Opimal Soppig or Dyamic Covex Rik Meaure Erha Bayrakar, Ioai Karaza, Sog Yao arxiv:0909.4948v3 mah.pr 23 Nov 2009 Abrac We ue marigale ad ochaic aalyi echique o udy a coiuou-ime opimal oppig problem, i which he deciio maker ue a dyamic covex rik meaure o evaluae uure rewar. We alo id a addle poi or a equivale zero-um game o corol ad oppig, bewee a age he opper who chooe he ermiaio ime o he game, ad a age he coroller, or aure who elec he probabiliy meaure. Keywor: Covex rik meaure, coiuou-ime opimal oppig, robue meho, zero um game, addle poi, releced backward ochaic diereial equaio, BMO marigale. 1 Iroducio Le u coider a complee, ilered probabiliy pace Ω, F, P, F = F } 0, ad o i a bouded, adaped proce Y ha aiie cerai regulariy codiio. Give ay oppig ime o he ilraio F, our goal i o id a oppig ime τ S,T ha aiie e iρ, Y = ρ,τ Yτ, P a.. 1.1 S,T Here S,T i he e o oppig ime aiyig T, P a.., ad he collecio o ucioal ρ, : L F L F } i a dyamic covex rik meaure i he ee o Delbae e al. 2009. Our S 0,T, S,T moivaio i o olve he opimal oppig problem o a deciio maker who evaluae uure rewar/rik uig dyamic covex rik meaure raher ha aiical expecaio. Thi queio ca alo be ca a a robu opimal oppig problem, i which he deciio maker ha o ac i he preece o o-called Kighia uceraiy regardig he uderlyig probabiliy meaure. Whe he ilraio F i geeraed by a Browia moio, he dyamic covex rik meaure admi he ollowig repreeaio: There exi a uiable oegaive ucio, covex i i paial argume, uch ha he repreeaio ρ, ξ = e up E ξ, θ F, P a.. hol or all ξ L F. Here i he collecio o probabiliy meaure which are equivale o P o F, equal o P o F, ad aiy a cerai iegrabiliy codiio; wherea θ i he predicable proce whoe ochaic expoeial give he deiy o wih repec o P. I hi eig we eablih a miimax reul, amely V e up e i E Y + S,T F = e i e upe Y + S,T F, 1.2 Deparme o Mahemaic, Uiveriy o Michiga, A Arbor, MI 48109; email: erha@umich.edu. Thi auhor i uppored i par by he Naioal Sciece Foudaio, uder gra umber DMS-0906257. INTECH Iveme Maageme, Oe Palmer Square, Suie 441, Priceo, NJ 08542; e-mail: ik@ehaced.com; ad Deparme o Mahemaic, Columbia Uiveriy, New York, NY 10027; e-mail: ik@mah.columbia.edu. Reearch uppored i par by he Naioal Sciece Foudaio uder Gra NSF-DMS-09-05754. Deparme o Mahemaic, Uiveriy o Michiga, A Arbor, MI 48109; email: ogyao@umich.edu.
Opimal Soppig or Dyamic Covex Rik Meaure 2 ad coruc a opimal oppig ime τ a he limi o oppig ime ha are opimal uder expecaio crieria ee Theorem 3.1. We how ha he proce 1 } V τ } admi a RCLL modiicaio 0,T V 0, uch ha or ay S 0,T, we have V 0, = 1 } V τ, P a.. We how ha he oppig ime τ V = i, T : V 0, } = Y aai he iimum i 1.1. Fially, we coruc a addle poi o he ochaic game i 1.2. The dicree-ime opimal oppig problem or cohere rik meaure wa udied by Föllmer ad Schied 2004, Secio 6.5 ad Cheridio e al. 2006, Secio 5.2 ad 5.3. Delbae 2006 ad Karaza ad Zamirecu 2006, o he oher had, coidered coiuou-ime opimal oppig problem i which he eeial iimum over he oppig ime i 1.1 i replaced by a eeial upremum. The coroller-ad-opper problem o Lepelier 1985 ad Karaza ad Zamirecu 2008, ad he opimal oppig or o-liear expecaio i Bayrakar ad Yao 2009, are he cloe i piri o our work. However, ice our aumpio o he radom ucio ad he e are dicaed by he repreeaio heorem or dyamic covex rik meaure, he reul i hee paper cao be direcly applied. I paricular, becaue o he iegrabiliy aumpio ha appear i he deiiio o ubecio 1.1, hi e may o be cloed uder paig; ee Remark 3.3. Moreover, he exa reul o coroller-ad-opper game would require ha ad he θ be bouded. We overcome hee echical diiculie by uig approximaio argume which rely o rucaio ad localizaio echique. O he oher had, i idig a addle poi Karaza ad Zamirecu 2008 ued he weak compace o he collecio o probabiliy meaure, i paricular he boudede o θ. We avoid makig hi aumpio by uig echique rom Releced Backward Sochaic Diereial Equaio RBSDE. I paricular, uig a compario heorem ad he ac ha V ca be approximaed by oluio o BSDE wih Lipchiz geeraor, we how ha V olve a quadraic RBSDE RBSDE. The relaiohip bewee he oluio o RBSDE ad he BMO marigale help u coruc a addle poi. We hould poi ou ha he covexiy o i o eeded o derive our reul; c. Remark 3.1. The layou o he paper i imple. I Secio 2 we recall he deiiio o he dyamic covex rik meaure ad a repreeaio heorem. We olve he opimal oppig problem i Secio 3. I Secio 4 we id a addle poi or he ochaic coroller-ad-opper game i 1.2. The proo o our reul are give i Secio 5. 1.1 Noaio ad Prelimiarie Throughou hi paper we le B be a d-dimeioal Browia Moio deied o he probabiliy pace Ω, F, P, ad coider he augmeed ilraio geeraed by i, i.e., F = F = σ B ; 0, N }, where N i he collecio o all P-ull e i F. 0 We ix a iie ime horizo T > 0, deoe by P rep. P he predicably rep. progreively meaurable σ-ield o Ω 0, T, ad le S 0,T be he e o all F-oppig ime uch ha 0 T, P a.. From ow o, whe wriig, we alway mea wo oppig ime, S 0,T uch ha, P a.. For ay we deie S, = σ S0,T σ, P a..} ad le S, deoe all iie-valued oppig ime i S,. The ollowig pace o ucio will be ued i he equel: Le G be a geeric ub-σ-ield o F. L 0 G deoe he pace o all real-valued, G meaurable radom variable. L G = ξ L 0 G : ξ = e up ξω < }. ω Ω L 0 F 0, T deoe he pace o all real-valued, F-adaped procee. L F 0, T = X L 0 F 0, T : X = e up,ω 0,T Ω X ω < }. C p F 0, T = X L p F 0, T : X ha coiuou pah}, p = 0,. } C 2 F 0, T = X C 0 F 0, T : E X 2 <. up 0,T
2. Dyamic Covex Rik Meaure 3 H 2 F 0, T; Rd rep. Ĥ 2 F 0, T; Rd deoe he pace o all R d valued, F adaped predicably rep. progreively meaurable procee X wih E 0 X 2 d <. H F 0, T; Rd deoe he pace o all R d -valued, F-adaped predicably meaurable procee X wih e up X ω <.,ω 0,T Ω K F 0, T deoe he pace o all real-valued, F-adaped coiuou icreaig procee K wih K 0 = 0. Le u coider he e M e o all probabiliy meaure o Ω, F which are equivale o P. For ay M e, i i well-kow ha here i a R d valued predicable proce θ wih 0 θ 2 d <, P a.., uch ha he deiy proce Z o wih repec o P i he ochaic expoeial o θ, amely, Z = E θ B = exp θ db 1 } θ 2, 0 T. 0 2 0 We deoe Z, = Z /Z = exp θ db 1 } 2 θ 2 or ay. Moreover, or ay S 0,T ad wih he oaio 0, =, ω 0, T Ω : 0 < ω} or he ochaic ierval, we deie P = M e } : = P o F = M e : θ ω = 0, d dp a.e. o 0, }, = P : E } <. 2 Dyamic Covex Rik Meaure Deiiio 2.1. A dyamic covex rik meaure i a amily o ucioal ρ, : L F L F } which aiy he ollowig properie: For ay oppig ime ad ay L F meaurable radom variable ξ, η, we have Moooiciy : ρ, ξ ρ, η, P a.. i ξ η, P a.. Tralaio Ivariace : ρ, ξ + η = ρ, ξ η, P a.. i η L F. Covexiy : ρ, λξ + 1 λη λρ, ξ + 1 λρ, η, P a.. or ay λ 0, 1. Normalizaio : ρ, 0 = 0, P a.. Delbae e al. 2009 provide a repreeaio reul, Propoiio 2.1 below, or dyamic covex rik meaure } ρ, ha aiy he ollowig properie: A1 Coiuiy rom above : For ay decreaig equece ξ } L F wih ξ = lim ξ L F, i hol P a.. ha lim ρ,ξ = ρ, ξ. A2 Time Coiecy : For ay σ S, we have: ρ,σ ρσ, ξ = ρ, ξ, P a.. A3 Zero-Oe Law : For ay A F, we have: ρ, 1 A ξ = 1 A ρ, ξ, P a.. A4 e i ξ A E P ξ F = 0, where A = ξ L F T : ρ,t ξ 0}. Propoiio 2.1. Le ρ, be a dyamic covex rik meaure aiyig A1-A4. The or ay ad } ξ L F, we have ρ, ξ = e up E ξ, θ F, P a.. 2.1 Here : 0, T Ω R d 0, i a uiable meaurable ucio, uch ha 1,, z i predicable or ay z R d ; 2, ω, i proper covex, ad lower emi-coiuou or d dp a.e., ω 0, T Ω ; ad 3, ω, 0 = 0, d dp a.e.
Opimal Soppig or Dyamic Covex Rik Meaure 4 We reer o Rockaellar 1997, p. 24 or he oio o proper covex ucio, ad review ome baic properie o he eeial exrema a i Neveu 1975, Propoiio VI-1-1 or Föllmer ad Schied 2004, Theorem A.32. Lemma 2.1. Le ξ i } i I ad η i } i I be wo clae o F-meaurable radom variable wih he ame idex e I. 1 I ξ i = η i, P a.. hol or all i I, he e upξ i = e upη i, P a.. 2 For ay A F, i hol P a.. ha e up i I e up 1A ξ i = 1A e upξ i, P a.. i I i I i I i I 1A ξ i + 1 A cη i = 1A e up i I 3 For ay F-meaurable radom variable ad ay λ > 0, we have e up i I Moreover, 1-3 hold whe we replace e up i I by e i i I. 3 The Opimal Soppig Problem ξ i + 1 A c e upη i. I paricular, i I λξ i + = λe up ξ i +, P a.. i I I hi ecio we udy he opimal oppig problem or dyamic covex rik meaure. More preciely, give S 0,T, we eek a opimal oppig ime τ S,T ha aiie 1.1. We hall aume hroughou ha he reward proce Y L F 0, T i righ-coiuou ad 0 quai-le-coiuou: o wi, or ay icreaig equece } N i S 0,T wih = lim S 0,T, ad ay 0, we have lim E Y F 1 E Y F 1, P a.. I ligh o he repreeaio 2.1, we ca aleraively expre 1.1 a a robu opimal oppig problem, i he ollowig ee: e up e i E Y + S,T, θ F = e i E Y τ + τ, θ F. 3.1 Remark 3.1. We will udy he robu opimal oppig problem 3.1 i a eig more geeral ha alluded o hereoore: From ow o, we oly aume ha : 0, T Ω R d 0, i a P BR d /B0, -meaurable ucio which aiie 3; i.e., he covexiy 2 i o eceary or olvig 3.1. I order o id a oppig ime which i opimal, i.e., aai he eeial upremum i 3.1, we iroduce he lower- ad upper-value, repecively, o he ochaic game uggeed by 3.1, o wi, or every S 0,T : V = e up e i E Y + S,T, θ F, V = e i e upe Y + S,T F. I Theorem 3.1 we hall how ha he quaiie V ad V coicide a ay S 0,T, i.e., a mi-max heorem hol; we hall alo ideiy wo opimal oppig ime i Theorem 3.1 ad 3.2, repecively. Give ay probabiliy meaure 0, le u iroduce or each ixed S 0,T he quaiy R = e upe Y +, θ σ F = e upe Y σ +, θ F Y 3.2 S,T σ S 0,T ad recall rom he claical heory o opimal oppig ee El Karoui 1981 or Karaza ad Shreve 1998, Appedix D he ollowig reul. Propoiio 3.1. Fix a probabiliy meaure 0. 1 The proce R } 0,T admi a RCLL modiicaio R,0 uch ha, or ay S 0,T, we have R,0 = R, P a.. 3.3
3. The Opimal Soppig Problem 5 2 For every S 0,T, he oppig ime τ = i, T : R,0 = Y } S,T aiie or ay S,τ : R = E Y τ + = E R + τ F = E R τ +, θ Thereore, τ i a opimal oppig ime or maximizig E Y + k τ F F, P a.. 3.4 F over S,T. For ay S 0,T ad k N, we iroduce he collecio o probabiliy meaure = P : } θ ω, ω, θ ω k, d dp a.e. o, T. Remark 3.2. I i clear ha k ; ad rom 3 oe ca deduce ha or ay we have ad k k, k N. Give a or ome S 0,T, we rucae i i he ollowig way: The predicabiliy o proce θ ad Propoiio 2.1 imply ha, θ } i alo a predicable proce. Thereore, or ay give k N, he e 0,T =, ω, T : θ ω, ω, θ ω } k P 3.5 A,k i predicable. The he predicable proce θ,k = 1 A θ give rie o a probabiliy meaure,k k via he,k recipe d,k = E θ,k B dp. Le u deie he oppig ime T σm = i 0, T : } 0 θ 2 > m T, m N. There exi a ull e N uch ha, or ay ω Ω \ N, we have σm ω = T or ome m = mω N. Sice E σm 0 θ 2 d m hol or each m N, we have θ ω <, d dp a.e. o 0, σm. 0, A 0, m N σ m T N = 0, T Ω, i ollow ha θ ω < hol d dp a.e. o 0, T Ω. O he oher had, ice we have E <, which implie 1,T, ω, ω, θ ω < hol d d a.., or equivalely d dp a.e. Thereore, we ee ha lim 1 A = 1,T, d dp a.e. 3.6,k For ay S 0,T, he upper value V ca be approximaed rom above i wo ep, preeed i he ex wo lemma. Lemma 3.1. Le S 0,T. 1 For ay S,T we have e i E Y +, θ F = lim e i E Y +, θ k F, P a.. 3.7 2 I hol P a.. ha V = e i R = lim e i k R. 3.8 Lemma 3.2. Le k N ad S 0,T. 1 For ay S,T here exi a equece,k } N k uch ha e i E Y +, θ k F = lim E Y,k +, θ,k F, P a.. 3.9 2 There exi a equece k } N k uch ha e i R = lim Rk, P a.. 3.10 k
Opimal Soppig or Dyamic Covex Rik Meaure 6 Le u ix S 0,T. For ay k N, he iimum o he amily τ } k o opimal oppig ime ca be approached by a decreaig equece i hi amily. A a reul, he iimum i alo a oppig ime. Lemma 3.3. Le S 0,T ad k N. There exi a equece k } N k uch ha τ k = e i k τ = lim τk, P a.. i he oaio o Propoiio 3.1, hu τ k S,T. Sice } k i a icreaig equece, τ k N k } i i ur a decreaig equece. Hece k N deie a oppig ime i S,T. The amily o oppig ime τ} S0,T The ex lemma i cocered wih he paig o wo probabiliy meaure. τ = lim τ k 3.11 will play a crucial role i hi ecio. Lemma 3.4. Give S 0,T, le k or ome k N. For ay ad S,T, he predicable proce θ = 1 } θ + 1 >} θ e, 0, T 3.12 iduce a probabiliy meaure by d = E θ B T dp. I belog o k, o doe. Moreover, or ay σ S,T, we have R,0 σ = R σ = R e σ = R e,0 σ, P a.. 3.13 Remark 3.3. The probabiliy meaure i Lemma 3.4 i called he paig o ad ; ee e.g. Secio 6.7 o Föllmer ad Schied 2004. I geeral, i o cloed uder uch paig. The proo o he ollowig reul ue cheme imilar o he oe i Karaza ad Zamirecu 2008. The mai echical diiculy i our cae i meioed i Remark 3.3. Moreover, i order o ue he reul o Karaza ad Zamirecu 2008 direcly, we would have o aume ha ad he θ are all bouded. We overcome hee diiculie by uig approximaio argume ha rely o rucaio ad localizaio echique. Fir, we hall how ha a ay S 0,T we have V = V, P a.. Theorem 3.1. Exiece o Value: For ay S 0,T, we have V = e i E Y τ + τ F = V Y, P a.. 3.14 Thereore, he oppig ime τ o 3.11 i opimal or he robu opimal oppig problem 3.1 i.e., aai he eeial iimum here. We hall deoe he commo value i 3.14 by V = V = V. Propoiio 3.2. For ay S 0,T, we have V τ = Y τ, P a.. Noe ha τ may o be he ir ime aer whe he value proce coicide wih he reward proce. Acually, ice he value proce V } 0,T i o ecearily righ-coiuou, he radom ime i, T : V = Y } may o eve be a oppig ime. We addre hi iue i he ex hree reul. Propoiio 3.3. Give S 0,T,, ad S,τ, we have E V +, θ F V, P a.. 3.15
4. The Saddle Poi Problem 7 Lemma 3.5. For ay,, σ S 0,T, we have he P a.. equaliie ad 1 =} e i E Y σ + σ F = 1 =} e i E Y σ + σ F 3.16 1 =} V = 1 =} V. 3.17 Nex, we how ha or ay give S 0,T, he proce 1 } V τ } admi a RCLL modiicaio 0,T V 0,. A a coequece, he ir ime aer whe he proce V 0, coicide wih he proce Y, i a opimal oppig ime or he robu opimal oppig problem 3.1. Theorem 3.2. Regulariy o he Value: Le u ix a oppig ime S 0,T. 1 The proce 1 } V τ } 0,T admi a RCLL modiicaio V 0, uch ha, or ay S 0,T : V 0, = 1 } V τ, P a.. 3.18 2 Coequely, } τ V = i, T : V 0, = Y 3.19 i a oppig ime which, i ac, aai he eeial iimum i 3.1. We hould poi ou ha, i order o deermie he opimal oppig ime i 1.1, kowledge o he ucio i he repreeaio 2.1 i o eceary. Ideed, le he ρ Sell evelope be he RCLL modiicaio o e up ρ, Y, S 0,T. From our reul above, he ir ime aer ha he ρ-sell evelope ouche he S,T reward proce Y i a opimal oppig ime; hi i coie wih he claical heory o opimal oppig. 4 The Saddle Poi Problem I hi ecio we will coruc a addle poi o he ochaic game i 1.2. A i he previou ecio, we hall aume here ha : 0, T Ω R d 0, i a P BR d /B0, meaurable ucio which aiie 3. For ay give 0 ad S 0,T, le u deoe Y = Y + 0, θ ad V = V + 0, θ. Deiiio 4.1. A pair, σ 0 S 0,T i called a addle poi, i or every 0 ad S 0,T we have E Y E Y σ E Y σ. 4.1 Theorem 4.1. Neceary Codiio or a Saddle Poi: A pair, σ 0 S 0,T i a addle poi, i he ollowig codiio are aiied: i Y σ = R σ, P a..; ii or ay 0, we have V 0 E V σ ; iii or ay S 0,σ, we have V = E V σ F, P a.. To coruc a addle poi, we eed he ollowig wo oio. Deiiio 4.2. We call Z Ĥ2 F 0, T; Rd a BMO hor or Bouded Mea Ocillaio proce i Z BMO = up τ M 0,T E Z 2 1/2 F τ <. Whe Z i a BMO proce, Z B i a BMO marigale; ee e.g. Kazamaki 1994. τ
Opimal Soppig or Dyamic Covex Rik Meaure 8 Deiiio 4.3. BSDE wih Relecio: Le h : 0, T Ω R R d R be a P BR BR d /BR- meaurable ucio. Give S C 0 F 0, T ad ξ L0 F T wih ξ S T, P a.., a riple Γ, Z, K C 0 F 0, T Ĥ 2 F 0, T; Rd K F 0, T i called a oluio o he releced backward ochaic diereial equaio wih ermial codiio ξ, geeraor h, ad obacle S RBSDE ξ, h, S or hor, i P a.., we have he compario ad he o-called la-o codiio S Γ = ξ + h, Γ, Z + K T K Z db, 0, T, 0 1 Γ>S }dk = 0, P a.. I he re o hi ecio we hall aume ha he reward proce Y L F 0, T i coiuou ad ha he ucio : 0, T Ω R d 0, aiie he ollowig addiioal codiio: H1 For every, ω 0, T Ω, he mappig z, ω, z i coiuou. H2 I hol d dp a.e. ha, ω, z ε z Υ ω 2 l, z R d. Here ε > 0 i a real coa, Υ i a R d valued proce wih Υ = e up Υ ω <, ad l ε Υ 2.,ω 0,T Ω H3 For ay, ω, u 0, T Ω R d, he mappig z, ω, z + u, z aai i iimum over R d a ome z = z, ω, u R d, amely,, ω, u = i z R d, ω, z + u, z =, ω, z, ω, u + u, z, ω, u. 4.2 Wihou lo o geeraliy, we ca aume ha he mappig z : 0, T Ω R d R d i P BR d /BR d - meaurable hak o he Meaurable Selecio Theorem ee e.g. Lemma 1 o Beeš 1970 or Lemma 16.34 o Ellio 1982. We urher aume ha here exi a o-egaive BMO proce ψ ad a M > 0 uch ha or d dp a.e., ω 0, T Ω z, ω, u ψ ω + M u, u R d. Example 4.1. Le λ 0 ad le Λ, Υ H F 0, T; Rd wih Λ ω ε > 0, d dp a.e. Deie, ω, z = Λ ω z Υ ω 2+λ Υ ω 2+λ,, ω, z 0, T Ω R d. Clearly, + = 0 i a P BR d /B0, -meaurable ucio ha aiie 3 ad H1. I ur ou ha + aiie H2, ice d dp a.e. we have ha z +, ω, z, ω, z Λ ω Υ ω 2 1 Λ ω Υ ω 2+λ ε z Υ ω 2 Λ 1 + Υ 2+λ, z R d. For ay, ω, u 0, T Ω R d he gradie z, ω, z + u, z = 2 + λλ ω z Υ ω λ z Υ ω + u, z R d, i ull oly a ẑ, ω, u = 2+λΛ ω 1 1+λ u λ 1+λ u+υ ω, where he mappig z, ω, z+ u, z aai i iimum over R d. Whe u r ω = 2+λΛ ω Υ ω 1+λ, ẑ, ω, u A = z R d : z Υ ω Υ ω }. I ollow ha i z R d +, ω, z + u, z +, ω, ẑ, ω, u + u, ẑ, ω, u =, ω, ẑ, ω, u + u, ẑ, ω, u = i z R d, ω, z + u, z i z R d +, ω, z + u, z. 4.3
4. The Saddle Poi Problem 9 O he oher had, whe u < r ω or equivalely ẑ, ω, u / A, he gradie z, ω, z + u, z 0 or ay z A, which implie ha he mappig z, ω, z+ u, z ca o aai i iimum over A a a ierior poi o i. Thu The i ollow ha i, ω, z + u, z = i, ω, z + u, z = i u, z. z A z A z A i +, ω, z + u, z = i z R d z Ac u, z i z A, ω, z + u, z = i z A c u, z. The laer iimum i aaied uiquely a ome z, ω, u A c, which ogeher wih 4.3 implie ha z, ω, u = 1 u rω}ẑ, ω, u + 1 u <rω} z, ω, u. Thereore, + aiie H3, ice or d dp a.e., ω 0, T Ω we have z, ω, u ẑ, ω, u + z, ω, u 2 + λε 1 1+λ u 1 1+λ + 3 Υ 2 + λε 1 1+λ u + 2 + λε 1 1+λ + 3 Υ, u R d. Remark 4.1. The eropic rik meaure wih rik olerace coeicie r > 0, amely ρ,ξ r = r log E e 1 r ξ } F, ξ L F, i a ypical example o a dyamic covex rik meaure aiyig A1-A4. The correpodig i 2.1 i z = r 2 z 2, z R d. Example 4.2. Le b 1, b 2 be wo real-valued procee uch ha b 1 ω 0 b2 ω, d dp a.e. or ome > 0 Le ϕ : 0, T Ω R R be a P BR/BR-meaurable ucio ha aiie he ollowig wo aumpio: i For ay, ω 0, T Ω, ϕ, ω, i a bijecive locally-iegrable ucio or a coiuou urjecive locallyiegrable ucio o R. ii For ome ε 1, ε 2 > 0, i hol d dp a.e. ha 2 ε1 x + b ϕ, ω, x 1 ω 0, i x > 0, 2 ε 2 x + b 2 ω 0, i x < 0. The, ω, z = z ϕ, ω, xdx, z R deie a P BR/B0, -meaurable o-egaive ucio ha 0 aiie 3 ad H1. Le ε = ε 1 ε 2. For d dp a.e., ω 0, T Ω, i z > 0, he, ω, z z o he oher had, i z < 0, he, ω, z = 0 0 2 ε1 x + b 1 ω dx = ε 1 z 2 + b 1 ωz εz2 z = ε z 2 2 2ε 4ε ; z = 1 2 ε z 2ε ϕ, ω, xdx 0 2 1 + 2 ε z + 3 2ε z 2ε2 x + b 2 ω dx = ε 2 z 2 + b 2 ωz εz2 + z 2 5 2 4ε. Thu i hol d dp a.e. ha, ω, z 1 2 ε z 2 2ε 5 2 4ε, i.e., H2 i aiied. For ay, ω, u 0, T Ω R, ice dz d, ω, z + uz = ϕ, ω, z + u, he mappig z, ω, z + uz aai i iimum over R a each z z R : ϕ, ω, z = x}. Thu ϕ 1, ω, x z, ω, u ϕ 1 +, ω, x, where ϕ 1, ω, x = iz R : ϕ, ω, z = x} ad ϕ 1 +, ω, x = upz R : ϕ, ω, z = x}.
Opimal Soppig or Dyamic Covex Rik Meaure 10 I i clear ha ϕ, ω, ϕ 1, ω, x = x ad ϕ, ω, ϕ 1 +, ω, x = x. For d dp a.e., ω 0, T Ω ad u R, i ϕ 1, ω, x > 0, he u = ϕ, ω, ϕ 1, ω, u 2 ε 1 ϕ 1, ω, x + b 1 ω, which implie ha 0 < ϕ 1, ω, x 1 2ε u +. O he oher had, i ϕ 1, ω, x < 0, oe ca deduce ha 1 2ε u + ϕ 1, ω, x < 0 by a imilar argume. Hece ϕ 1, ω, x 2ε 1 u +. Similarly, hi iequaliy alo hol or ϕ+ 1, ω, x, hu or z, ω, u. A a reul, H3 i alo aiied. Oe ca eaily deduce rom H2 ad 3 ha d dp a.e. 1 + ε 4ε u 2 Υ 2 l, ω, u 0, u R d, which how ha ha quadraic growh i u. Thak o Theorem 1 ad 3 o Kobylaki e al. 2002, he RBSDE Y T,, Y admi a oluio Γ, Z, K C F 0, T H2 F 0, T; Rd K F 0, T. I ac, Z i a BMO proce. To ee hi, we e κ = 1+ε 4ε Υ 2 +l. For ay S 0,T, applyig Iô ormula o e 4κe Γ we ge e 4κe Γ + 8κ 2 e 4κe Γ Z 2 = e 4κYT 4κ e 4κe Γ, Z 4κ e 4κe Γ d K + 4κ e 4κe Γ Z db e 4κYT + 4κ 2 e 4κe Γ 1 + Z 2 + 4κ e 4κe Γ Z db. Takig codiioal expecaio i he above expreio, we obai e 4κ e Γ E Z 2 F E e 4κe Γ Z 2 F 1 4κ 2E e 4κYT F + e 4κ e Γ T. which implie ha Z BMO e 4κ e Γ 1 4κ 2 + T 1/2. Sice he mappig z : 0, T Ω R d R d i P BR d /BR d -meaurable ee H3, θ ω = z, ω, Z ω,, ω 0, T Ω 4.4 i a predicable proce. I ollow rom H3 ha or ay 0, T E which implie ha θ i a BMO proce. θ 2 F 2E ψ 2 F + 2M 2 T E Z 2 F, P a.., Fix S 0,T. Sice θ, = 1 >} θ, 0, T i alo a BMO proce, we kow rom Theorem 2.3 o Kazamaki 1994 ha he ochaic expoeial E θ, B i a uiormly iegrable marigale. There- } 0,T ore, d, = E θ, B T dp deie a probabiliy meaure, P. A, Z =, z, Z + Z, z, Z =, θ + Z, θ, d dp a.e. by 4.2 ad 4.4 ad he Giraov Theorem, we ca deduce Γ = Y T + = Y T +, θ, + Z, θ, + K T K, + K T K Z db Z db,, 0, T, 4.5 where B, i a Browia Moio uder,. Leig = 0 ad akig he expecaio E, yield ha E,, E, Γ Y T 2 Γ, hu,. The lemma below how ha Γ i idiiguihable rom R,,0 o he ochaic ierval, T.
4. The Saddle Poi Problem 11 Lemma 4.1. Give S 0,T, i hol P a.. ha Γ = R,,0,, T. 4.6 Le k N ad k. I i eay o ee ha he ucio h, ω, z =, ω, θ ω + z, θ ω i Lipchiz coiuou i z: o wi, or d dp a.e., ω 0, T Ω h, ω, z h, ω, z = z z, θ θ z z k z z, z, z R d. Moreover, we have E h, 0 2 = E 2 = E 2 k 2 T. 0 0 Theorem 5.2 o El Karoui e al. 1997 aure ow ha here exi a uique oluio Γ, Z, K C 2 F 0, T H 2 F 0, T; Rd K F 0, T o he RBSDEY T, h, Y. Fix 0, T. For ay S,T, Giraov Theorem implie Γ = Y T + = Γ + h, Z + K T K, θ + K K Z db Z db, P a.., where B i a Browia Moio uder. By aalogy wih Lemma 4.1, i hol P a.. ha I paricular, we ee ha R,0 i, i ac, a coiuou proce. Γ = R,0, 0, T. 4.7 Nex, we recall a compario heorem o RBSDE; ee Theorem 4.1 o El Karoui e al. 1997. We reae i i a more geeral orm. Propoiio 4.1. Le Γ, Z, K rep. Γ, Z, K be a oluio o RBSDE ξ, h, S rep. RBSDE ξ, h, S i he ee o Deiiio 4.3. Addiioally, aume ha i eiher h or h i Lipchiz i y, z; ii i hol P a.. ha ξ ξ ad S S or ay 0, T; iii i hol d dp a.e. ha h, ω, y, z h, ω, y, z or ay y, z R R d. The i hol P a.. ha Γ Γ or ay 0, T. Sice i hol d dp a.e. ha, ω, u = i z R d, ω, z + u, z, ω, θ ω + u, θ ω = h, ω, u, u R d. we ee rom Propoiio 4.1 ad 4.7 ha we have P a.. Γ Γ = R,0, 0, T. 4.8 Leig =, akig he eeial iimum o righ-had-ide over k, ad he leig k, we ca deduce rom Lemma 4.1, 3.8, ad 3.3 ha R,,0 = Γ lim e i k R,0 = lim e i k R = V = V R, = R,,0, P a.. which implie ha V = Γ, P a.. Applyig Lemma 4.1 ad 3.3 oce agai yiel ha V = Γ = R,0 = R, P a.. 4.9 where =,0 0. I i clear ha d = d,0 = E θ,0 B T dp = E θ B T dp. We are ow ready o ae he mai reul o hi ecio. Theorem 4.2. Exiece o a Saddle Poi: The pair, τ 0 i a addle poi a i 4.1.
Opimal Soppig or Dyamic Covex Rik Meaure 12 5 Proo 5.1 Proo o he Reul i Secio 2 ad 3 Proo o Propoiio 2.1: Bio-Nadal 2009, Propoiio 1 how ha ρ, ξ = e up E ξf α,, P a.. 5.1, Here we have e, = P : E α, < }, ad he quaiy α, = e up E η F ρ, η η L F i kow a he miimal pealy o ρ,. The repreeaio 5.1 wa how or << P raher ha P i Bio-Nadal 2009. However, our aumpio A4 aure ha 5.1 alo hol. For a proo, ee Föllmer ad Peer 2006, Lemma 3.5 ad Klöppel ad Schweizer 2007, Theorem 3.1. Thak o Delbae e al. 2009, Theorem 5i ad he proo o Propoiio 9v, here exi a oegaive ucio : 0, T Ω R d 0, aiyig 1-3, uch ha or each, we have α, = E F, P a.. Hece we ca rewrie, = P : E } <, ad 5.1 become ρ, ξ = e up E ξ, θ F, P a.. 5.2, Sice,T,, i ollow readily ha e i E Y + F e i E Y +, F, P a.. 5.3 O he oher had, or ay give,, he predicable proce θ e = 1 } θ, 0, T iduce a probabiliy meaure P via d = E θ e B T dp. Sice, θ e = 1 }, θ, d dp a.e. rom 3, i ollow E e, θ e = E e = E <, hu. The we ca deduce e i E Y + F E e Y + = E Y +, θ e, θ F = E e Y + F F, P a.. Takig he eeial iimum o he righ-had-ide over, yiel e i E Y + F e i E Y +, θ F, P a..;, hi, ogeher wih 5.3 ad 5.2, prove 2.1. Proo o Lemma 3.1: 1 Sice } k e i E Y +, θ F lim e i k k N i a icreaig equece o e coaied i, i ollow ha E Y +, θ F, P a.. 5.4
5.1 Proo o he Reul i Secio 2 ad 3 13 Now le u ix a probabiliy meaure, ad deie he oppig ime δm = i, T : }, θ + θ 2 > m T, m N. I i eay o ee ha lim m δ m = T, P a.. For ay m, k N2, he predicable proce θ m,k = 1 δ m } 1 A,kθ, 0, T iduce a probabiliy meaure m,k k by recall he oaio o 3.5. I ollow rom 3 ha d m,k = E θ m,k B dp 5.5 T, θ m,k = 1 δ m} 1 A,k, θ, d dp a.e. 5.6 The we ca deduce rom Baye Rule ee, e.g., Karaza ad Shreve 1991, Lemma 3.5.3 ha e i E Y +, θ k F E m,k Y + m,k F δ m = E Z m,k,t Y + 1 A,k δ m F E Z m,k,t Y + δ m F = E Z m,k,t Z,δ m Y + +E Z,T Y F + E Y + m Z E m,k,t δ m +E Z,δ m δ m Z,δm F F, θ F Z + Y E Z + E Z F,δm,T Y Z,δm,T F F + E Y F Y + m Z E m,k,t Z Z,δm F + Y E Z,δm,T F +E Y + F, P a.. 5.7 From he equaio 3.6 ad he Domiaed Covergece Theorem, we oberve δ m lim E Thu we ca id a ubequece o δ m lim 1 A θ db =,k ad coequely, P a..: m,k lim Z,T = lim exp 1A 1 2 δ θ db = lim E m 1 1A θ 2,k,k = 0, P a.. δ m Sice E Z m,k,t F = E Z 1991, Secio 5.10 ha,δ m δ m 1 A,k } A,k we ill deoe i by k N δ θ db m ad lim 1 A,k } A,k uch ha k N δ m θ 2 = θ 2, P a.. θ db 1 } δ m θ 2 2 = exp θ db 1 } θ 2 2 = Z.,δm F = 1, P a.. or ay k N, i ollow rom Scheé Lemma ee e.g. William Z lim E m,k,t Z,δm F = 0, P a.. 5.8
Opimal Soppig or Dyamic Covex Rik Meaure 14 Hece, leig k i 5.7, we obai lim e i E Y + k E Y + F F + Y E Z Z,δm,T F, P a.. 5.9 I i eay o ee ha lim m δ m = T, P a.. The righ-coiuiy o he proce Z he implie ha lim m Z =,δm Z,T, P a.. Sice E Z F,δm = E Z,TF = 1, P a.. or ay m N, uig Scheé Lemma oce agai we obai Z lim E Z m,δm,tf = 0, P a.. 5.10 Thereore, leig m i 5.9 we obai lim e i E Y + k F E Y + Takig he eeial iimum o righ-had-ide over give e i E Y + F e i E lim k which, ogeher wih 5.4, prove 3.7. 2 By aalogy wih 5.4, we have e i R lim e i k Y +, θ, θ F, P a.. F, P a.. R, P a.. 5.11 Takig he eeial upremum i 5.7 over S,T we ge e i R R m,k R + Y + m Z E m,k k,t Z,δm F + Y E Z Z,δm,T F, P a.. 5.12 I ligh o 5.8 ad 5.10, leig k ad ubequely leig m i 5.12, we obai lim e i R R, k P a.. Takig he eeial iimum o righ-had-ide over yiel lim which, ogeher wih 5.11, prove 3.8. Proo o Lemma 3.2: 1 We ir how ha he amily i direced dowwar, i.e., or ay 1, 2 k, here exi a 3 k uch ha E 3 Y + 3 F E 1 Y + e i k E Y + } F k 1 F E 2 Y + To ee hi, we le 1, 2 k ad le A F. I i clear ha θ 3 = 1 >} 1 A θ 1 + 1 A c θ 2 R e i R, P a.. 2 F P a.. 5.13, 0, T 5.14 orm a predicable proce, hu we ca deie a probabiliy meaure 3 M e via d 3 = E θ 3 B dp. I T ollow rom 3 ha, θ 3 = 1>} 1 A, θ 1 + 1A c, θ 2, d dp a.e., 5.15
5.1 Proo o he Reul i Secio 2 ad 3 15 which ogeher wih 5.14 implie ha θ 3 = 0 d dp a.e. o 0, ad θ 3, ω, θ 1 we have ω + 1 A cω θ 2 Z 3, = exp ω, ω, θ 2 1A θ 1 = exp 1 A = 1 A exp = 1 A Z 1, + 1 A cz 2,, The Baye Rule implie ha E 3 Y + Leig A = E 3 Y + = E 3 F 1 A Z 1,T ω, ω, θ 3 ω = 1 A ω θ 1 ω ω k, d dp a.e. o, T. Hece 3 k. For ay S,T, 1A θ 1 + 1 A cθ 2 db 1 2 θ 1 db 1 θ 1 2 + 1 A c 2 θ 1 db 1 } θ 1 2 + 1 A c exp 2 Y + = 1 A E 1 Y + E 1 Y + 1 P a.. = E Z 3,T Y + 1 + 1 A cz 2,T, θ 1 3 F = E 1 Y + F 3 Y + F + 1 A ce 2 Y + F E 2 Y + 2 2 + 1 A c θ 2 2 } θ 2 db 1 2 θ 2 db 1 2 } θ 2 2 } θ 2 2 F 2, θ 2 1 F E 2 Y + 5.16 F, P a.. 5.17 } F F above, oe obai ha 2 F P a.. provig 5.13. Appealig o he baic properie o he eeial iimum e.g., Neveu 1975, Propoiio VI-1-1, we ca id a equece },k uch ha 3.9 hol. = e up S,T E 3 N i k 2 Takig eeial uprema over S,T o boh ide o 5.17, we ca deduce rom Lemma 2.1 ha R 3 Y + 3 F = 1 A e up S,T E 1 Y + = 1 A R 1 + 1 A cr 2, P a.. 1 F + 1 A c e upe 2 S,T Y + 2 F Takig A = R 1 R 2 } F yiel ha R 3 = R 1 R 2, P a.., hu he amily R } k i direced dowwar. Applyig Propoiio VI-1-1 o Neveu 1975 oce agai, oe ca id a equece k } N i k uch ha 3.10 hol. Proo o Lemma 3.3: Le 1, 2 k. We deie he oppig ime = τ 1 τ 2 S,T ad he eve A = R 1,0 R 2,0 } F. I i clear ha θ 3 = 1 >} 1 A θ 1 + 1 A cθ 2, 0, T 5.18 orm a predicable proce, hu we ca deie a probabiliy meaure 3 M e by d 3 /dp = E θ 3 B T. By aalogy wih 5.15, we have, θ 3 = 1>} 1 A, θ 1 + 1A c, θ 2, d dp a.e. 5.19 which ogeher wih 5.18 implie ha θ 3 = 0, d dp a.e. o 0, ad θ 3 ω, ω, θ 3 ω k, d dp a.e. o, T. Hece 3 k k, hak o Remark 3.2. Moreover, by aalogy wih 5.16, we ca deduce ha or ay S,T we have Z 3, = 1 AZ 1, + 1 A cz2,, P a.. 5.20
Opimal Soppig or Dyamic Covex Rik Meaure 16 Now ix 0, T. For ay σ S,T, 5.20 how ha Z 3,σ = Z3,σ Z 3, = 1 A Z 1,σ Z 1, + 1 A c ad Baye Rule ogeher wih 5.19 imply he σ E 3 Y σ + 3 F = E = E 1 A Z 1,σ σ = 1 A E 1 Y σ + σ Y σ + Z 3,σ Z 2,σ Z 2, σ Y σ + 1 + 1 A c Z 2,σ 1 F + 1 A c E 2 Y σ + = 1 A Z 1,σ + 1 A cz 2,σ, 3 F σ Y σ + σ P a.., 2 F 2 F, P a.. Takig eeial uprema over σ S,T o boh ide above, we ca deduce rom Lemma 2.1 a well a 3.3 ha R 3,0 = R 3 = 1 A R 1 + 1 A cr 2 = 1 A R 1,0 + 1 A cr 2,0, P a.. Sice R i,0, i = 1, 2, 3 are all RCLL procee, we have R 3,0 = 1 A R 1,0 + 1 A cr 2,0, e N, ad hi implie } } τ 3 = i, T : R 3,0 = Y i, T : R 3,0 = Y = 1 A i, T : R 1,0 = Y } + 1 A c i 0, T ouide a ull, T : R 2,0 = Y }, P a.. 5.21 Sice R j,0 τ j = Y τ j, P a.. or j = 1, 2, ad ice = τ τ1 2, i hol P a.. ha Y i equal eiher o R 1,0 or o R 2,0. The he deiiio o he e A how ha R 1,0 = Y hol P a.. o A, ad ha = Y hol P a.. o A c, boh o which urher imply ha R 2,0 1 A i, T : R 1,0 = Y } = 1 A ad 1 A c i, T : R 2,0 = Y } = 1 A c, P a.. We coclude rom 5.21 ha τ 3 = τ 1 τ 2 hol P a.., hece he amily τ } k i } direced dowwar. Thak o Neveu 1975, page 121, we ca id a equece k i k, uch ha τ k = e i k τ = lim τk, P a.. The limi lim τk Proo o Lemma 3.4: I i eay o ee rom 3.12 ad 3 ha ad ha A a reul E N i alo a oppig ime i S,T. θ = θ = 0, d dp a.e. o 0,, 5.22, θ = 1 }, θ = E T + E, θ e E T + E k E + 1>}, θ e, d dp a.e. 5.23 + kt <, hu. I k, we ee rom 3.12 ad 5.23 ha θ θ ω, ω, ω, θ ω k d dp a.e. o,, ω, θ ω = θ e ω, ω, θ e ω k d dp a.e. o, T,
5.1 Proo o he Reul i Secio 2 ad 3 17 which, ogeher wih 5.22, how ha k. E Now we ix σ S,T. For ay δ S σ,t, Baye Rule how δ δ Y δ + F σ = E Y δ +, θ e F σ = E e Y δ + σ ad 3.3 implie R,0 σ = R σ = e up δ S σ,t E = e up δ S σ,t E e σ Y δ + Y δ + δ σ δ σ δ σ, θ e F σ, P a.., F σ, θ e F σ = R e,0 σ = R e σ, P a.. Proo o Theorem 3.1: Fix. For ay m, k N, we coider he probabiliy meaure m,k k a deied i 5.5. I ligh o Lemma 3.3, or ay l N here exi a equece l } uch ha τ l = lim τl, P a.. Now le k, l, m, N wih k l. Lemma 3.4 implie ha he predicable proce θ m,k,l iduce a probabiliy meaure m,k,l R m,k,l,0 τ l = R l,0 τ l = 1 τl }θ m,k l via d m,k,l + 1 >τl }θ l, 0, T N i l = E θ m,k,l B dp, uch ha or ay 0, T, we have T, P a.. Sice Rm,k,l,0 ad R l,0 are boh RCLL procee, ouide a ull e N we have R m,k,l,0 τ l ad hi, ogeher wih he ac ha τ l τ m,k,l τ m,k,l = i = i, T : R m,k,l,0 } = Y = i τ l, T } : R l,0 = Y = i Similar o 5.6, we have, θ m,k,l = 1 τl } The oe ca deduce rom 5.24 ad 5.25 ha V = e i R R m,k,l = E m,k,l = E + E Y τ l Z m,k,l,τ l Z m,k,τ l τ l + τ l m,k Z,τ l Y τ l Y + lt E Z m,k,l τl +E m,k = R l,0 τ l, 0, T τ l, P a.. implie, θ m,k + 1 >τl } =E m,k,l Y τ m,k,l, θ m,k,l Y τ l τ l +,τ l, θ m,k τ l τ l + τ l, T : R m,k,l,0 } = Y, T } : R l,0 = Y = τ l, P a.. 5.24 τ l, θ l, θ l, d dp a.e. 5.25 m,k,l, θ m,k,l F τ + τl F + E m,k, θ l F τl F + E m,k + E, θ m,k,l F m,k F Z m,k,τ l F Z m,k,τ l Y + k τ τ l l τl F F, P a.. 5.26
Opimal Soppig or Dyamic Covex Rik Meaure 18 τ l 2 τ l Becaue E θ l db = E θ l 2 l 2 E τ l τl, which goe o zero a, τ l τ l } uig imilar argume o hoe ha lead o 5.8, we ca id a ubequece o l we ill deoe i by N } l m,k,l uch ha lim N Z = Z m,k,τ l,τ l, P a.. Sice E Z m,k,l F = E Z m,k,τ l,τ l F = 1, P a.. or ay N, Scheé Lemma implie Z lim E m,k,l m,k Z,τ l F = 0, P a.. 5.27,τ l O he oher had, ice Z m,k,τ l Y + k τ τ l l τl Z m,k,τ l Y + kt, P a.., ad ice Y i righ-coiuou, he Domiaed Covergece Theorem give lim E Z m,k,τ l Y + k τ τ l l τl F = E Z m,k,τ l Y τ l F = E m,k Yτl F, P a.. 5.28 Thereore, leig i 5.26, we ca deduce rom 5.27 ad 5.28 ha τl V E m,k Y τl + m,k F, P a.. A l, he Bouded Covergece Theorem give V E m,k whece, ju a i 5.7, we deduce V E m,k Y τ + τ Y τ + Y + m Z E m,k +E Y τ + τ τ m,k F, P a.. m,k F,τ Z,τ δm F + Y E Z Z,τ δm,τ F F, P a.. 5.29 Z By aalogy wih 5.8 ad 5.10, oe ca how ha or ay m N we have lim E m,k,τ Z,τ δm F = 0, Z P a.. ad ha lim E Z m,τ δm,τ F = 0, P a.. Thereore, leig k ad ubequely leig m i 5.29, we obai τ V E Y τ + F, P a.. Takig he eeial iimum o he righ-had-ide over yiel τ V e i E Y τ +, θ F e up e i E Y +, θ F = V V, P a.. S,T ad he reul ollow.
5.1 Proo o he Reul i Secio 2 ad 3 19 Proo o Propoiio 3.2: For each ixed k N, here exi o he regh o Lemma 3.3 a equece k } N i k uch ha τ k = lim k k τk, P a.. For ay N, he predicable proce θ ek k by d = E k B T k τ k k σ k ad τ ek dp = Zk = i, T : R e k,0 We alo kow rom Lemma 3.4 ha or ay 0, T : R e k,0 Sice R e k,0 ad R k = 1 >τk }θ k, 0, T iduce a probabiliy meaure τ k,t dp. Sice σ = τ τ k τ ek, P a.., we have } ek = Y = i σ, T : R,0 } e = Y = τ k σ, P a.. 5.30 τ k = Rk,0 τ k, P a..,0 are boh RCLL procee, here exi a ull e N ouide which we have R e k,0 τ k = R k,0 τ k, 0, T. By aalogy wih 5.24 ad 5.6, repecively, we have ad, θ ek τ e k = τ k, P a.. 5.31 = 1>τk }, θ k, d dp a.e. The we ca deduce rom 5.30, 5.31 ha V σ = V σ = e i R σ R e k σ τ k = E e k Y + 1 τ k >τk } = E Z ek 1 σ,τ k σ Y τ k σ = E e k + τ Z E k Y τ k, θ k k τ k τ k +E Y +, θ k τ k τ k F σ Y + kt E Z k 1 τ k,τ k F σ + E Ju a i 5.27, i ca how ha lim 1 Covergece Theorem implie lim E Y τ k τ k,τ k τ + σ F σ, θ k + k τ k τk Fσ = E F σ k F σ Y + k τ τ k k F σ 1 >τk }, θ k F σ τk F σ, P a.. 5.32 = 0, P a..; o he oher had, he Bouded Y τk F σ, P a.. Leig i 5.32 yiel V σ E Y τk, P a.., ad applyig he Bouded Covergece Theorem we obai V σ lim E Y τk Fσ = E YσFσ = Yσ, P a.. The revere iequaliy i raher obviou. Proo o Propoiio 3.3: Fix k N. I ligh o 3.10, we ca id a equece k } N k uch ha e i R = lim Rk, P a.. 5.33 k For ay N, Lemma 3.4 implie ha he predicable proce θ ek a probabiliy meaure k P a.. Sice τ τ ek V R e k = E e k = E R k + k via d = E θ e k B = 1 } θ +1 >}θ k, 0, T iduce = R k, T dp, uch ha or ay 0, T, R e k, P a.., applyig 3.4 yiel R e k +, θ e k F = E e k R k + F, θ F, P a.. 5.34
Opimal Soppig or Dyamic Covex Rik Meaure 20 I ollow rom 3.2 ha Y Y R k Y + kt, P a.. 5.35 Leig i 5.34, we ca deduce rom he Bouded Covergece Theorem ha V E lim Rk F + E F = E e i R +, θ k F, P a.. Leig i 5.35, oe ee rom 5.33 ha Y e i R Y + kt hol P a.., ad hi k lea o Y e i k R e i R Y + T, 1 P a.. From he Bouded Covergece Theorem ad Lemma 3.1 we obai ow V E e i R F + E F = E V + lim k, θ F, P a.. Proo o Lemma 3.5: Fix k N. For ay k, he predicable proce θ e = 1 > } θ, 0, T iduce a probabiliy meaure by d /dp = E B = T Z,T. Remark 3.2 how ha k k k. By aalogy wih 5.6, we have, θ e = 1 > }, θ, d dp a.e. The oe ca deduce ha σ 1 =} E e Y σ +, θ e σ F = 1 =} E e Y σ + 1 > } F σ = E e 1 =} Y σ + σ F = E E 1 =} Y σ + F F = E which implie 1 =} E Y σ + 1 =} E Y σ + σ σ F F = 1 =} E Y σ + F σ, θ F, P a.., 5.36 σ 1 =} e i E Y σ +, θ k F, P a.. Takig he eeial iimum o he le-had-ide over k, oe ca deduce rom Lemma 2.1 ha σ 1 =} e i E Y σ +, θ σ k F = e i 1 =} E Y σ +, θ k F Leig k, we ee rom Lemma 3.1 1 ha σ 1 =} e i E Y σ + F Reverig he role o ad, we obai 3.16. 1 =} e i E Y σ + k 1 =} e i E σ, θ F, P a.. σ Y σ + F, P a.. O he oher had, akig eeial upremum over σ S 0,T o boh ide o 5.36, we ca deduce rom Lemma 2.1 ha σ 1 =} R e = e up1 =} E e Y σ +, θ e F σ S 0,T = e up σ S 0,T 1 =} E Y σ + σ F = 1 =} R, P a..
5.1 Proo o he Reul i Secio 2 ad 3 21 which implie ha 1 =} R 1 =} e i R, P a.. Takig he eeial iimum o he le-had-ide k over k, oe ca deduce rom Lemma 2.1 ha 1 =} e i k R = e i k 1 =} R 1 =} e i R, k P a.. Leig k, we ee rom Lemma 3.1 2 ha 1 =} V = 1 =} e i R 1 =} e i R = 1 =} V, P a.. Reverig he role o ad, we obai 3.17. Proo o Theorem 3.2: Proo o 1. Sep 1: For ay σ, S 0,T, we deie We ee rom 3.7 ha e i E Y σ + Ψ σ = 1 σ } Y σ +1 σ>} e i E σ F = lim Fix k N. I ligh o 3.9, we ca id a equece e i k k σ e i E Y σ +, θ k F = lim E k By aalogy wih 5.35, we have Y E k P a..; leig, we ee rom 5.38 ha Thereore, Y e i E Y σ + k σ Y σ + F. } σ E Y σ + F, P a.. 5.37 i N k uch ha σ Y σ +, θ k F, P a.. 5.38 σ Y σ +, θ k F Y + kt 5.39 σ σ Y e i E Y σ + k Leig k, we ee rom 5.37 ha which implie ha Y e i E Le S 0,T. I ollow rom 3.16 ha e i E Y σ + 1 Y σ + 1 =} Ψ σ = 1 σ =} Y σ + 1 σ>=} e i σ F Y + kt, σ P a.. F F Y + T, P a.. 5.40 F Y + T, P a.. Y Ψ σ Y + T, P a.. 5.41 E = 1 σ =} Y σ + 1 σ>=} e i E Y σ + Y σ + σ σ F, θ F = 1 =} Ψ σ, P a.. 5.42
Opimal Soppig or Dyamic Covex Rik Meaure 22 Sep 2: Fix σ S 0,T. For ay S 0,T, S,T ad k N, we le i 5.38. The we ca deduce ha Ψ σ 1 σ } Y σ +1 σ>} E k = E k = 1 σ } Y σ +1 σ>} E = E 1 σ } Y σ +1 σ>} E k O he oher had, i hol P a.. ha σ 1 σ>} E k Y σ +, θ k F σ 1 σ>} Y σ + ad ha 1 <σ } E k = E k k } N k be he equece decribed σ Y σ +, θ k F σ E k Y σ +, θ k F F σ Y σ +, θ k F F, P a.. 5.43 = E k, θ k 1 σ>} Y σ + F σ = 1 σ>} E k σ Y σ +, θ k F = E k 1 <σ } Y σ + 1 <σ } Y σ F = 1 <σ } Y σ = 1 <σ } Y σ ;, θ k F σ Y σ +, θ k F σ, θ k F recall he deiiio o he clae P, rom ubecio 1.1. Thereore, 5.43 reduce o σ Ψ σ E 1 σ } Y σ +1 σ>} E k Y σ +, θ k F F, P a.. We obai he rom 5.38, 5.39 ad he Bouded Covergece Theorem, ha σ Ψ σ 1 σ } Y σ +1 σ>} E k Y σ +, θ k = E lim E 1 σ } Y σ +1 σ>} e i E Y σ + k σ, θ k F F F F, P a.. O he oher had, we ca deduce rom 5.37, 5.40 ad he Bouded Covergece Theorem oce agai ha σ Ψ σ lim E 1 σ } Y σ +1 σ>} e i E Y σ +, θ k F k F σ = E 1 σ } Y σ +1 σ>} e i E Y σ + F F = E Ψ σ F, P a.., 5.44 which implie ha Ψ σ } 0,T i a ubmarigale. Thereore Karaza ad Shreve 1991, Propoiio 1.3.14 how ha P he limi Ψ σ,+ = lim Ψσ q exi or ay 0, T = 1 5.45 where q = 2 2 T, ad ha Ψ σ,+ i a RCLL proce. Sep 3: For ay S 0,T ad N, q ake value i a iie e DT = 0, T k2 } k Z T }. Give a λ DT, i hol or ay m ha q mλ = λ ice DT Dm T. I ollow rom 5.45 ha Ψ σ,+ λ = lim m Ψσ q m λ = Ψ σ λ, P a..
5.1 Proo o he Reul i Secio 2 ad 3 23 The oe ca deduce rom 5.42 ha Ψ σ,+ q = λ D T 1 q=λ}ψ σ,+ λ = λ D T 1 q=λ}ψ σ λ = Thu he righ-coiuiy o he proce Ψ σ,+ implie ha λ D T 1 q=λ}ψ σ q = Ψ σ q, P a.. Ψ σ,+ Hece 5.44, 5.41 ad he Bouded Covergece Theorem imply = lim Ψσ,+ q = lim Ψσ q, P a.. 5.46 Ψ σ lim E Ψ σ q F = E Ψ σ,+ F = Ψ σ,+, P a.. 5.47 I he la equaliy we ued he ac ha Ψ σ,+ Browia ilraio F. = lim Ψσ q F, hak o he righ-coiuiy o he Sep 4: Se, S 0,T ad = τ, = τ q, N. Now, le σ S,T. Sice lim τ>q } = 1 τ>} ad τ > } q = q τ }, τ > q } q = τ q }, N, oe ca deduce rom 5.47, 5.46, ad 5.42 ha 1 τ>} Ψ σ 1 τ>} Ψ σ,+ = 1 τ>} lim Ψσ q = lim 1 τ>}ψ σ q τ = lim 1 τ>}ψ σ q = lim 1 τ>q }Ψ σ q = lim 1 τ>q }Ψ σ τ q = 1 τ>} lim Ψσ, P a.. 5.48 For ay N, we ee rom 3.14 ad Lemma 2.1 ha V β = V = e up e i E Y β +, θ F β S,T σ e i E Y σ +, θ F σ = e i E 1 σ }Y +1 σ>} Y σ + F σ = e i 1 σ }Y +1 σ>}e Y σ +, θ F σ = 1 σ }Y +1 σ>}e i E Y σ + F, P a.. Sice τ } = = τ} ad σ > } σ > }, i ollow rom 3.16 ha V 1 σ }Y +1 σ>,τ>}e i E +1 σ>,τ }e i E Y σ + σ Y σ + σ F F = 1 σ }Y +1 σ>,τ>}ψ σ + 1 σ>,τ }Ψ σ, P a..
Opimal Soppig or Dyamic Covex Rik Meaure 24 A, he righ-coiuiy o procee Y, 5.48 a well a Lemma 2.1 how ha lim V 1 σ=} Y +1 σ>,τ>} lim Ψσ + 1 σ>,τ } Ψ σ 1 σ=} Y + 1 σ>} Ψ σ = 1 σ=} Y + 1 σ>} e i E 1 σ=} Y + 1 σ>} E = e i = e i E = e i E Y σ + 1 σ=} Y + 1 σ>} Y σ + Y σ + σ, θ σ σ F, P a.. Y σ + F F σ F Takig he eeial upremum o he righ-had-ide over σ S,T, we obai σ lim V e up e i E Y σ +, θ F = V = V, σ S,T P a.. 5.49 Le u how he revere iequaliy. Fix ad N. For ay k, m N, he predicable proce iduce a probabiliy meaure m,k δ, m θ m,k = 1 < δ, m k by d m,k } 1 A θ, 0, T,k = E = i, T : θ m,k B T dp, where δ, m > m } T, m N. For ay β S,T, uig argume imilar o hoe ha lead o 5.7, we obai β Y β +, θ m,k F Y + m Z E m,k E m,k e i R k Z + Y E,δm, Z,T F R m,k Y + m E,T Z,δ, m The akig he eeial upremum o boh ide over β S,T yiel ha Z m,k Ju a i 5.8, we ca how ha Z + Y E,δm, lim E Z m,k,t Z,δ, m F i deied by β + E Y β + F, P a..,t Z,δm, F Z,T F + R, P a.. 5.50 F = 0, P a.. Thereore, leig k i 5.50, we kow rom Lemma 3.1 2 ha Z V = lim e i R Y E Z k,δm,,t F + R, P a.. 5.51 Z Nex, by aalogy wih 5.10, we have lim E Z m,δm,,t F = 0, P a.. Leig m i 5.51, we obai V R = R,0, P a.. rom 3.3. The he righ-coiuiy o he proce R,0, a well a 3.3, imply ha lim V lim R,0 = R,0 = R, P a..
5.1 Proo o he Reul i Secio 2 ad 3 25 Takig he eeial iimum o R over yiel lim V e i R = V = V, P a.. Thi iequaliy, ogeher wih 5.49, how ha lim V τ q = V τ, P a.. 5.52 Sep 5: Now ix S 0,T. I i clear ha P ad ha θ P 0. For ay 0, T, 3.17 implie ha 1 } V τ = 1 } V τ, P a.., ice } τ = τ }. The we ca deduce rom 3.15, 3, ad 3.14 ha or ay 0, 1 } V τ = 1 } V τ 1 } E V τ τ + r, θr P dr F τ τ = 1 } E V τ F τ = E 1 } V τ F τ E 1 } V τ + 1 >} Y F τ = E E 1 } V τ + Y F τ F 1 } Y = E 1 } V τ + Y F 1 } Y, P a.., } which how ha 1 } V τ + Y i a ubmarigale. Hece i ollow rom Karaza ad Shreve 0,T 1991, Propoiio 1.3.14 ha P he limi V 0, = lim 1 q }V τ q exi or ay 0, T ad ha V 0, i a RCLL proce. Le S 0,T ake value i a iie e 1 < < m }. For ay λ 1 m} ad N, ice = λ } τ q = τ q λ }, oe ca deduce rom 3.17 ha A, 5.52 how 1 =λ }V τ q = 1 =λ }V τ q λ, P a.. = 1, 1 =λ }V 0, = 1 =λ }V 0, λ = 1 λ } lim = λ }V τ q λ = 1 λ } lim = λ }V τ q = 1 } 1 =λ }V τ, P a.. Summig he above expreio over λ, we obai V 0, righ-coiuiy o he proce V 0, ad 5.52 imply = 1 } V τ, P a.. The or ay S 0,T, he V 0, = lim V 0, q = lim 1 q }V τ q = 1 } V τ, P a.., provig 3.18. I paricular, V 0, i a RCLL modiicaio o he proce 1 } V τ } 0,T. Proo o Theorem 3.2: Proo o 2. Propoiio 3.2 ad 3.18 imply ha V 0, τ = V τ = Y τ, P a.. Hece we ca deduce rom he righ-coiuiy o procee V 0, ad Y ha τ V i 3.19 i a oppig ime belogig o S,τ ad ha Y τv = V 0, τ V = V τ V, P a..,
Opimal Soppig or Dyamic Covex Rik Meaure 26 where he ecod equaliy i due o 3.18. The i ollow rom 3.15 ha or ay τv V E V τ V + τv F = E Y τv + F, P a.. Takig he eeial iimum o he righ-had-ide over yiel ha τv V e i E Y τv +, θ F e up e i E Y +, θ F = V = V, P a.., S,T rom which he claim ollow. 5.2 Proo o he Reul i Secio 4 Proo o Theorem 4.1: I i eay o ee rom i ha Y σ = V σ = R σ, P a.. 5.53 which ogeher wih ii ad iii how ha or ay 0 E Y σ = E V σ = V 0 = V 0 E V σ = E Y σ. Thu he ecod iequaliy i 4.1 hol or, σ. Now we how ha, σ aiie he ir iequaliy i 4.1 i hree ep: Whe S 0,σ, propery iii ad 5.53 imply ha V = E V σ F = E Y E Y + R σ + σ Y Takig he expecaio E o boh ide yiel ha E Y E Y σ. Whe S σ,t, i ollow rom 5.53 ha E Y σ Fσ = E + E σ 0 σ F, P a.. 5.54 = E 0 Y σ. For a geeral oppig ime S 0,T, le u deie 1 = σ S 0,σ ad 2 = σ S σ,t. Sice σ } F σ = F 1, oe ca deduce rom 5.54 ha E Y = E E 1 σ }Y 1 + 1 >σ }Y Fσ 2 = E 1 σ }Y 1 + 1 >σ }E Y Fσ 2 σ E 1 σ }Y 1 + 1 >σ } R σ + 0 = E 1 σ }Y 1 + 1 >σ }Yσ = E 1 σ }Y 1 + 1 >σ }E Y σ F1 E 1 σ }E Y σ F1 + 1 >σ }E Y σ F1 = E Y σ. Proo o Lemma 4.1: Fix 0, T. For ay S,T, we ee rom 4.5 ha Γ = Γ +, + K K Z db,, P a..
Reerece 27 Applyig E, F o boh ide, we obai Γ = E, E, Γ + Y +, θ, + K K F, θ, 5.55 F, P a.. 5.56 Le σ = i, T : Γ = Y } S,T. The la-o codiio aiied by Γ, Z, K, ad he coiuiy o K, imply ha 0 = 1 e d K Γ>Y } =,σ d K = lim K K = K σ,σ րσ K, P a.. Hece, akig = σ i 5.55, we obai he P a.. propery Γ = E, which, ogeher wih 5.56 ad 3.3, how ha Γ = e up E, Y + S,T, θ, F Y σ + σ = R, = R,,0, P a.., θ, F The he righ-coiuiy o he procee Γ ad R,,0 implie 4.6. Proo o Theorem 4.2 : We hall how ha, τ 0 aiie codiio i-iii o Theorem 4.1: 1 I ollow eaily rom Propoiio 3.1 ha Y τ 0 = R,0 τ 0 = R τ 0, P a.. 2 For ay k N ad k 0, we ca deduce rom 4.9, he righ-coiuiy o procee R,0 ad Γ, a well a 4.8 ha P a.. R,0 = Γ R,0, 0, T. I paricular, we have Y τ 0 R,0 τ 0 = R,0 τ 0 = Y τ 0, P a.. Hece Y τ 0 = R,0, P a.., which implie τ 0 urher ha τ 0 τ 0, P a.. Takig he eeial iimum o righ-had-ide over k 0 ad leig k, we deduce ha, i he oaio o 3.11, we have τ 0 lim e i τ 0 = τ0, P a.. The 3.15 how V 0 E V τ 0 or ay 0. 3 For ay S 0,τ 0, ad ice τ 0 τ hol P a.., oe ca deduce rom 4.9 ad 3.4 ha V = R + = E 0 R τ 0 +, θ = E τ 0 0 R τ 0 +, θ F = E τ 0 k 0 F + 0, θ V τ 0 F, P a.. Reerece E. Bayrakar ad S. Yao. Opimal oppig or oliear expecaio. Techical repor, Uiveriy o Michiga, 2009. Available a hp://arxiv.org/ab/0905.3601. V. E. Beeš. Exiece o opimal raegie baed o peciied iormaio, or a cla o ochaic deciio problem. SIAM J. Corol, 8:179 188, 1970. ISSN 0363-0129. J. Bio-Nadal. Time coie dyamic rik procee. Sochaic Proce. Appl., 1192:633 654, 2009. ISSN 0304-4149.
Opimal Soppig or Dyamic Covex Rik Meaure 28 P. Cheridio, F. Delbae, ad M. Kupper. Dyamic moeary rik meaure or bouded dicree-ime procee. Elecro. J. Probab., 11:o. 3, 57 106 elecroic, 2006. ISSN 1083-6489. F. Delbae. The rucure o m-able e ad i paricular o he e o rik eural meaure. I I memoriam Paul-Adré Meyer: Sémiaire de Probabilié XXXIX, volume 1874 o Lecure Noe i Mah., page 215 258. Spriger, Berli, 2006. F. Delbae, S. Peg, ad E. Roazza-Giai. Repreeaio o he pealy erm o dyamic cocave uiliie. Techical repor, ETH, 2009. Available a hp://arxiv.org/ab/0802.1121. N. El Karoui. Le apec probabilie du corôle ochaique. I Nih Sai Flour Probabiliy Summer School 1979 Sai Flour, 1979, volume 876 o Lecure Noe i Mah., page 73 238. Spriger, Berli, 1981. N. El Karoui, C. Kapoudjia, E. Pardoux, S. Peg, ad M. C. ueez. Releced oluio o backward SDE, ad relaed obacle problem or PDE. A. Probab., 252:702 737, 1997. ISSN 0091-1798. R. J. Ellio. Sochaic calculu ad applicaio, volume 18 o Applicaio o Mahemaic New York. Spriger- Verlag, New York, 1982. ISBN 0-387-90763-7. H. Föllmer ad I. Peer. Covex rik meaure ad he dyamic o heir pealy ucio. Sai. Deciio, 241:61 96, 2006. ISSN 0721-2631. H. Föllmer ad A. Schied. Sochaic iace, volume 27 o de Gruyer Sudie i Mahemaic. Waler de Gruyer & Co., Berli, exeded ediio, 2004. ISBN 3-11-018346-3. A iroducio i dicree ime. I. Karaza ad S. E. Shreve. Browia moio ad ochaic calculu, volume 113 o Graduae Tex i Mahemaic. Spriger-Verlag, New York, ecod ediio, 1991. ISBN 0-387-97655-8. I. Karaza ad S. E. Shreve. Meho o mahemaical iace, volume 39 o Applicaio o Mahemaic New York. Spriger-Verlag, New York, 1998. ISBN 0-387-94839-2. I. Karaza ad I. M. Zamirecu. Marigale approach o ochaic corol wih dicreioary oppig. Appl. Mah. Opim., 532:163 184, 2006. ISSN 0095-4616. I. Karaza ad I. M. Zamirecu. Marigale approach o ochaic diereial game o corol ad oppig. A. Probab., 364:1495 1527, 2008. ISSN 0091-1798. N. Kazamaki. Coiuou expoeial marigale ad BMO, volume 1579 o Lecure Noe i Mahemaic. Spriger-Verlag, Berli, 1994. ISBN 3-540-58042-5. S. Klöppel ad M. Schweizer. Dyamic idierece valuaio via covex rik meaure. Mah. Fiace, 174: 599 627, 2007. ISSN 0960-1627. M. Kobylaki, J. P. Lepelier, M. C. ueez, ad S. Torre. Releced BSDE wih uperliear quadraic coeicie. Probab. Mah. Sai., 221, Aca Uiv. Wrailav. No. 2409:51 83, 2002. ISSN 0208-4147. J.-P. Lepelier. O a geeral zero-um ochaic game wih oppig raegy or oe player ad coiuou raegy or he oher. Probab. Mah. Sai., 61:43 50, 1985. ISSN 0208-4147. J. Neveu. Dicree-parameer marigale. Norh-Hollad Publihig Co., Amerdam, revied ediio, 1975. Tralaed rom he Frech by T. P. Speed, Norh-Hollad Mahemaical Library, Vol. 10. R. T. Rockaellar. Covex aalyi. Priceo Ladmark i Mahemaic. Priceo Uiveriy Pre, Priceo, NJ, 1997. ISBN 0-691-01586-4. Repri o he 1970 origial, Priceo Paperback. D. William. Probabiliy wih marigale. Cambridge Mahemaical Texbook. Cambridge Uiveriy Pre, Cambridge, 1991. ISBN 0-521-40455-X; 0-521-40605-6.