arxiv: v3 [math.pr] 23 Nov 2009

Σχετικά έγγραφα
α ]0,1[ of Trigonometric Fourier Series and its Conjugate

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Approximation of the Lerch zeta-function

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Η ΥΠΟΓΡΑΦΗ ΕΝΟΣ ΜΟΝΟΤΟΝΟΥ ΣΥΣΤΗΜΑΤΟΣ

8. The Normalized Least-Squares Estimator with Exponential Forgetting

Fourier Series. Fourier Series

Xiaoquan (Michael) Zhang

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Υπόδειγµα Προεξόφλησης

Homework for 1/27 Due 2/5

arxiv: v1 [math.pr] 13 Jul 2010

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

On Quasi - f -Power Increasing Sequences

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

The Estimates of the Upper Bounds of Hausdorff Dimensions for the Global Attractor for a Class of Nonlinear

Gradient Estimates for a Nonlinear Parabolic Equation with Diffusion on Complete Noncompact Manifolds

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Statistical Inference I Locally most powerful tests

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model

Latent variable models Variational approximations.

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Intrinsic Geometry of the NLS Equation and Heat System in 3-Dimensional Minkowski Space

IIT JEE (2013) (Trigonomtery 1) Solutions

Αλγόριθμοι και πολυπλοκότητα Maximum Flow

Outline. Detection Theory. Background. Background (Cont.)

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

On Generating Relations of Some Triple. Hypergeometric Functions

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Degenerate Perturbation Theory

Latent variable models Variational approximations.

Maximum Principle and the Applications of Mean-Field Backward Doubly Stochastic System

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

Solutions: Homework 3

Parts Manual. Trio Mobile Surgery Platform. Model 1033

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

arxiv: v1 [math.ap] 5 Apr 2018

Math221: HW# 1 solutions

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Every set of first-order formulas is equivalent to an independent set

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homework 4.1 Solutions Math 5110/6830

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Deterministic Policy Gradient Algorithms: Supplementary Material

Example Sheet 3 Solutions

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Α Ρ Ι Θ Μ Ο Σ : 6.913

Solve the difference equation

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Lecture 12 Modulation and Sampling

Solutions to Exercise Sheet 5

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent


Homomorphism of Intuitionistic Fuzzy Groups

On the Galois Group of Linear Difference-Differential Equations

derivation of the Laplacian from rectangular to spherical coordinates

Homework 3 Solutions

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

Fractional Colorings and Zykov Products of graphs

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Oscillations CHAPTER 3. ν = = 3-1. gram cm 4 E= = sec. or, (1) or, 0.63 sec (2) so that (3)

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Geodesic Equations for the Wormhole Metric

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Το Λήμμα του Fejér και Εφαρμογές

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Matrices and Determinants

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Transcript:

Opimal Soppig or Dyamic Covex Rik Meaure Erha Bayrakar, Ioai Karaza, Sog Yao arxiv:0909.4948v3 mah.pr 23 Nov 2009 Abrac We ue marigale ad ochaic aalyi echique o udy a coiuou-ime opimal oppig problem, i which he deciio maker ue a dyamic covex rik meaure o evaluae uure rewar. We alo id a addle poi or a equivale zero-um game o corol ad oppig, bewee a age he opper who chooe he ermiaio ime o he game, ad a age he coroller, or aure who elec he probabiliy meaure. Keywor: Covex rik meaure, coiuou-ime opimal oppig, robue meho, zero um game, addle poi, releced backward ochaic diereial equaio, BMO marigale. 1 Iroducio Le u coider a complee, ilered probabiliy pace Ω, F, P, F = F } 0, ad o i a bouded, adaped proce Y ha aiie cerai regulariy codiio. Give ay oppig ime o he ilraio F, our goal i o id a oppig ime τ S,T ha aiie e iρ, Y = ρ,τ Yτ, P a.. 1.1 S,T Here S,T i he e o oppig ime aiyig T, P a.., ad he collecio o ucioal ρ, : L F L F } i a dyamic covex rik meaure i he ee o Delbae e al. 2009. Our S 0,T, S,T moivaio i o olve he opimal oppig problem o a deciio maker who evaluae uure rewar/rik uig dyamic covex rik meaure raher ha aiical expecaio. Thi queio ca alo be ca a a robu opimal oppig problem, i which he deciio maker ha o ac i he preece o o-called Kighia uceraiy regardig he uderlyig probabiliy meaure. Whe he ilraio F i geeraed by a Browia moio, he dyamic covex rik meaure admi he ollowig repreeaio: There exi a uiable oegaive ucio, covex i i paial argume, uch ha he repreeaio ρ, ξ = e up E ξ, θ F, P a.. hol or all ξ L F. Here i he collecio o probabiliy meaure which are equivale o P o F, equal o P o F, ad aiy a cerai iegrabiliy codiio; wherea θ i he predicable proce whoe ochaic expoeial give he deiy o wih repec o P. I hi eig we eablih a miimax reul, amely V e up e i E Y + S,T F = e i e upe Y + S,T F, 1.2 Deparme o Mahemaic, Uiveriy o Michiga, A Arbor, MI 48109; email: erha@umich.edu. Thi auhor i uppored i par by he Naioal Sciece Foudaio, uder gra umber DMS-0906257. INTECH Iveme Maageme, Oe Palmer Square, Suie 441, Priceo, NJ 08542; e-mail: ik@ehaced.com; ad Deparme o Mahemaic, Columbia Uiveriy, New York, NY 10027; e-mail: ik@mah.columbia.edu. Reearch uppored i par by he Naioal Sciece Foudaio uder Gra NSF-DMS-09-05754. Deparme o Mahemaic, Uiveriy o Michiga, A Arbor, MI 48109; email: ogyao@umich.edu.

Opimal Soppig or Dyamic Covex Rik Meaure 2 ad coruc a opimal oppig ime τ a he limi o oppig ime ha are opimal uder expecaio crieria ee Theorem 3.1. We how ha he proce 1 } V τ } admi a RCLL modiicaio 0,T V 0, uch ha or ay S 0,T, we have V 0, = 1 } V τ, P a.. We how ha he oppig ime τ V = i, T : V 0, } = Y aai he iimum i 1.1. Fially, we coruc a addle poi o he ochaic game i 1.2. The dicree-ime opimal oppig problem or cohere rik meaure wa udied by Föllmer ad Schied 2004, Secio 6.5 ad Cheridio e al. 2006, Secio 5.2 ad 5.3. Delbae 2006 ad Karaza ad Zamirecu 2006, o he oher had, coidered coiuou-ime opimal oppig problem i which he eeial iimum over he oppig ime i 1.1 i replaced by a eeial upremum. The coroller-ad-opper problem o Lepelier 1985 ad Karaza ad Zamirecu 2008, ad he opimal oppig or o-liear expecaio i Bayrakar ad Yao 2009, are he cloe i piri o our work. However, ice our aumpio o he radom ucio ad he e are dicaed by he repreeaio heorem or dyamic covex rik meaure, he reul i hee paper cao be direcly applied. I paricular, becaue o he iegrabiliy aumpio ha appear i he deiiio o ubecio 1.1, hi e may o be cloed uder paig; ee Remark 3.3. Moreover, he exa reul o coroller-ad-opper game would require ha ad he θ be bouded. We overcome hee echical diiculie by uig approximaio argume which rely o rucaio ad localizaio echique. O he oher had, i idig a addle poi Karaza ad Zamirecu 2008 ued he weak compace o he collecio o probabiliy meaure, i paricular he boudede o θ. We avoid makig hi aumpio by uig echique rom Releced Backward Sochaic Diereial Equaio RBSDE. I paricular, uig a compario heorem ad he ac ha V ca be approximaed by oluio o BSDE wih Lipchiz geeraor, we how ha V olve a quadraic RBSDE RBSDE. The relaiohip bewee he oluio o RBSDE ad he BMO marigale help u coruc a addle poi. We hould poi ou ha he covexiy o i o eeded o derive our reul; c. Remark 3.1. The layou o he paper i imple. I Secio 2 we recall he deiiio o he dyamic covex rik meaure ad a repreeaio heorem. We olve he opimal oppig problem i Secio 3. I Secio 4 we id a addle poi or he ochaic coroller-ad-opper game i 1.2. The proo o our reul are give i Secio 5. 1.1 Noaio ad Prelimiarie Throughou hi paper we le B be a d-dimeioal Browia Moio deied o he probabiliy pace Ω, F, P, ad coider he augmeed ilraio geeraed by i, i.e., F = F = σ B ; 0, N }, where N i he collecio o all P-ull e i F. 0 We ix a iie ime horizo T > 0, deoe by P rep. P he predicably rep. progreively meaurable σ-ield o Ω 0, T, ad le S 0,T be he e o all F-oppig ime uch ha 0 T, P a.. From ow o, whe wriig, we alway mea wo oppig ime, S 0,T uch ha, P a.. For ay we deie S, = σ S0,T σ, P a..} ad le S, deoe all iie-valued oppig ime i S,. The ollowig pace o ucio will be ued i he equel: Le G be a geeric ub-σ-ield o F. L 0 G deoe he pace o all real-valued, G meaurable radom variable. L G = ξ L 0 G : ξ = e up ξω < }. ω Ω L 0 F 0, T deoe he pace o all real-valued, F-adaped procee. L F 0, T = X L 0 F 0, T : X = e up,ω 0,T Ω X ω < }. C p F 0, T = X L p F 0, T : X ha coiuou pah}, p = 0,. } C 2 F 0, T = X C 0 F 0, T : E X 2 <. up 0,T

2. Dyamic Covex Rik Meaure 3 H 2 F 0, T; Rd rep. Ĥ 2 F 0, T; Rd deoe he pace o all R d valued, F adaped predicably rep. progreively meaurable procee X wih E 0 X 2 d <. H F 0, T; Rd deoe he pace o all R d -valued, F-adaped predicably meaurable procee X wih e up X ω <.,ω 0,T Ω K F 0, T deoe he pace o all real-valued, F-adaped coiuou icreaig procee K wih K 0 = 0. Le u coider he e M e o all probabiliy meaure o Ω, F which are equivale o P. For ay M e, i i well-kow ha here i a R d valued predicable proce θ wih 0 θ 2 d <, P a.., uch ha he deiy proce Z o wih repec o P i he ochaic expoeial o θ, amely, Z = E θ B = exp θ db 1 } θ 2, 0 T. 0 2 0 We deoe Z, = Z /Z = exp θ db 1 } 2 θ 2 or ay. Moreover, or ay S 0,T ad wih he oaio 0, =, ω 0, T Ω : 0 < ω} or he ochaic ierval, we deie P = M e } : = P o F = M e : θ ω = 0, d dp a.e. o 0, }, = P : E } <. 2 Dyamic Covex Rik Meaure Deiiio 2.1. A dyamic covex rik meaure i a amily o ucioal ρ, : L F L F } which aiy he ollowig properie: For ay oppig ime ad ay L F meaurable radom variable ξ, η, we have Moooiciy : ρ, ξ ρ, η, P a.. i ξ η, P a.. Tralaio Ivariace : ρ, ξ + η = ρ, ξ η, P a.. i η L F. Covexiy : ρ, λξ + 1 λη λρ, ξ + 1 λρ, η, P a.. or ay λ 0, 1. Normalizaio : ρ, 0 = 0, P a.. Delbae e al. 2009 provide a repreeaio reul, Propoiio 2.1 below, or dyamic covex rik meaure } ρ, ha aiy he ollowig properie: A1 Coiuiy rom above : For ay decreaig equece ξ } L F wih ξ = lim ξ L F, i hol P a.. ha lim ρ,ξ = ρ, ξ. A2 Time Coiecy : For ay σ S, we have: ρ,σ ρσ, ξ = ρ, ξ, P a.. A3 Zero-Oe Law : For ay A F, we have: ρ, 1 A ξ = 1 A ρ, ξ, P a.. A4 e i ξ A E P ξ F = 0, where A = ξ L F T : ρ,t ξ 0}. Propoiio 2.1. Le ρ, be a dyamic covex rik meaure aiyig A1-A4. The or ay ad } ξ L F, we have ρ, ξ = e up E ξ, θ F, P a.. 2.1 Here : 0, T Ω R d 0, i a uiable meaurable ucio, uch ha 1,, z i predicable or ay z R d ; 2, ω, i proper covex, ad lower emi-coiuou or d dp a.e., ω 0, T Ω ; ad 3, ω, 0 = 0, d dp a.e.

Opimal Soppig or Dyamic Covex Rik Meaure 4 We reer o Rockaellar 1997, p. 24 or he oio o proper covex ucio, ad review ome baic properie o he eeial exrema a i Neveu 1975, Propoiio VI-1-1 or Föllmer ad Schied 2004, Theorem A.32. Lemma 2.1. Le ξ i } i I ad η i } i I be wo clae o F-meaurable radom variable wih he ame idex e I. 1 I ξ i = η i, P a.. hol or all i I, he e upξ i = e upη i, P a.. 2 For ay A F, i hol P a.. ha e up i I e up 1A ξ i = 1A e upξ i, P a.. i I i I i I i I 1A ξ i + 1 A cη i = 1A e up i I 3 For ay F-meaurable radom variable ad ay λ > 0, we have e up i I Moreover, 1-3 hold whe we replace e up i I by e i i I. 3 The Opimal Soppig Problem ξ i + 1 A c e upη i. I paricular, i I λξ i + = λe up ξ i +, P a.. i I I hi ecio we udy he opimal oppig problem or dyamic covex rik meaure. More preciely, give S 0,T, we eek a opimal oppig ime τ S,T ha aiie 1.1. We hall aume hroughou ha he reward proce Y L F 0, T i righ-coiuou ad 0 quai-le-coiuou: o wi, or ay icreaig equece } N i S 0,T wih = lim S 0,T, ad ay 0, we have lim E Y F 1 E Y F 1, P a.. I ligh o he repreeaio 2.1, we ca aleraively expre 1.1 a a robu opimal oppig problem, i he ollowig ee: e up e i E Y + S,T, θ F = e i E Y τ + τ, θ F. 3.1 Remark 3.1. We will udy he robu opimal oppig problem 3.1 i a eig more geeral ha alluded o hereoore: From ow o, we oly aume ha : 0, T Ω R d 0, i a P BR d /B0, -meaurable ucio which aiie 3; i.e., he covexiy 2 i o eceary or olvig 3.1. I order o id a oppig ime which i opimal, i.e., aai he eeial upremum i 3.1, we iroduce he lower- ad upper-value, repecively, o he ochaic game uggeed by 3.1, o wi, or every S 0,T : V = e up e i E Y + S,T, θ F, V = e i e upe Y + S,T F. I Theorem 3.1 we hall how ha he quaiie V ad V coicide a ay S 0,T, i.e., a mi-max heorem hol; we hall alo ideiy wo opimal oppig ime i Theorem 3.1 ad 3.2, repecively. Give ay probabiliy meaure 0, le u iroduce or each ixed S 0,T he quaiy R = e upe Y +, θ σ F = e upe Y σ +, θ F Y 3.2 S,T σ S 0,T ad recall rom he claical heory o opimal oppig ee El Karoui 1981 or Karaza ad Shreve 1998, Appedix D he ollowig reul. Propoiio 3.1. Fix a probabiliy meaure 0. 1 The proce R } 0,T admi a RCLL modiicaio R,0 uch ha, or ay S 0,T, we have R,0 = R, P a.. 3.3

3. The Opimal Soppig Problem 5 2 For every S 0,T, he oppig ime τ = i, T : R,0 = Y } S,T aiie or ay S,τ : R = E Y τ + = E R + τ F = E R τ +, θ Thereore, τ i a opimal oppig ime or maximizig E Y + k τ F F, P a.. 3.4 F over S,T. For ay S 0,T ad k N, we iroduce he collecio o probabiliy meaure = P : } θ ω, ω, θ ω k, d dp a.e. o, T. Remark 3.2. I i clear ha k ; ad rom 3 oe ca deduce ha or ay we have ad k k, k N. Give a or ome S 0,T, we rucae i i he ollowig way: The predicabiliy o proce θ ad Propoiio 2.1 imply ha, θ } i alo a predicable proce. Thereore, or ay give k N, he e 0,T =, ω, T : θ ω, ω, θ ω } k P 3.5 A,k i predicable. The he predicable proce θ,k = 1 A θ give rie o a probabiliy meaure,k k via he,k recipe d,k = E θ,k B dp. Le u deie he oppig ime T σm = i 0, T : } 0 θ 2 > m T, m N. There exi a ull e N uch ha, or ay ω Ω \ N, we have σm ω = T or ome m = mω N. Sice E σm 0 θ 2 d m hol or each m N, we have θ ω <, d dp a.e. o 0, σm. 0, A 0, m N σ m T N = 0, T Ω, i ollow ha θ ω < hol d dp a.e. o 0, T Ω. O he oher had, ice we have E <, which implie 1,T, ω, ω, θ ω < hol d d a.., or equivalely d dp a.e. Thereore, we ee ha lim 1 A = 1,T, d dp a.e. 3.6,k For ay S 0,T, he upper value V ca be approximaed rom above i wo ep, preeed i he ex wo lemma. Lemma 3.1. Le S 0,T. 1 For ay S,T we have e i E Y +, θ F = lim e i E Y +, θ k F, P a.. 3.7 2 I hol P a.. ha V = e i R = lim e i k R. 3.8 Lemma 3.2. Le k N ad S 0,T. 1 For ay S,T here exi a equece,k } N k uch ha e i E Y +, θ k F = lim E Y,k +, θ,k F, P a.. 3.9 2 There exi a equece k } N k uch ha e i R = lim Rk, P a.. 3.10 k

Opimal Soppig or Dyamic Covex Rik Meaure 6 Le u ix S 0,T. For ay k N, he iimum o he amily τ } k o opimal oppig ime ca be approached by a decreaig equece i hi amily. A a reul, he iimum i alo a oppig ime. Lemma 3.3. Le S 0,T ad k N. There exi a equece k } N k uch ha τ k = e i k τ = lim τk, P a.. i he oaio o Propoiio 3.1, hu τ k S,T. Sice } k i a icreaig equece, τ k N k } i i ur a decreaig equece. Hece k N deie a oppig ime i S,T. The amily o oppig ime τ} S0,T The ex lemma i cocered wih he paig o wo probabiliy meaure. τ = lim τ k 3.11 will play a crucial role i hi ecio. Lemma 3.4. Give S 0,T, le k or ome k N. For ay ad S,T, he predicable proce θ = 1 } θ + 1 >} θ e, 0, T 3.12 iduce a probabiliy meaure by d = E θ B T dp. I belog o k, o doe. Moreover, or ay σ S,T, we have R,0 σ = R σ = R e σ = R e,0 σ, P a.. 3.13 Remark 3.3. The probabiliy meaure i Lemma 3.4 i called he paig o ad ; ee e.g. Secio 6.7 o Föllmer ad Schied 2004. I geeral, i o cloed uder uch paig. The proo o he ollowig reul ue cheme imilar o he oe i Karaza ad Zamirecu 2008. The mai echical diiculy i our cae i meioed i Remark 3.3. Moreover, i order o ue he reul o Karaza ad Zamirecu 2008 direcly, we would have o aume ha ad he θ are all bouded. We overcome hee diiculie by uig approximaio argume ha rely o rucaio ad localizaio echique. Fir, we hall how ha a ay S 0,T we have V = V, P a.. Theorem 3.1. Exiece o Value: For ay S 0,T, we have V = e i E Y τ + τ F = V Y, P a.. 3.14 Thereore, he oppig ime τ o 3.11 i opimal or he robu opimal oppig problem 3.1 i.e., aai he eeial iimum here. We hall deoe he commo value i 3.14 by V = V = V. Propoiio 3.2. For ay S 0,T, we have V τ = Y τ, P a.. Noe ha τ may o be he ir ime aer whe he value proce coicide wih he reward proce. Acually, ice he value proce V } 0,T i o ecearily righ-coiuou, he radom ime i, T : V = Y } may o eve be a oppig ime. We addre hi iue i he ex hree reul. Propoiio 3.3. Give S 0,T,, ad S,τ, we have E V +, θ F V, P a.. 3.15

4. The Saddle Poi Problem 7 Lemma 3.5. For ay,, σ S 0,T, we have he P a.. equaliie ad 1 =} e i E Y σ + σ F = 1 =} e i E Y σ + σ F 3.16 1 =} V = 1 =} V. 3.17 Nex, we how ha or ay give S 0,T, he proce 1 } V τ } admi a RCLL modiicaio 0,T V 0,. A a coequece, he ir ime aer whe he proce V 0, coicide wih he proce Y, i a opimal oppig ime or he robu opimal oppig problem 3.1. Theorem 3.2. Regulariy o he Value: Le u ix a oppig ime S 0,T. 1 The proce 1 } V τ } 0,T admi a RCLL modiicaio V 0, uch ha, or ay S 0,T : V 0, = 1 } V τ, P a.. 3.18 2 Coequely, } τ V = i, T : V 0, = Y 3.19 i a oppig ime which, i ac, aai he eeial iimum i 3.1. We hould poi ou ha, i order o deermie he opimal oppig ime i 1.1, kowledge o he ucio i he repreeaio 2.1 i o eceary. Ideed, le he ρ Sell evelope be he RCLL modiicaio o e up ρ, Y, S 0,T. From our reul above, he ir ime aer ha he ρ-sell evelope ouche he S,T reward proce Y i a opimal oppig ime; hi i coie wih he claical heory o opimal oppig. 4 The Saddle Poi Problem I hi ecio we will coruc a addle poi o he ochaic game i 1.2. A i he previou ecio, we hall aume here ha : 0, T Ω R d 0, i a P BR d /B0, meaurable ucio which aiie 3. For ay give 0 ad S 0,T, le u deoe Y = Y + 0, θ ad V = V + 0, θ. Deiiio 4.1. A pair, σ 0 S 0,T i called a addle poi, i or every 0 ad S 0,T we have E Y E Y σ E Y σ. 4.1 Theorem 4.1. Neceary Codiio or a Saddle Poi: A pair, σ 0 S 0,T i a addle poi, i he ollowig codiio are aiied: i Y σ = R σ, P a..; ii or ay 0, we have V 0 E V σ ; iii or ay S 0,σ, we have V = E V σ F, P a.. To coruc a addle poi, we eed he ollowig wo oio. Deiiio 4.2. We call Z Ĥ2 F 0, T; Rd a BMO hor or Bouded Mea Ocillaio proce i Z BMO = up τ M 0,T E Z 2 1/2 F τ <. Whe Z i a BMO proce, Z B i a BMO marigale; ee e.g. Kazamaki 1994. τ

Opimal Soppig or Dyamic Covex Rik Meaure 8 Deiiio 4.3. BSDE wih Relecio: Le h : 0, T Ω R R d R be a P BR BR d /BR- meaurable ucio. Give S C 0 F 0, T ad ξ L0 F T wih ξ S T, P a.., a riple Γ, Z, K C 0 F 0, T Ĥ 2 F 0, T; Rd K F 0, T i called a oluio o he releced backward ochaic diereial equaio wih ermial codiio ξ, geeraor h, ad obacle S RBSDE ξ, h, S or hor, i P a.., we have he compario ad he o-called la-o codiio S Γ = ξ + h, Γ, Z + K T K Z db, 0, T, 0 1 Γ>S }dk = 0, P a.. I he re o hi ecio we hall aume ha he reward proce Y L F 0, T i coiuou ad ha he ucio : 0, T Ω R d 0, aiie he ollowig addiioal codiio: H1 For every, ω 0, T Ω, he mappig z, ω, z i coiuou. H2 I hol d dp a.e. ha, ω, z ε z Υ ω 2 l, z R d. Here ε > 0 i a real coa, Υ i a R d valued proce wih Υ = e up Υ ω <, ad l ε Υ 2.,ω 0,T Ω H3 For ay, ω, u 0, T Ω R d, he mappig z, ω, z + u, z aai i iimum over R d a ome z = z, ω, u R d, amely,, ω, u = i z R d, ω, z + u, z =, ω, z, ω, u + u, z, ω, u. 4.2 Wihou lo o geeraliy, we ca aume ha he mappig z : 0, T Ω R d R d i P BR d /BR d - meaurable hak o he Meaurable Selecio Theorem ee e.g. Lemma 1 o Beeš 1970 or Lemma 16.34 o Ellio 1982. We urher aume ha here exi a o-egaive BMO proce ψ ad a M > 0 uch ha or d dp a.e., ω 0, T Ω z, ω, u ψ ω + M u, u R d. Example 4.1. Le λ 0 ad le Λ, Υ H F 0, T; Rd wih Λ ω ε > 0, d dp a.e. Deie, ω, z = Λ ω z Υ ω 2+λ Υ ω 2+λ,, ω, z 0, T Ω R d. Clearly, + = 0 i a P BR d /B0, -meaurable ucio ha aiie 3 ad H1. I ur ou ha + aiie H2, ice d dp a.e. we have ha z +, ω, z, ω, z Λ ω Υ ω 2 1 Λ ω Υ ω 2+λ ε z Υ ω 2 Λ 1 + Υ 2+λ, z R d. For ay, ω, u 0, T Ω R d he gradie z, ω, z + u, z = 2 + λλ ω z Υ ω λ z Υ ω + u, z R d, i ull oly a ẑ, ω, u = 2+λΛ ω 1 1+λ u λ 1+λ u+υ ω, where he mappig z, ω, z+ u, z aai i iimum over R d. Whe u r ω = 2+λΛ ω Υ ω 1+λ, ẑ, ω, u A = z R d : z Υ ω Υ ω }. I ollow ha i z R d +, ω, z + u, z +, ω, ẑ, ω, u + u, ẑ, ω, u =, ω, ẑ, ω, u + u, ẑ, ω, u = i z R d, ω, z + u, z i z R d +, ω, z + u, z. 4.3

4. The Saddle Poi Problem 9 O he oher had, whe u < r ω or equivalely ẑ, ω, u / A, he gradie z, ω, z + u, z 0 or ay z A, which implie ha he mappig z, ω, z+ u, z ca o aai i iimum over A a a ierior poi o i. Thu The i ollow ha i, ω, z + u, z = i, ω, z + u, z = i u, z. z A z A z A i +, ω, z + u, z = i z R d z Ac u, z i z A, ω, z + u, z = i z A c u, z. The laer iimum i aaied uiquely a ome z, ω, u A c, which ogeher wih 4.3 implie ha z, ω, u = 1 u rω}ẑ, ω, u + 1 u <rω} z, ω, u. Thereore, + aiie H3, ice or d dp a.e., ω 0, T Ω we have z, ω, u ẑ, ω, u + z, ω, u 2 + λε 1 1+λ u 1 1+λ + 3 Υ 2 + λε 1 1+λ u + 2 + λε 1 1+λ + 3 Υ, u R d. Remark 4.1. The eropic rik meaure wih rik olerace coeicie r > 0, amely ρ,ξ r = r log E e 1 r ξ } F, ξ L F, i a ypical example o a dyamic covex rik meaure aiyig A1-A4. The correpodig i 2.1 i z = r 2 z 2, z R d. Example 4.2. Le b 1, b 2 be wo real-valued procee uch ha b 1 ω 0 b2 ω, d dp a.e. or ome > 0 Le ϕ : 0, T Ω R R be a P BR/BR-meaurable ucio ha aiie he ollowig wo aumpio: i For ay, ω 0, T Ω, ϕ, ω, i a bijecive locally-iegrable ucio or a coiuou urjecive locallyiegrable ucio o R. ii For ome ε 1, ε 2 > 0, i hol d dp a.e. ha 2 ε1 x + b ϕ, ω, x 1 ω 0, i x > 0, 2 ε 2 x + b 2 ω 0, i x < 0. The, ω, z = z ϕ, ω, xdx, z R deie a P BR/B0, -meaurable o-egaive ucio ha 0 aiie 3 ad H1. Le ε = ε 1 ε 2. For d dp a.e., ω 0, T Ω, i z > 0, he, ω, z z o he oher had, i z < 0, he, ω, z = 0 0 2 ε1 x + b 1 ω dx = ε 1 z 2 + b 1 ωz εz2 z = ε z 2 2 2ε 4ε ; z = 1 2 ε z 2ε ϕ, ω, xdx 0 2 1 + 2 ε z + 3 2ε z 2ε2 x + b 2 ω dx = ε 2 z 2 + b 2 ωz εz2 + z 2 5 2 4ε. Thu i hol d dp a.e. ha, ω, z 1 2 ε z 2 2ε 5 2 4ε, i.e., H2 i aiied. For ay, ω, u 0, T Ω R, ice dz d, ω, z + uz = ϕ, ω, z + u, he mappig z, ω, z + uz aai i iimum over R a each z z R : ϕ, ω, z = x}. Thu ϕ 1, ω, x z, ω, u ϕ 1 +, ω, x, where ϕ 1, ω, x = iz R : ϕ, ω, z = x} ad ϕ 1 +, ω, x = upz R : ϕ, ω, z = x}.

Opimal Soppig or Dyamic Covex Rik Meaure 10 I i clear ha ϕ, ω, ϕ 1, ω, x = x ad ϕ, ω, ϕ 1 +, ω, x = x. For d dp a.e., ω 0, T Ω ad u R, i ϕ 1, ω, x > 0, he u = ϕ, ω, ϕ 1, ω, u 2 ε 1 ϕ 1, ω, x + b 1 ω, which implie ha 0 < ϕ 1, ω, x 1 2ε u +. O he oher had, i ϕ 1, ω, x < 0, oe ca deduce ha 1 2ε u + ϕ 1, ω, x < 0 by a imilar argume. Hece ϕ 1, ω, x 2ε 1 u +. Similarly, hi iequaliy alo hol or ϕ+ 1, ω, x, hu or z, ω, u. A a reul, H3 i alo aiied. Oe ca eaily deduce rom H2 ad 3 ha d dp a.e. 1 + ε 4ε u 2 Υ 2 l, ω, u 0, u R d, which how ha ha quadraic growh i u. Thak o Theorem 1 ad 3 o Kobylaki e al. 2002, he RBSDE Y T,, Y admi a oluio Γ, Z, K C F 0, T H2 F 0, T; Rd K F 0, T. I ac, Z i a BMO proce. To ee hi, we e κ = 1+ε 4ε Υ 2 +l. For ay S 0,T, applyig Iô ormula o e 4κe Γ we ge e 4κe Γ + 8κ 2 e 4κe Γ Z 2 = e 4κYT 4κ e 4κe Γ, Z 4κ e 4κe Γ d K + 4κ e 4κe Γ Z db e 4κYT + 4κ 2 e 4κe Γ 1 + Z 2 + 4κ e 4κe Γ Z db. Takig codiioal expecaio i he above expreio, we obai e 4κ e Γ E Z 2 F E e 4κe Γ Z 2 F 1 4κ 2E e 4κYT F + e 4κ e Γ T. which implie ha Z BMO e 4κ e Γ 1 4κ 2 + T 1/2. Sice he mappig z : 0, T Ω R d R d i P BR d /BR d -meaurable ee H3, θ ω = z, ω, Z ω,, ω 0, T Ω 4.4 i a predicable proce. I ollow rom H3 ha or ay 0, T E which implie ha θ i a BMO proce. θ 2 F 2E ψ 2 F + 2M 2 T E Z 2 F, P a.., Fix S 0,T. Sice θ, = 1 >} θ, 0, T i alo a BMO proce, we kow rom Theorem 2.3 o Kazamaki 1994 ha he ochaic expoeial E θ, B i a uiormly iegrable marigale. There- } 0,T ore, d, = E θ, B T dp deie a probabiliy meaure, P. A, Z =, z, Z + Z, z, Z =, θ + Z, θ, d dp a.e. by 4.2 ad 4.4 ad he Giraov Theorem, we ca deduce Γ = Y T + = Y T +, θ, + Z, θ, + K T K, + K T K Z db Z db,, 0, T, 4.5 where B, i a Browia Moio uder,. Leig = 0 ad akig he expecaio E, yield ha E,, E, Γ Y T 2 Γ, hu,. The lemma below how ha Γ i idiiguihable rom R,,0 o he ochaic ierval, T.

4. The Saddle Poi Problem 11 Lemma 4.1. Give S 0,T, i hol P a.. ha Γ = R,,0,, T. 4.6 Le k N ad k. I i eay o ee ha he ucio h, ω, z =, ω, θ ω + z, θ ω i Lipchiz coiuou i z: o wi, or d dp a.e., ω 0, T Ω h, ω, z h, ω, z = z z, θ θ z z k z z, z, z R d. Moreover, we have E h, 0 2 = E 2 = E 2 k 2 T. 0 0 Theorem 5.2 o El Karoui e al. 1997 aure ow ha here exi a uique oluio Γ, Z, K C 2 F 0, T H 2 F 0, T; Rd K F 0, T o he RBSDEY T, h, Y. Fix 0, T. For ay S,T, Giraov Theorem implie Γ = Y T + = Γ + h, Z + K T K, θ + K K Z db Z db, P a.., where B i a Browia Moio uder. By aalogy wih Lemma 4.1, i hol P a.. ha I paricular, we ee ha R,0 i, i ac, a coiuou proce. Γ = R,0, 0, T. 4.7 Nex, we recall a compario heorem o RBSDE; ee Theorem 4.1 o El Karoui e al. 1997. We reae i i a more geeral orm. Propoiio 4.1. Le Γ, Z, K rep. Γ, Z, K be a oluio o RBSDE ξ, h, S rep. RBSDE ξ, h, S i he ee o Deiiio 4.3. Addiioally, aume ha i eiher h or h i Lipchiz i y, z; ii i hol P a.. ha ξ ξ ad S S or ay 0, T; iii i hol d dp a.e. ha h, ω, y, z h, ω, y, z or ay y, z R R d. The i hol P a.. ha Γ Γ or ay 0, T. Sice i hol d dp a.e. ha, ω, u = i z R d, ω, z + u, z, ω, θ ω + u, θ ω = h, ω, u, u R d. we ee rom Propoiio 4.1 ad 4.7 ha we have P a.. Γ Γ = R,0, 0, T. 4.8 Leig =, akig he eeial iimum o righ-had-ide over k, ad he leig k, we ca deduce rom Lemma 4.1, 3.8, ad 3.3 ha R,,0 = Γ lim e i k R,0 = lim e i k R = V = V R, = R,,0, P a.. which implie ha V = Γ, P a.. Applyig Lemma 4.1 ad 3.3 oce agai yiel ha V = Γ = R,0 = R, P a.. 4.9 where =,0 0. I i clear ha d = d,0 = E θ,0 B T dp = E θ B T dp. We are ow ready o ae he mai reul o hi ecio. Theorem 4.2. Exiece o a Saddle Poi: The pair, τ 0 i a addle poi a i 4.1.

Opimal Soppig or Dyamic Covex Rik Meaure 12 5 Proo 5.1 Proo o he Reul i Secio 2 ad 3 Proo o Propoiio 2.1: Bio-Nadal 2009, Propoiio 1 how ha ρ, ξ = e up E ξf α,, P a.. 5.1, Here we have e, = P : E α, < }, ad he quaiy α, = e up E η F ρ, η η L F i kow a he miimal pealy o ρ,. The repreeaio 5.1 wa how or << P raher ha P i Bio-Nadal 2009. However, our aumpio A4 aure ha 5.1 alo hol. For a proo, ee Föllmer ad Peer 2006, Lemma 3.5 ad Klöppel ad Schweizer 2007, Theorem 3.1. Thak o Delbae e al. 2009, Theorem 5i ad he proo o Propoiio 9v, here exi a oegaive ucio : 0, T Ω R d 0, aiyig 1-3, uch ha or each, we have α, = E F, P a.. Hece we ca rewrie, = P : E } <, ad 5.1 become ρ, ξ = e up E ξ, θ F, P a.. 5.2, Sice,T,, i ollow readily ha e i E Y + F e i E Y +, F, P a.. 5.3 O he oher had, or ay give,, he predicable proce θ e = 1 } θ, 0, T iduce a probabiliy meaure P via d = E θ e B T dp. Sice, θ e = 1 }, θ, d dp a.e. rom 3, i ollow E e, θ e = E e = E <, hu. The we ca deduce e i E Y + F E e Y + = E Y +, θ e, θ F = E e Y + F F, P a.. Takig he eeial iimum o he righ-had-ide over, yiel e i E Y + F e i E Y +, θ F, P a..;, hi, ogeher wih 5.3 ad 5.2, prove 2.1. Proo o Lemma 3.1: 1 Sice } k e i E Y +, θ F lim e i k k N i a icreaig equece o e coaied i, i ollow ha E Y +, θ F, P a.. 5.4

5.1 Proo o he Reul i Secio 2 ad 3 13 Now le u ix a probabiliy meaure, ad deie he oppig ime δm = i, T : }, θ + θ 2 > m T, m N. I i eay o ee ha lim m δ m = T, P a.. For ay m, k N2, he predicable proce θ m,k = 1 δ m } 1 A,kθ, 0, T iduce a probabiliy meaure m,k k by recall he oaio o 3.5. I ollow rom 3 ha d m,k = E θ m,k B dp 5.5 T, θ m,k = 1 δ m} 1 A,k, θ, d dp a.e. 5.6 The we ca deduce rom Baye Rule ee, e.g., Karaza ad Shreve 1991, Lemma 3.5.3 ha e i E Y +, θ k F E m,k Y + m,k F δ m = E Z m,k,t Y + 1 A,k δ m F E Z m,k,t Y + δ m F = E Z m,k,t Z,δ m Y + +E Z,T Y F + E Y + m Z E m,k,t δ m +E Z,δ m δ m Z,δm F F, θ F Z + Y E Z + E Z F,δm,T Y Z,δm,T F F + E Y F Y + m Z E m,k,t Z Z,δm F + Y E Z,δm,T F +E Y + F, P a.. 5.7 From he equaio 3.6 ad he Domiaed Covergece Theorem, we oberve δ m lim E Thu we ca id a ubequece o δ m lim 1 A θ db =,k ad coequely, P a..: m,k lim Z,T = lim exp 1A 1 2 δ θ db = lim E m 1 1A θ 2,k,k = 0, P a.. δ m Sice E Z m,k,t F = E Z 1991, Secio 5.10 ha,δ m δ m 1 A,k } A,k we ill deoe i by k N δ θ db m ad lim 1 A,k } A,k uch ha k N δ m θ 2 = θ 2, P a.. θ db 1 } δ m θ 2 2 = exp θ db 1 } θ 2 2 = Z.,δm F = 1, P a.. or ay k N, i ollow rom Scheé Lemma ee e.g. William Z lim E m,k,t Z,δm F = 0, P a.. 5.8

Opimal Soppig or Dyamic Covex Rik Meaure 14 Hece, leig k i 5.7, we obai lim e i E Y + k E Y + F F + Y E Z Z,δm,T F, P a.. 5.9 I i eay o ee ha lim m δ m = T, P a.. The righ-coiuiy o he proce Z he implie ha lim m Z =,δm Z,T, P a.. Sice E Z F,δm = E Z,TF = 1, P a.. or ay m N, uig Scheé Lemma oce agai we obai Z lim E Z m,δm,tf = 0, P a.. 5.10 Thereore, leig m i 5.9 we obai lim e i E Y + k F E Y + Takig he eeial iimum o righ-had-ide over give e i E Y + F e i E lim k which, ogeher wih 5.4, prove 3.7. 2 By aalogy wih 5.4, we have e i R lim e i k Y +, θ, θ F, P a.. F, P a.. R, P a.. 5.11 Takig he eeial upremum i 5.7 over S,T we ge e i R R m,k R + Y + m Z E m,k k,t Z,δm F + Y E Z Z,δm,T F, P a.. 5.12 I ligh o 5.8 ad 5.10, leig k ad ubequely leig m i 5.12, we obai lim e i R R, k P a.. Takig he eeial iimum o righ-had-ide over yiel lim which, ogeher wih 5.11, prove 3.8. Proo o Lemma 3.2: 1 We ir how ha he amily i direced dowwar, i.e., or ay 1, 2 k, here exi a 3 k uch ha E 3 Y + 3 F E 1 Y + e i k E Y + } F k 1 F E 2 Y + To ee hi, we le 1, 2 k ad le A F. I i clear ha θ 3 = 1 >} 1 A θ 1 + 1 A c θ 2 R e i R, P a.. 2 F P a.. 5.13, 0, T 5.14 orm a predicable proce, hu we ca deie a probabiliy meaure 3 M e via d 3 = E θ 3 B dp. I T ollow rom 3 ha, θ 3 = 1>} 1 A, θ 1 + 1A c, θ 2, d dp a.e., 5.15

5.1 Proo o he Reul i Secio 2 ad 3 15 which ogeher wih 5.14 implie ha θ 3 = 0 d dp a.e. o 0, ad θ 3, ω, θ 1 we have ω + 1 A cω θ 2 Z 3, = exp ω, ω, θ 2 1A θ 1 = exp 1 A = 1 A exp = 1 A Z 1, + 1 A cz 2,, The Baye Rule implie ha E 3 Y + Leig A = E 3 Y + = E 3 F 1 A Z 1,T ω, ω, θ 3 ω = 1 A ω θ 1 ω ω k, d dp a.e. o, T. Hece 3 k. For ay S,T, 1A θ 1 + 1 A cθ 2 db 1 2 θ 1 db 1 θ 1 2 + 1 A c 2 θ 1 db 1 } θ 1 2 + 1 A c exp 2 Y + = 1 A E 1 Y + E 1 Y + 1 P a.. = E Z 3,T Y + 1 + 1 A cz 2,T, θ 1 3 F = E 1 Y + F 3 Y + F + 1 A ce 2 Y + F E 2 Y + 2 2 + 1 A c θ 2 2 } θ 2 db 1 2 θ 2 db 1 2 } θ 2 2 } θ 2 2 F 2, θ 2 1 F E 2 Y + 5.16 F, P a.. 5.17 } F F above, oe obai ha 2 F P a.. provig 5.13. Appealig o he baic properie o he eeial iimum e.g., Neveu 1975, Propoiio VI-1-1, we ca id a equece },k uch ha 3.9 hol. = e up S,T E 3 N i k 2 Takig eeial uprema over S,T o boh ide o 5.17, we ca deduce rom Lemma 2.1 ha R 3 Y + 3 F = 1 A e up S,T E 1 Y + = 1 A R 1 + 1 A cr 2, P a.. 1 F + 1 A c e upe 2 S,T Y + 2 F Takig A = R 1 R 2 } F yiel ha R 3 = R 1 R 2, P a.., hu he amily R } k i direced dowwar. Applyig Propoiio VI-1-1 o Neveu 1975 oce agai, oe ca id a equece k } N i k uch ha 3.10 hol. Proo o Lemma 3.3: Le 1, 2 k. We deie he oppig ime = τ 1 τ 2 S,T ad he eve A = R 1,0 R 2,0 } F. I i clear ha θ 3 = 1 >} 1 A θ 1 + 1 A cθ 2, 0, T 5.18 orm a predicable proce, hu we ca deie a probabiliy meaure 3 M e by d 3 /dp = E θ 3 B T. By aalogy wih 5.15, we have, θ 3 = 1>} 1 A, θ 1 + 1A c, θ 2, d dp a.e. 5.19 which ogeher wih 5.18 implie ha θ 3 = 0, d dp a.e. o 0, ad θ 3 ω, ω, θ 3 ω k, d dp a.e. o, T. Hece 3 k k, hak o Remark 3.2. Moreover, by aalogy wih 5.16, we ca deduce ha or ay S,T we have Z 3, = 1 AZ 1, + 1 A cz2,, P a.. 5.20

Opimal Soppig or Dyamic Covex Rik Meaure 16 Now ix 0, T. For ay σ S,T, 5.20 how ha Z 3,σ = Z3,σ Z 3, = 1 A Z 1,σ Z 1, + 1 A c ad Baye Rule ogeher wih 5.19 imply he σ E 3 Y σ + 3 F = E = E 1 A Z 1,σ σ = 1 A E 1 Y σ + σ Y σ + Z 3,σ Z 2,σ Z 2, σ Y σ + 1 + 1 A c Z 2,σ 1 F + 1 A c E 2 Y σ + = 1 A Z 1,σ + 1 A cz 2,σ, 3 F σ Y σ + σ P a.., 2 F 2 F, P a.. Takig eeial uprema over σ S,T o boh ide above, we ca deduce rom Lemma 2.1 a well a 3.3 ha R 3,0 = R 3 = 1 A R 1 + 1 A cr 2 = 1 A R 1,0 + 1 A cr 2,0, P a.. Sice R i,0, i = 1, 2, 3 are all RCLL procee, we have R 3,0 = 1 A R 1,0 + 1 A cr 2,0, e N, ad hi implie } } τ 3 = i, T : R 3,0 = Y i, T : R 3,0 = Y = 1 A i, T : R 1,0 = Y } + 1 A c i 0, T ouide a ull, T : R 2,0 = Y }, P a.. 5.21 Sice R j,0 τ j = Y τ j, P a.. or j = 1, 2, ad ice = τ τ1 2, i hol P a.. ha Y i equal eiher o R 1,0 or o R 2,0. The he deiiio o he e A how ha R 1,0 = Y hol P a.. o A, ad ha = Y hol P a.. o A c, boh o which urher imply ha R 2,0 1 A i, T : R 1,0 = Y } = 1 A ad 1 A c i, T : R 2,0 = Y } = 1 A c, P a.. We coclude rom 5.21 ha τ 3 = τ 1 τ 2 hol P a.., hece he amily τ } k i } direced dowwar. Thak o Neveu 1975, page 121, we ca id a equece k i k, uch ha τ k = e i k τ = lim τk, P a.. The limi lim τk Proo o Lemma 3.4: I i eay o ee rom 3.12 ad 3 ha ad ha A a reul E N i alo a oppig ime i S,T. θ = θ = 0, d dp a.e. o 0,, 5.22, θ = 1 }, θ = E T + E, θ e E T + E k E + 1>}, θ e, d dp a.e. 5.23 + kt <, hu. I k, we ee rom 3.12 ad 5.23 ha θ θ ω, ω, ω, θ ω k d dp a.e. o,, ω, θ ω = θ e ω, ω, θ e ω k d dp a.e. o, T,

5.1 Proo o he Reul i Secio 2 ad 3 17 which, ogeher wih 5.22, how ha k. E Now we ix σ S,T. For ay δ S σ,t, Baye Rule how δ δ Y δ + F σ = E Y δ +, θ e F σ = E e Y δ + σ ad 3.3 implie R,0 σ = R σ = e up δ S σ,t E = e up δ S σ,t E e σ Y δ + Y δ + δ σ δ σ δ σ, θ e F σ, P a.., F σ, θ e F σ = R e,0 σ = R e σ, P a.. Proo o Theorem 3.1: Fix. For ay m, k N, we coider he probabiliy meaure m,k k a deied i 5.5. I ligh o Lemma 3.3, or ay l N here exi a equece l } uch ha τ l = lim τl, P a.. Now le k, l, m, N wih k l. Lemma 3.4 implie ha he predicable proce θ m,k,l iduce a probabiliy meaure m,k,l R m,k,l,0 τ l = R l,0 τ l = 1 τl }θ m,k l via d m,k,l + 1 >τl }θ l, 0, T N i l = E θ m,k,l B dp, uch ha or ay 0, T, we have T, P a.. Sice Rm,k,l,0 ad R l,0 are boh RCLL procee, ouide a ull e N we have R m,k,l,0 τ l ad hi, ogeher wih he ac ha τ l τ m,k,l τ m,k,l = i = i, T : R m,k,l,0 } = Y = i τ l, T } : R l,0 = Y = i Similar o 5.6, we have, θ m,k,l = 1 τl } The oe ca deduce rom 5.24 ad 5.25 ha V = e i R R m,k,l = E m,k,l = E + E Y τ l Z m,k,l,τ l Z m,k,τ l τ l + τ l m,k Z,τ l Y τ l Y + lt E Z m,k,l τl +E m,k = R l,0 τ l, 0, T τ l, P a.. implie, θ m,k + 1 >τl } =E m,k,l Y τ m,k,l, θ m,k,l Y τ l τ l +,τ l, θ m,k τ l τ l + τ l, T : R m,k,l,0 } = Y, T } : R l,0 = Y = τ l, P a.. 5.24 τ l, θ l, θ l, d dp a.e. 5.25 m,k,l, θ m,k,l F τ + τl F + E m,k, θ l F τl F + E m,k + E, θ m,k,l F m,k F Z m,k,τ l F Z m,k,τ l Y + k τ τ l l τl F F, P a.. 5.26

Opimal Soppig or Dyamic Covex Rik Meaure 18 τ l 2 τ l Becaue E θ l db = E θ l 2 l 2 E τ l τl, which goe o zero a, τ l τ l } uig imilar argume o hoe ha lead o 5.8, we ca id a ubequece o l we ill deoe i by N } l m,k,l uch ha lim N Z = Z m,k,τ l,τ l, P a.. Sice E Z m,k,l F = E Z m,k,τ l,τ l F = 1, P a.. or ay N, Scheé Lemma implie Z lim E m,k,l m,k Z,τ l F = 0, P a.. 5.27,τ l O he oher had, ice Z m,k,τ l Y + k τ τ l l τl Z m,k,τ l Y + kt, P a.., ad ice Y i righ-coiuou, he Domiaed Covergece Theorem give lim E Z m,k,τ l Y + k τ τ l l τl F = E Z m,k,τ l Y τ l F = E m,k Yτl F, P a.. 5.28 Thereore, leig i 5.26, we ca deduce rom 5.27 ad 5.28 ha τl V E m,k Y τl + m,k F, P a.. A l, he Bouded Covergece Theorem give V E m,k whece, ju a i 5.7, we deduce V E m,k Y τ + τ Y τ + Y + m Z E m,k +E Y τ + τ τ m,k F, P a.. m,k F,τ Z,τ δm F + Y E Z Z,τ δm,τ F F, P a.. 5.29 Z By aalogy wih 5.8 ad 5.10, oe ca how ha or ay m N we have lim E m,k,τ Z,τ δm F = 0, Z P a.. ad ha lim E Z m,τ δm,τ F = 0, P a.. Thereore, leig k ad ubequely leig m i 5.29, we obai τ V E Y τ + F, P a.. Takig he eeial iimum o he righ-had-ide over yiel τ V e i E Y τ +, θ F e up e i E Y +, θ F = V V, P a.. S,T ad he reul ollow.

5.1 Proo o he Reul i Secio 2 ad 3 19 Proo o Propoiio 3.2: For each ixed k N, here exi o he regh o Lemma 3.3 a equece k } N i k uch ha τ k = lim k k τk, P a.. For ay N, he predicable proce θ ek k by d = E k B T k τ k k σ k ad τ ek dp = Zk = i, T : R e k,0 We alo kow rom Lemma 3.4 ha or ay 0, T : R e k,0 Sice R e k,0 ad R k = 1 >τk }θ k, 0, T iduce a probabiliy meaure τ k,t dp. Sice σ = τ τ k τ ek, P a.., we have } ek = Y = i σ, T : R,0 } e = Y = τ k σ, P a.. 5.30 τ k = Rk,0 τ k, P a..,0 are boh RCLL procee, here exi a ull e N ouide which we have R e k,0 τ k = R k,0 τ k, 0, T. By aalogy wih 5.24 ad 5.6, repecively, we have ad, θ ek τ e k = τ k, P a.. 5.31 = 1>τk }, θ k, d dp a.e. The we ca deduce rom 5.30, 5.31 ha V σ = V σ = e i R σ R e k σ τ k = E e k Y + 1 τ k >τk } = E Z ek 1 σ,τ k σ Y τ k σ = E e k + τ Z E k Y τ k, θ k k τ k τ k +E Y +, θ k τ k τ k F σ Y + kt E Z k 1 τ k,τ k F σ + E Ju a i 5.27, i ca how ha lim 1 Covergece Theorem implie lim E Y τ k τ k,τ k τ + σ F σ, θ k + k τ k τk Fσ = E F σ k F σ Y + k τ τ k k F σ 1 >τk }, θ k F σ τk F σ, P a.. 5.32 = 0, P a..; o he oher had, he Bouded Y τk F σ, P a.. Leig i 5.32 yiel V σ E Y τk, P a.., ad applyig he Bouded Covergece Theorem we obai V σ lim E Y τk Fσ = E YσFσ = Yσ, P a.. The revere iequaliy i raher obviou. Proo o Propoiio 3.3: Fix k N. I ligh o 3.10, we ca id a equece k } N k uch ha e i R = lim Rk, P a.. 5.33 k For ay N, Lemma 3.4 implie ha he predicable proce θ ek a probabiliy meaure k P a.. Sice τ τ ek V R e k = E e k = E R k + k via d = E θ e k B = 1 } θ +1 >}θ k, 0, T iduce = R k, T dp, uch ha or ay 0, T, R e k, P a.., applyig 3.4 yiel R e k +, θ e k F = E e k R k + F, θ F, P a.. 5.34

Opimal Soppig or Dyamic Covex Rik Meaure 20 I ollow rom 3.2 ha Y Y R k Y + kt, P a.. 5.35 Leig i 5.34, we ca deduce rom he Bouded Covergece Theorem ha V E lim Rk F + E F = E e i R +, θ k F, P a.. Leig i 5.35, oe ee rom 5.33 ha Y e i R Y + kt hol P a.., ad hi k lea o Y e i k R e i R Y + T, 1 P a.. From he Bouded Covergece Theorem ad Lemma 3.1 we obai ow V E e i R F + E F = E V + lim k, θ F, P a.. Proo o Lemma 3.5: Fix k N. For ay k, he predicable proce θ e = 1 > } θ, 0, T iduce a probabiliy meaure by d /dp = E B = T Z,T. Remark 3.2 how ha k k k. By aalogy wih 5.6, we have, θ e = 1 > }, θ, d dp a.e. The oe ca deduce ha σ 1 =} E e Y σ +, θ e σ F = 1 =} E e Y σ + 1 > } F σ = E e 1 =} Y σ + σ F = E E 1 =} Y σ + F F = E which implie 1 =} E Y σ + 1 =} E Y σ + σ σ F F = 1 =} E Y σ + F σ, θ F, P a.., 5.36 σ 1 =} e i E Y σ +, θ k F, P a.. Takig he eeial iimum o he le-had-ide over k, oe ca deduce rom Lemma 2.1 ha σ 1 =} e i E Y σ +, θ σ k F = e i 1 =} E Y σ +, θ k F Leig k, we ee rom Lemma 3.1 1 ha σ 1 =} e i E Y σ + F Reverig he role o ad, we obai 3.16. 1 =} e i E Y σ + k 1 =} e i E σ, θ F, P a.. σ Y σ + F, P a.. O he oher had, akig eeial upremum over σ S 0,T o boh ide o 5.36, we ca deduce rom Lemma 2.1 ha σ 1 =} R e = e up1 =} E e Y σ +, θ e F σ S 0,T = e up σ S 0,T 1 =} E Y σ + σ F = 1 =} R, P a..

5.1 Proo o he Reul i Secio 2 ad 3 21 which implie ha 1 =} R 1 =} e i R, P a.. Takig he eeial iimum o he le-had-ide k over k, oe ca deduce rom Lemma 2.1 ha 1 =} e i k R = e i k 1 =} R 1 =} e i R, k P a.. Leig k, we ee rom Lemma 3.1 2 ha 1 =} V = 1 =} e i R 1 =} e i R = 1 =} V, P a.. Reverig he role o ad, we obai 3.17. Proo o Theorem 3.2: Proo o 1. Sep 1: For ay σ, S 0,T, we deie We ee rom 3.7 ha e i E Y σ + Ψ σ = 1 σ } Y σ +1 σ>} e i E σ F = lim Fix k N. I ligh o 3.9, we ca id a equece e i k k σ e i E Y σ +, θ k F = lim E k By aalogy wih 5.35, we have Y E k P a..; leig, we ee rom 5.38 ha Thereore, Y e i E Y σ + k σ Y σ + F. } σ E Y σ + F, P a.. 5.37 i N k uch ha σ Y σ +, θ k F, P a.. 5.38 σ Y σ +, θ k F Y + kt 5.39 σ σ Y e i E Y σ + k Leig k, we ee rom 5.37 ha which implie ha Y e i E Le S 0,T. I ollow rom 3.16 ha e i E Y σ + 1 Y σ + 1 =} Ψ σ = 1 σ =} Y σ + 1 σ>=} e i σ F Y + kt, σ P a.. F F Y + T, P a.. 5.40 F Y + T, P a.. Y Ψ σ Y + T, P a.. 5.41 E = 1 σ =} Y σ + 1 σ>=} e i E Y σ + Y σ + σ σ F, θ F = 1 =} Ψ σ, P a.. 5.42

Opimal Soppig or Dyamic Covex Rik Meaure 22 Sep 2: Fix σ S 0,T. For ay S 0,T, S,T ad k N, we le i 5.38. The we ca deduce ha Ψ σ 1 σ } Y σ +1 σ>} E k = E k = 1 σ } Y σ +1 σ>} E = E 1 σ } Y σ +1 σ>} E k O he oher had, i hol P a.. ha σ 1 σ>} E k Y σ +, θ k F σ 1 σ>} Y σ + ad ha 1 <σ } E k = E k k } N k be he equece decribed σ Y σ +, θ k F σ E k Y σ +, θ k F F σ Y σ +, θ k F F, P a.. 5.43 = E k, θ k 1 σ>} Y σ + F σ = 1 σ>} E k σ Y σ +, θ k F = E k 1 <σ } Y σ + 1 <σ } Y σ F = 1 <σ } Y σ = 1 <σ } Y σ ;, θ k F σ Y σ +, θ k F σ, θ k F recall he deiiio o he clae P, rom ubecio 1.1. Thereore, 5.43 reduce o σ Ψ σ E 1 σ } Y σ +1 σ>} E k Y σ +, θ k F F, P a.. We obai he rom 5.38, 5.39 ad he Bouded Covergece Theorem, ha σ Ψ σ 1 σ } Y σ +1 σ>} E k Y σ +, θ k = E lim E 1 σ } Y σ +1 σ>} e i E Y σ + k σ, θ k F F F F, P a.. O he oher had, we ca deduce rom 5.37, 5.40 ad he Bouded Covergece Theorem oce agai ha σ Ψ σ lim E 1 σ } Y σ +1 σ>} e i E Y σ +, θ k F k F σ = E 1 σ } Y σ +1 σ>} e i E Y σ + F F = E Ψ σ F, P a.., 5.44 which implie ha Ψ σ } 0,T i a ubmarigale. Thereore Karaza ad Shreve 1991, Propoiio 1.3.14 how ha P he limi Ψ σ,+ = lim Ψσ q exi or ay 0, T = 1 5.45 where q = 2 2 T, ad ha Ψ σ,+ i a RCLL proce. Sep 3: For ay S 0,T ad N, q ake value i a iie e DT = 0, T k2 } k Z T }. Give a λ DT, i hol or ay m ha q mλ = λ ice DT Dm T. I ollow rom 5.45 ha Ψ σ,+ λ = lim m Ψσ q m λ = Ψ σ λ, P a..

5.1 Proo o he Reul i Secio 2 ad 3 23 The oe ca deduce rom 5.42 ha Ψ σ,+ q = λ D T 1 q=λ}ψ σ,+ λ = λ D T 1 q=λ}ψ σ λ = Thu he righ-coiuiy o he proce Ψ σ,+ implie ha λ D T 1 q=λ}ψ σ q = Ψ σ q, P a.. Ψ σ,+ Hece 5.44, 5.41 ad he Bouded Covergece Theorem imply = lim Ψσ,+ q = lim Ψσ q, P a.. 5.46 Ψ σ lim E Ψ σ q F = E Ψ σ,+ F = Ψ σ,+, P a.. 5.47 I he la equaliy we ued he ac ha Ψ σ,+ Browia ilraio F. = lim Ψσ q F, hak o he righ-coiuiy o he Sep 4: Se, S 0,T ad = τ, = τ q, N. Now, le σ S,T. Sice lim τ>q } = 1 τ>} ad τ > } q = q τ }, τ > q } q = τ q }, N, oe ca deduce rom 5.47, 5.46, ad 5.42 ha 1 τ>} Ψ σ 1 τ>} Ψ σ,+ = 1 τ>} lim Ψσ q = lim 1 τ>}ψ σ q τ = lim 1 τ>}ψ σ q = lim 1 τ>q }Ψ σ q = lim 1 τ>q }Ψ σ τ q = 1 τ>} lim Ψσ, P a.. 5.48 For ay N, we ee rom 3.14 ad Lemma 2.1 ha V β = V = e up e i E Y β +, θ F β S,T σ e i E Y σ +, θ F σ = e i E 1 σ }Y +1 σ>} Y σ + F σ = e i 1 σ }Y +1 σ>}e Y σ +, θ F σ = 1 σ }Y +1 σ>}e i E Y σ + F, P a.. Sice τ } = = τ} ad σ > } σ > }, i ollow rom 3.16 ha V 1 σ }Y +1 σ>,τ>}e i E +1 σ>,τ }e i E Y σ + σ Y σ + σ F F = 1 σ }Y +1 σ>,τ>}ψ σ + 1 σ>,τ }Ψ σ, P a..

Opimal Soppig or Dyamic Covex Rik Meaure 24 A, he righ-coiuiy o procee Y, 5.48 a well a Lemma 2.1 how ha lim V 1 σ=} Y +1 σ>,τ>} lim Ψσ + 1 σ>,τ } Ψ σ 1 σ=} Y + 1 σ>} Ψ σ = 1 σ=} Y + 1 σ>} e i E 1 σ=} Y + 1 σ>} E = e i = e i E = e i E Y σ + 1 σ=} Y + 1 σ>} Y σ + Y σ + σ, θ σ σ F, P a.. Y σ + F F σ F Takig he eeial upremum o he righ-had-ide over σ S,T, we obai σ lim V e up e i E Y σ +, θ F = V = V, σ S,T P a.. 5.49 Le u how he revere iequaliy. Fix ad N. For ay k, m N, he predicable proce iduce a probabiliy meaure m,k δ, m θ m,k = 1 < δ, m k by d m,k } 1 A θ, 0, T,k = E = i, T : θ m,k B T dp, where δ, m > m } T, m N. For ay β S,T, uig argume imilar o hoe ha lead o 5.7, we obai β Y β +, θ m,k F Y + m Z E m,k E m,k e i R k Z + Y E,δm, Z,T F R m,k Y + m E,T Z,δ, m The akig he eeial upremum o boh ide over β S,T yiel ha Z m,k Ju a i 5.8, we ca how ha Z + Y E,δm, lim E Z m,k,t Z,δ, m F i deied by β + E Y β + F, P a..,t Z,δm, F Z,T F + R, P a.. 5.50 F = 0, P a.. Thereore, leig k i 5.50, we kow rom Lemma 3.1 2 ha Z V = lim e i R Y E Z k,δm,,t F + R, P a.. 5.51 Z Nex, by aalogy wih 5.10, we have lim E Z m,δm,,t F = 0, P a.. Leig m i 5.51, we obai V R = R,0, P a.. rom 3.3. The he righ-coiuiy o he proce R,0, a well a 3.3, imply ha lim V lim R,0 = R,0 = R, P a..

5.1 Proo o he Reul i Secio 2 ad 3 25 Takig he eeial iimum o R over yiel lim V e i R = V = V, P a.. Thi iequaliy, ogeher wih 5.49, how ha lim V τ q = V τ, P a.. 5.52 Sep 5: Now ix S 0,T. I i clear ha P ad ha θ P 0. For ay 0, T, 3.17 implie ha 1 } V τ = 1 } V τ, P a.., ice } τ = τ }. The we ca deduce rom 3.15, 3, ad 3.14 ha or ay 0, 1 } V τ = 1 } V τ 1 } E V τ τ + r, θr P dr F τ τ = 1 } E V τ F τ = E 1 } V τ F τ E 1 } V τ + 1 >} Y F τ = E E 1 } V τ + Y F τ F 1 } Y = E 1 } V τ + Y F 1 } Y, P a.., } which how ha 1 } V τ + Y i a ubmarigale. Hece i ollow rom Karaza ad Shreve 0,T 1991, Propoiio 1.3.14 ha P he limi V 0, = lim 1 q }V τ q exi or ay 0, T ad ha V 0, i a RCLL proce. Le S 0,T ake value i a iie e 1 < < m }. For ay λ 1 m} ad N, ice = λ } τ q = τ q λ }, oe ca deduce rom 3.17 ha A, 5.52 how 1 =λ }V τ q = 1 =λ }V τ q λ, P a.. = 1, 1 =λ }V 0, = 1 =λ }V 0, λ = 1 λ } lim = λ }V τ q λ = 1 λ } lim = λ }V τ q = 1 } 1 =λ }V τ, P a.. Summig he above expreio over λ, we obai V 0, righ-coiuiy o he proce V 0, ad 5.52 imply = 1 } V τ, P a.. The or ay S 0,T, he V 0, = lim V 0, q = lim 1 q }V τ q = 1 } V τ, P a.., provig 3.18. I paricular, V 0, i a RCLL modiicaio o he proce 1 } V τ } 0,T. Proo o Theorem 3.2: Proo o 2. Propoiio 3.2 ad 3.18 imply ha V 0, τ = V τ = Y τ, P a.. Hece we ca deduce rom he righ-coiuiy o procee V 0, ad Y ha τ V i 3.19 i a oppig ime belogig o S,τ ad ha Y τv = V 0, τ V = V τ V, P a..,

Opimal Soppig or Dyamic Covex Rik Meaure 26 where he ecod equaliy i due o 3.18. The i ollow rom 3.15 ha or ay τv V E V τ V + τv F = E Y τv + F, P a.. Takig he eeial iimum o he righ-had-ide over yiel ha τv V e i E Y τv +, θ F e up e i E Y +, θ F = V = V, P a.., S,T rom which he claim ollow. 5.2 Proo o he Reul i Secio 4 Proo o Theorem 4.1: I i eay o ee rom i ha Y σ = V σ = R σ, P a.. 5.53 which ogeher wih ii ad iii how ha or ay 0 E Y σ = E V σ = V 0 = V 0 E V σ = E Y σ. Thu he ecod iequaliy i 4.1 hol or, σ. Now we how ha, σ aiie he ir iequaliy i 4.1 i hree ep: Whe S 0,σ, propery iii ad 5.53 imply ha V = E V σ F = E Y E Y + R σ + σ Y Takig he expecaio E o boh ide yiel ha E Y E Y σ. Whe S σ,t, i ollow rom 5.53 ha E Y σ Fσ = E + E σ 0 σ F, P a.. 5.54 = E 0 Y σ. For a geeral oppig ime S 0,T, le u deie 1 = σ S 0,σ ad 2 = σ S σ,t. Sice σ } F σ = F 1, oe ca deduce rom 5.54 ha E Y = E E 1 σ }Y 1 + 1 >σ }Y Fσ 2 = E 1 σ }Y 1 + 1 >σ }E Y Fσ 2 σ E 1 σ }Y 1 + 1 >σ } R σ + 0 = E 1 σ }Y 1 + 1 >σ }Yσ = E 1 σ }Y 1 + 1 >σ }E Y σ F1 E 1 σ }E Y σ F1 + 1 >σ }E Y σ F1 = E Y σ. Proo o Lemma 4.1: Fix 0, T. For ay S,T, we ee rom 4.5 ha Γ = Γ +, + K K Z db,, P a..

Reerece 27 Applyig E, F o boh ide, we obai Γ = E, E, Γ + Y +, θ, + K K F, θ, 5.55 F, P a.. 5.56 Le σ = i, T : Γ = Y } S,T. The la-o codiio aiied by Γ, Z, K, ad he coiuiy o K, imply ha 0 = 1 e d K Γ>Y } =,σ d K = lim K K = K σ,σ րσ K, P a.. Hece, akig = σ i 5.55, we obai he P a.. propery Γ = E, which, ogeher wih 5.56 ad 3.3, how ha Γ = e up E, Y + S,T, θ, F Y σ + σ = R, = R,,0, P a.., θ, F The he righ-coiuiy o he procee Γ ad R,,0 implie 4.6. Proo o Theorem 4.2 : We hall how ha, τ 0 aiie codiio i-iii o Theorem 4.1: 1 I ollow eaily rom Propoiio 3.1 ha Y τ 0 = R,0 τ 0 = R τ 0, P a.. 2 For ay k N ad k 0, we ca deduce rom 4.9, he righ-coiuiy o procee R,0 ad Γ, a well a 4.8 ha P a.. R,0 = Γ R,0, 0, T. I paricular, we have Y τ 0 R,0 τ 0 = R,0 τ 0 = Y τ 0, P a.. Hece Y τ 0 = R,0, P a.., which implie τ 0 urher ha τ 0 τ 0, P a.. Takig he eeial iimum o righ-had-ide over k 0 ad leig k, we deduce ha, i he oaio o 3.11, we have τ 0 lim e i τ 0 = τ0, P a.. The 3.15 how V 0 E V τ 0 or ay 0. 3 For ay S 0,τ 0, ad ice τ 0 τ hol P a.., oe ca deduce rom 4.9 ad 3.4 ha V = R + = E 0 R τ 0 +, θ = E τ 0 0 R τ 0 +, θ F = E τ 0 k 0 F + 0, θ V τ 0 F, P a.. Reerece E. Bayrakar ad S. Yao. Opimal oppig or oliear expecaio. Techical repor, Uiveriy o Michiga, 2009. Available a hp://arxiv.org/ab/0905.3601. V. E. Beeš. Exiece o opimal raegie baed o peciied iormaio, or a cla o ochaic deciio problem. SIAM J. Corol, 8:179 188, 1970. ISSN 0363-0129. J. Bio-Nadal. Time coie dyamic rik procee. Sochaic Proce. Appl., 1192:633 654, 2009. ISSN 0304-4149.

Opimal Soppig or Dyamic Covex Rik Meaure 28 P. Cheridio, F. Delbae, ad M. Kupper. Dyamic moeary rik meaure or bouded dicree-ime procee. Elecro. J. Probab., 11:o. 3, 57 106 elecroic, 2006. ISSN 1083-6489. F. Delbae. The rucure o m-able e ad i paricular o he e o rik eural meaure. I I memoriam Paul-Adré Meyer: Sémiaire de Probabilié XXXIX, volume 1874 o Lecure Noe i Mah., page 215 258. Spriger, Berli, 2006. F. Delbae, S. Peg, ad E. Roazza-Giai. Repreeaio o he pealy erm o dyamic cocave uiliie. Techical repor, ETH, 2009. Available a hp://arxiv.org/ab/0802.1121. N. El Karoui. Le apec probabilie du corôle ochaique. I Nih Sai Flour Probabiliy Summer School 1979 Sai Flour, 1979, volume 876 o Lecure Noe i Mah., page 73 238. Spriger, Berli, 1981. N. El Karoui, C. Kapoudjia, E. Pardoux, S. Peg, ad M. C. ueez. Releced oluio o backward SDE, ad relaed obacle problem or PDE. A. Probab., 252:702 737, 1997. ISSN 0091-1798. R. J. Ellio. Sochaic calculu ad applicaio, volume 18 o Applicaio o Mahemaic New York. Spriger- Verlag, New York, 1982. ISBN 0-387-90763-7. H. Föllmer ad I. Peer. Covex rik meaure ad he dyamic o heir pealy ucio. Sai. Deciio, 241:61 96, 2006. ISSN 0721-2631. H. Föllmer ad A. Schied. Sochaic iace, volume 27 o de Gruyer Sudie i Mahemaic. Waler de Gruyer & Co., Berli, exeded ediio, 2004. ISBN 3-11-018346-3. A iroducio i dicree ime. I. Karaza ad S. E. Shreve. Browia moio ad ochaic calculu, volume 113 o Graduae Tex i Mahemaic. Spriger-Verlag, New York, ecod ediio, 1991. ISBN 0-387-97655-8. I. Karaza ad S. E. Shreve. Meho o mahemaical iace, volume 39 o Applicaio o Mahemaic New York. Spriger-Verlag, New York, 1998. ISBN 0-387-94839-2. I. Karaza ad I. M. Zamirecu. Marigale approach o ochaic corol wih dicreioary oppig. Appl. Mah. Opim., 532:163 184, 2006. ISSN 0095-4616. I. Karaza ad I. M. Zamirecu. Marigale approach o ochaic diereial game o corol ad oppig. A. Probab., 364:1495 1527, 2008. ISSN 0091-1798. N. Kazamaki. Coiuou expoeial marigale ad BMO, volume 1579 o Lecure Noe i Mahemaic. Spriger-Verlag, Berli, 1994. ISBN 3-540-58042-5. S. Klöppel ad M. Schweizer. Dyamic idierece valuaio via covex rik meaure. Mah. Fiace, 174: 599 627, 2007. ISSN 0960-1627. M. Kobylaki, J. P. Lepelier, M. C. ueez, ad S. Torre. Releced BSDE wih uperliear quadraic coeicie. Probab. Mah. Sai., 221, Aca Uiv. Wrailav. No. 2409:51 83, 2002. ISSN 0208-4147. J.-P. Lepelier. O a geeral zero-um ochaic game wih oppig raegy or oe player ad coiuou raegy or he oher. Probab. Mah. Sai., 61:43 50, 1985. ISSN 0208-4147. J. Neveu. Dicree-parameer marigale. Norh-Hollad Publihig Co., Amerdam, revied ediio, 1975. Tralaed rom he Frech by T. P. Speed, Norh-Hollad Mahemaical Library, Vol. 10. R. T. Rockaellar. Covex aalyi. Priceo Ladmark i Mahemaic. Priceo Uiveriy Pre, Priceo, NJ, 1997. ISBN 0-691-01586-4. Repri o he 1970 origial, Priceo Paperback. D. William. Probabiliy wih marigale. Cambridge Mahemaical Texbook. Cambridge Uiveriy Pre, Cambridge, 1991. ISBN 0-521-40455-X; 0-521-40605-6.