( ) ~ [ ˆ b s es H : (exce ece) usg SS F ( ) ~ F[ es H : q usg ESSESS ( ) q ESS q qs ~ [ ESS F ˆ ˆ Fq Cosae esmao: + ( ) λ λ ( ( ) ) ( ˆ) Peco: bes eco: BP[ y x E[ y x bes lea eco: BLP[ y x x E[ E[ x y Lage samle oees Deoe Q E[ > m E[ ε he ysbuos: ( ) ( ) [ ˆ [ Q ( ˆ ) [ m es H : b usg ˆ b ˆ es : H g q usg Wal s es: ˆ W ˆ g[ ( G[ ( ) G ) g[ χ [ q Lelhoo ao es: L L L χ q Lagage mulle es: ˆ ˆ g[ LM λ ( G[ ( ) G ) λ χ [ q whee G (l l ) ˆ ˆ q Heeoscecy ce: eoe Q E[ ε he ˆ [ Q e Q Q e If E[( ) exss a fe fo he HCSE (heeoscecy-cosse saa eos): AVa[ QQ Q e Qˆ x x ˆ ˆ ε Q ε x x ε e x x x x o ( x ( ) x ) Whe s heeoscecy es: egess ˆ ε ψ whee ψ co uque o-cosa elemes of ; he χ [m ψ ue H GLS WLS Moel: y + ε whee E[ ε E[ εε Σ (ow) OLS esmao h oees E[ ˆ OLS a ˆ Va[ OLS ( ) Σ ( ) Geealze le squaes (GLS) esmao: ˆ ( Σ ) Σ y wh E[ ˆ Va[ ˆ ( Σ ) ; hs esmao s BLUE fo hs moel h: OLS ~ GLS f ( ) Σ B fo some o-sgula B ; ( ) ΣZ fo Z: Z ; ( ) Σ Γ + ZΘZ + I fo some ΓΘΖ : Z Cooal heeoscecy Assumo: Σ ag[ [ x [ x ; E[ > Q x x x he ˆ ( ) ( xy GLS [ x ) x ˆ [ Q Feble GLS: ehe esmae [ x o-aamecally o u auxlay egesso ˆε Z a he use ˆ [ x z γˆ : xy IV GLS ˆ ( ˆ ) ( FGLS x ˆ ) x Moel: y x + ε whee { y x z } s saoay&egoc E[ z ε Q zx E[ z x a coo fo ID: g Qzx oe coo fo ID: l l Esmao woul be yomal whe { z ε} s ms a Q E[ ε zz > zzε GMM Moel: Secal ces: OLS: E[ x ε WLS: E[ x [ x ε SU Moel: y + u whee E[ u E[ uu ; sace fom: y + u whee ag[ K + + K K GLS esmao: ˆ ( ( Σ I) ) ( Σ I) y (f Σ ow) FGLS esmao buls uo uˆ y ˆ (hee ˆ ( ) y ) ˆ ˆ uu ˆ ˆ ˆ Ω Σ I ( ) Asymoc sbuo: h: OLS ~ GLS f ( ) Σ s agoal; ( ) ( ˆ ) ( ˆ ) [ lm ( Σ I ) GLS FGLS

SEM Moel: y() Γ x() B + u() K K ; sace fom: Y Γ Β + U ; sumos: ~ [ u() Σ P[g K lm > e Γ Γ K K euce fom: Y Π + V whee Π ΒΓ V UΓ Λ Γ ΣΓ Deoe γ ge{ : } Γ Γ Y ge{ : } y Γ ge{ : } K K Β Β ge{ x : Β } Z Y ( ) α γ L + K y ( y y α ( α α Z ag[ Z Z Coveoal fom: y Y γ + + u Z α + u ; sace fom: Iefcao K K L L ΣL Σ L y Z α + u whee Ω E[ uu Σ I (/) K (/) We ΠΓ Β π Π γ π Π γ whee π ge{ Π : Β ( / )} Π ge{ Π : ( / ) } K Β Γ K K K K K K( ) I wos Π cosss les eseco of hose colums of Π whch coeso o clue ( h equao) eogeous vaables a hose ows whch coeso o exclue exogeous vaables Oe coo: K a coo: Π () Full Ifomao Moel g l L l[ π + l Γ l Σ Σ ( YΓ Β) ( YΓ Β) coceae log-l: ll ˆ l ( YΒΓ )( YΒΓ ) αfiml 3SLS: ) oba α fo esmae ˆ uû ˆ whee ˆ 3) f ˆ αˆ Z ( Σ IZ ) Z ( Σ Iy ) αˆ ˆ SLS Lme Ifomao Moel ˆ SLS u y Zα Moel: y Yγ + + u Zα + u Y Π + V whee ( u V )~ [ Σ { Σ Σ} a gπ αˆ Z ( IλM) Z Z ( IλM) y whee ( ) M I M I ( ) W ( y Y M( y Y ) LIML esmao: LIML W ( y Y M ( y Y ) a λ s smalles chaacesc oo of WW Π Deoe A lm[ he I Π ( ) Π y Y αsls ( )( AVa[ α ˆ ) SLS ( y Zα )( y Zα ) ZPZ LLS Moel: Bay choce moels Moel: P[ y F [ x whee F [ x f[ x > x f x F[ x [ x e π Π I 3SLS A SLS esmao: αˆ ( ZPZ ) ZPy whee P ( ) SLS α α α α A Ieeao of SLS: ) Y Yˆ ) LIML SLS [ x ~ E[ > Secal ces: lea obably moel: F [ x x ob moel: FIML x Φ log moel: Fx Λ [ x ( + e ) Log-lelhoo: l L ( y l l[ ) F x + y F x hs fuco s globally cocave fo log a ob secfcaos ob ˆ l [ I whee L[ lm E lm f I x F[ x ( F[ x) ye-i moel: { y x + u y max[ y} ; sumos: u ~ [ obseve: { y x } x ~ E[ > Lelhoo fuco: L ( Φ[ x ) [ φ y x ucae moel: aa fo y < uobseve [ [ φ y φ[ z L Φ x x Deoe λ[ z Φ[ z Hecma wo-se: ) esmae α ob P[ y > Φ[ x α by MLE ) egess y [ ˆ x λ xα usg samle y > Seos mus be comue wh Whe s HSCE fomula LS: aly o y x + λ[ x + ε LWLS: aly o same eq wh Va[ ε x xα λ[ x α λ[ x α log-lelhoo globally cocave ems of α a All esmaos ae cosse f aa seally coelae bu cosse ue heeoscecy o o-omaly eo em ye-ii moel: { y x + u y y >? x + u : } ; sumos: ( u u)~ [ ( ρ) obseve: { y sg y x x} Lelhoo fuco: L Φ[ x Φ x + ρ( y x ) φ ( y x ) y If hee ae o cos o y ρ aamees he s uefe α Hecma wo-se: y x + ρλ[ x α + ε ( y ) Vaε ρ x αλ[ x α ρ λ[ x α ye-iii moel: { y x + u y max[ y y y >? x + u : } L P[ y f[ y y y y> MLE: ye-iv moel: { y x + u y max[ y y y >? x + u : y y? x + u :} L f [ y y y f [ y y 3 3 3 3 y 3 3 y> ye-v moel: { y x + u y y >? x + u : y y? x + u : } L f [ y y y f [ y y y me sees 3 3 3 3 y y3 3 3 Pocess { z } s scly saoay f f [ z z ees oly o bu o o I s wealy saoay (o -oe saoay) f E z µ cos a Cov[ z z s Γ Γ s s fo s Fo scala ocesses auocoelao fuco: ρ γ γ Seco-oe saoay ocess s whe ose f µ a Γ fo s s Pocess { z } s calle magale f E[ z z z z Saoay ocess { z } s egoc f m l g lm E [ f[ g[ E [ f[ E [ g[ fo f : : : z z z z z z z z + m + + + l + m + l

Samle auocovaace: ˆ γ ( z )( z z z) samle ACF: ˆ ρ + γ γ h: If z µ + ε whee ε s saoay ms wh E[ ε ε ε he: γˆ [ I ρˆ [ I whee γ ˆ ( ˆ γ ˆ γ ρ ˆ ( ˆ ρ ˆ ρ Box-Pece Q: ˆ ρ Lug-Box Q: χ + ˆ ρ χ Suose y + ε εε + ˆ γ ˆ ρ γ γ he x { y x} s saosy&egoc ε ε x ~ v [ a E[ > If we calculae: γ I Φ ρˆ [ I Φ whee Φ E[ xε Q E[ x ε ˆ [ ( )