Electronic Analysis of CMOS Logic Gates

Σχετικά έγγραφα
EE434 ASIC & Digital Systems Arithmetic Circuits

What happens when two or more waves overlap in a certain region of space at the same time?

Μικροηλεκτρονική - VLSI

A. Two Planes Waves, Same Frequency Visible light

Access Control Encryption Enforcing Information Flow with Cryptography

Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2018

ΗΜΥ 307 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Εαρινό Εξάμηνο 2017

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

Μικροηλεκτρονική - VLSI

IXBH42N170 IXBT42N170

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc)

NPN Silicon RF Transistor BFQ 74

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Μικροηλεκτρονική - VLSI

Series AM2DZ 2 Watt DC-DC Converter

Συστήματα Αυτομάτου Ελέγχου Ι

Microelectronic Circuit Design Fourth Edition - Part II Solutions to Exercises

ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΚΑΙ ΣΧΕΔΙΑΣΜΟΙ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I

Prepolarized Microphones-Free Field

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

PETROSKILLS COPYRIGHT

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

Μαθηματικοί Διαγωνισμοί για Μαθητές Λυκείου Α ΤΕΥΧΟΣ ΑΛΓΕΒΡΑ

Τρίτο πακέτο ασκήσεων

NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

RSDW08 & RDDW08 series

Επίλυση Δυναμικών Εξισώσεων

Πίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.

SMD Power Inductor-VLH

Λύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού.

B37631 K K 0 60


Από τις (1) και (2) έχουμε:

What we should learn. Συστήματα VLSI 2

Μικροηλεκτρονική - VLSI

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής

15W DIN Rail Type DC-DC Converter. DDR-15 s e r i e s. File Name:DDR-15-SPEC

Μελέτη συστήματος συμβολομετρικής ραδιομετρίας με δυνατότητα εστίασης σε άπειρη και πεπερασμένη απόσταση

Συστήματα Αυτομάτου Ελέγχου Ι

SMD Power Inductor-VLH

TRC ELECTRONICS, INC LED Driver Constant Voltage 45W MEAN WELL IDLV-45 Series

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.

15W DIN Rail Type DC-DC Converter. DDR-15 series. File Name:DDR-15-SPEC

Απόκριση σε Αρμονική Διέγερση

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

5V/9V/12V Output QC2.0+USB Auto Detect+USB-PD Type-C Application Report ACT4529

Λύσεις. ΘΕΜΑ Α A1. Απόδειξη σελ. 144 Α2. Α. ii. B. iv A3. Ορισμός σελ. 162 Α4. i. Λ ii. Σ iii. Λ iv. Σ v. Σ ΘΕΜΑ Β Β1. Διακρίνουμε τις περιπτώσεις:

Meta-Learning and Universality

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις

SPBW06 & DPBW06 series

Aluminum Electrolytic Capacitors

MZ0.5GF SERIES ZENER DIODE TECHHICAL SPECIFICATION FEATURES. ABSOLUTE MAXIMUM RATINGE: (Ta=25 ) Parameter Symbols Limits Unit

LR(-A) Series Metal Alloy Low-Resistance Resistor

V DS T jmax G PG-TO262 G FP SP T jmax. Gate source voltage static V GS V GS ± ± Power dissipation, T C = 25 C P tot G-TO220 C3 T C V DD

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Συνδιαστικά Λογικά Κυκλώματα / Ολοκληρωμένα Κυκλώματα 1

Aluminum Electrolytic Capacitors (Large Can Type)

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Capacitors - Capacitance, Charge and Potential Difference

65W PWM Output LED Driver. IDPV-65 series. File Name:IDPV-65-SPEC

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

IDPV-45 series. 45W PWM Output LED Driver. File Name:IDPV-45-SPEC S&E

Theoretical Question 2: Strong Resistive Electromagnets SOLUTION

+85 C General Purpose Radial Lead Aluminum Electrolytic Capacitors

ΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

LR Series Metal Alloy Low-Resistance Resistor

516(5,(6. LOW NOISE 150mA LDO REGULATOR

Lecture Stage Frequency Response (1/10/02) Page 210-1

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam

555 TIMER APPLICATIONS AND VOLTAGE REGULATORS

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας

Χρονική ανάλυση και χρονισμός ψηφιακών κυκλωμάτων

[1] P Q. Fig. 3.1

± 20% (rated cap. [µf] ) 1000 Leakage Current: For capacitance values > 33000µF, add the value of:

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

Multilayer Chip Capacitors C0G/NP0/CH

LR Series Metal Alloy Low-Resistance Resistor

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

PI5A121C SPST Wide Bandwidth Analog Switch

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

Sunlord Specifications subject to change without notice. Please check our website for latest information. Revised 2018/04/15

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ

ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής Α εξάμηνο. Αριστείδης Δοκουμετζίδης. Ύλη. Διανύσματα. Πίνακες Ορίζουσες - Συστήματα. Διαφορικές εξισώσεις

Μοντελοποίηση Μηχανικών - Ηλεκτρικών - Υδραυλικών Θερμικών Συστημάτων

Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων

Monolithic Crystal Filters (M.C.F.)

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

Συστήματα Αυτομάτου Ελέγχου Ι

IDPV-25 series. 25W PWM Output LED Driver. File Name:IDPV-25-SPEC S&E

Transcript:

Electronic Analysis of CMOS Logic Gates Dae Hyun Kim EECS Washington State University

References John P. Uyemura, Introduction to VLSI Circuits and Systems, 2002. Chapter 7

Goal Understand how to perform electronic analysis of CMOS logic gates. DC characteristics Noise margin Switching characteristics Power

Analysis DC Analysis Vin vs. Vout = Voltage Transfer Characteristic (VTC) Transient (switching) analysis Vin(t) vs. Vout(t) 0 0 tt

CMOS Inverter DC Characteristics Logic swing When = 0 = VV DDDD Output high voltage VV OOOO = VV DDDD When = VV DDDD = 0 Output low voltage VV OOLL = 0 Logic swing VV LL = VV OOOO VV OOOO = VV DDDD

CMOS Inverter DC Characteristics Region A (0 VV TTnn ) Mn Mp VV GGGGGG = 0 = VV GGGGGG < VV TTnn : Cut-off Mn Mp VV SSSSSS = VV DDDD C VV SSDDpp = VV DDDD VV SSSSSS VV TTTT VV SSSSSS = VV TTTT > 0 VV SSSSSS VV TTTT > VV SSSSSS : Linear A B D E VV DDDD

CMOS Inverter DC Characteristics Region B (VV TTTT < VV DDDD 2 ) Mn VV GGGGGG VV TTTT = VV TTTT > 0 VV DDDDDD = VV GGGGGG VV TTTT VV DDDDDD = VV TTTT < 0 Mp Mn VV GGGGGG VV TTTT < VV DDDDnn : Saturation C Mp VV SSSSSS = VV DDDD VV SSDDpp = VV DDDD A B D E VV SSSSSS VV TTTT VV SSSSSS = VV TTTT > 0 VV SSSSSS VV TTTT > VV SSSSSS : Linear = VV TTTT + ( VV TTTT ) 2 2 VV DDDD 2 VV TTTT VV DDDD ( VV TTTT ) 2

CMOS Inverter DC Characteristics Region C ( VV DDDD 2 ) Mn Mp VV GGGGGG VV TTTT VV DDDDDD = VV TTTT < 0 VV GGGGGG VV TTTT < VV DDDDnn : Saturation VV SSSSSS VV TTTT VV SSSSSS = VV TTTT < 0 C Mp Mn VV SSSSSS VV TTTT < VV SSSSSS : Saturation II DDDDDD = 2 (VV MM VV TTTT ) 2 II SSDDpp = 2 (VV DDDD VV MM VV TTpp ) 2 Solve II DDDDDD = II SSSSSS. VV MM A B D E VV MM = VV DDDD VV TTTT +VV TTTT 1+ ββpp ββnn ββpp VV MM

CMOS Inverter DC Characteristics Region D ( VV DDDD 2 < VV DDDD VV TTTT ) Mn VV GGGGGG VV TTTT = VV TTTT > 0 VV DDDDDD = VV GGGGGG VV TTTT VV DDDDDD = VV TTTT > 0 Mp Mn VV GGGGGG VV TTTT > VV DDDDnn : Linear C Mp VV SSSSSS = VV DDDD VV SSDDpp = VV DDDD A B D E VV SSSSSS VV TTTT VV SSSSSS = VV TTTT < 0 VV SSSSSS VV TTTT < VV SSSSSS : Saturation = VV TTTT ( VV TTTT ) 2 ( VV DDDD VV TTTT ) 2

CMOS Inverter DC Characteristics Region E (VV DDDD VV TTTT VV DDDD ) Mn Mp VV GGGGGG VV TTTT = VV TTTT > 0 Mp VV DDDDDD = VV GGGGGG VV TTTT VV DDDDDD = VV TTTT > 0 VV GGGGGG VV TTTT > VV DDDDDD : Linear C Mn VV SSSSSS = VV DDDD VV SSGGpp VV TTTT < 0: Cut-off 0 A B D E

CMOS Inverter DC Characteristics Voltage noise margin VVVVVV HH = VV OOOO VV IIII VVVVVV LL = VV IIII VV OOOO VV IIII : Min. high input voltage VV IILL : Max. low input voltage VV OOHH : Min. high output voltage VV OOLL : Max. low output voltage VV OOOO slope = -1 VV OOOO VV IIII VV IIII

CMOS Inverter Switching Characteristics tt rr : rise time tt ff : fall time CC oooooo : total output capacitance CC oooooo = CC FFFFFF + CC LL CC FFFFFF : FET capacitance CC FFFFFF = CC DDDD + CC DDpp VV DDDD CC LL» CC DDDD = CC GGGGnn + CC DDDDnn» CC DDpp = CC GGGGpp + CC DDDDpp CC LL : load capacitance 0 tt VV DDDD tt ff tt rr 0 tt

CMOS Inverter Switching Characteristics Fall time From = 0.9VV DDDD to = 0.1VV DDDD Fall time calculation Discharging (Natural response) ii ii = CC oooooo dd RR nn = dddd 1 = RR nn (VV DDDD VV TTnn ) tt = VV DDDD ee tt ττnn ττ nn = RR nn CC oooooo (time constant) RR nn CC oooooo tt = ττ nn ln VV DDDD tt ff = tt = 0.1VV DDDD tt = 0.9VV DDDD = ττ nn ln 10 ln 10 tt ff 2.2ττ nn 9 = ττ nn ln 9 tt HHHH = tt ff tt HHHH : high-to-low time

CMOS Inverter Switching Characteristics Rise time From = 0.1VV DDDD to = 0.9VV DDDD Rise time calculation Charging (Step response) RR pp ii ii = CC oooooo dd dddd = VV DDDD RR pp CC oooooo RR pp = 1 (VV DDDD VV TTpp ) tt = VV DDDD 1 ee tt ττpp ττ pp = RR pp CC oooooo (time constant) tt = ττ pp ln VV DDDD VV DDDD tt rr = tt = 0.9VV DDDD tt = 0.1VV DDDD = ττ pp ln 10 ln 10 tt rr 2.2ττ pp 9 = ττ pp ln 9 tt LLLL = tt rr tt LLHH : low-to-high time

CMOS Inverter Switching Characteristics Transient simulation of a CMOS inverter

CMOS Inverter Switching Characteristics Maximum signal frequency The largest frequency 1 ff mmmmmm = = 1 = tt HHHH +tt LLHH tt ff +tt rr Example RR nn = RR pp = 500Ω 1 2.2 (ττ nn +ττ pp ) CC oooooo = 10ffff VV DDDD ff mmmmmm = 1 2.2(5pppp+5pppp) 45GGGGGG Propagation delay Delay time from input to output 0 tt tt pp = tt pppp+tt pprr 2 tt pppp : output fall time (VV DDDD VV DDDD 2 ) tt pppp = ττ nn ln 2 tt pprr : output rise time (0 VV DDDD 2 ) tt pprr = ττ pp ln 2 VV DDDD VV DDDD 2 0 tt pppp tt pppp tt

CMOS Inverter General Analysis Output capacitance CC oooooo = CC FFFFFF + CC LL Rise time tt rr = ττ pp ln9 2.2RR pp CC FFFFFF + CC LL = tt rrr + 2.2RR pp CC LL RR pp = Fall time 1 (VV DDDD VV TTTT ) tt ff = ττ nn ln9 2.2RR nn (CC FFFFFF + CC LL ) = tt ff0 + 2.2RR nn CC LL RR nn = Speed vs. area 1 (VV DDDD VV TTTT ) ββ RR tt Area goes up, but the logic is faster.

CMOS Inverter Power Dissipation Power dissipation calculation PP = VV DDDD II DDDD PP = PP DDDD + PP dddddd PP DDDD : DC power Region A, E: II DDDD = 0 Actually, there is leakage current II DDDDDD.» II DDDDDD : quiescent leakage current II DDDD VV DDDD CMOS circuit PP DDDD = VV DDDD II DDDDDD PP dddddd : Dynamic power Charging/Discharging QQ ee = CC oooooo VV DDDD C PP = VV DDDD II DDDD = VV DDDD QQ ee TT = ffcc oooooo VV DDDD 2 A B D E PP = VV DDDD II DDDDDD + ffcc oooooo VV DDDD 2

NAND2 DC Characteristics VV TTTT,BB goes up. VV BB VV AA VV AA VV BB (i) 0 VV DDDD 0 VV DDDD (ii) VV DDDD 0 VV DDDD iii ii i (iii) 0 VV DDDD VV DDDD

NAND2 DC Characteristics VV MM ( = = VV MM ) nfet network: 2 pfet network: 2 Mn (VV AA ): VV GGGGGG VV TTTT VV DDDDDD = VV MM VV TTTT < VV MM < 0: Saturation Mn (VV BB ): VV GGGGGG VV TTTT VV DDDDDD = VV MM VV SS VV TTTT VV MM VV SS < 0: Saturation Mp: VV SSSSSS VV TTTT VV SSSSSS = VV DDDD VV MM VV TTTT VV DDDD VV MM < 0: Saturation II DDDDDD = ( 2 ) 2 (VV MM VV TTTT ) 2 II SSSSSS = (2) (VV 2 DDDD VV MM VV TTTT ) 2 Solve II DDDDDD = II SSSSSS. VV MM = VV DDDD VV TTTT + 1 2 VV TTTT For NANDk 1+ 1 2 ββnn ββpp ββnn ββpp VV BB VV MM = VV DDDD VV TTTT + 1 kk VV TTTT 1+ 1 kk ββpp VV AA

NOR2 DC Characteristics VV TTTT,BB goes up. VV AA VV BB VV AA VV BB (i) 0 VV DDDD 0 VV DDDD (ii) 0 0 VV DDDD (iii) 0 VV DDDD 0 i ii iii

NOR2 DC Characteristics VV MM ( = = VV MM ) nfet network: 2 pfet network: 2 Mn: VV GGGGGG VV TTTT VV DDDDDD = VV MM VV TTTT VV MM < 0: Saturation Mp (VV AA ): VV SSSSSS VV TTTT VV SSSSSS = VV DDDD VV MM VV TTTT VV DDDD VV MM < 0: Saturation Mp (VV BB ): VV SSSSSS VV TTTT VV SSSSSS = VV SS VV MM VV TTTT VV SS VV MM < 0: Saturation II DDDDDD = 2 2 (VV MM VV TTTT ) 2 II SSSSSS = (ββpp 2 ) (VV 2 DDDD VV MM VV TTTT ) 2 Solve II DDDDDD = II SSSSSS. VV MM = VV DDDD VV TTTT +2VV TTTT For NORk 1+2 ββpp ββnn ββpp VV AA VV MM = VV DDDD VV TTTT +kkvv TTTT 1+kk ββpp VV BB

Elmore Delay How to estimate delay in general RC networks. How to Start at the target sink node. Traverse the RC network toward the source. Whenever there is a resistor, multiply its resistance and its downstream capacitance and add it to the total delay. For two-pin nets RR oooooo ii RR 4 RR 1 RR 2 RR 3 RR... nn 2 RR nn 1 RR nn CC 1 CC 2 CC 3 CC nn 2 CC nn 1 CC nn CC LL ττ = RR nn CC nn + CC LL + RR nn 1 CC nn 1 + CC nn + CC LL + RR nn 2 CC nn 2 + CC nn 1 + CC nn + CC LL + + RR 3 CC 3 + + CC nn + CC LL + RR 2 CC 2 + + CC nn + CC LL + RR 1 CC 1 + + CC nn + CC LL + RR oooooo (CC 1 + + CC nn + CC LL )

Elmore Delay How to estimate delay in general RC networks. For multi-pin nets RR oooooo ii RR 4 RR 1 RR 2 RR 3 RR... nn 2 RR nn 1 RR nn o CC 1 CC 2 CC 3 CC nn 2 CC nn 1 CC nn CC LLL RR aa RR bb o CC aa CC bb CC LLL ττ o = RR nn CC nn + CC LLL + RR nn 1 CC nn 1 + CC nn + CC LL1 + RR nn 2 CC nn 2 + CC nn 1 + CC nn + CC LL1 + CC aa + CC bb + CC LLL + + RR 3 CC 3 + + CC nn + CC LLL + CC aa + CC bb + CC LLL + RR 2 CC 2 + + CC nn + CC LL1 + +CC aa + CC bb + CC LLL + RR 1 CC 1 + + CC nn + CC LL1 + CC aa + CC bb + CC LLL + RR oooooo (CC 1 + + CC nn + CC LL1 + +CC aa + CC bb + CC LLL )

NAND2 Switching Characteristics tt rr : rise time tt ff : fall time CC oooooo : total output capacitance CC oooooo = CC FFFFFF + CC LL CC FFFFFF : FET capacitance CC FFFFFF = CC DDDD + 2CC DDpp VV BB» CC DDDD = CC GGGGnn + CC DDDDnn» CC DDpp = CC GGGGpp + CC DDDDpp CC LL : load capacitance CC xx : parasitic capacitance VV AA CC xx

NAND2 Switching Characteristics Rise time If AAAA: 11 00 (best case) tt = VV DDDD 1 ee tt ττpp ττ pp = RR pp 2 CC oooooo VV BB tt rr 2.2ττ pp VV AA CC xx If AAAA: 11 10 or AAAA: 11 01 (worst case) tt = VV DDDD 1 ee tt ττpp ττ pp = RR pp CC oooooo tt rr 2.2ττ pp tt rr = 2.2RR pp CC FFFFFF + CC LL

NAND2 Switching Characteristics Fall time If AAAA: 00 11 or AAAA: 10 11 (best case) tt = VV DDDD ee tt ττnn ττ nn = 2RR nn CC oooooo tt ff 2.2ττ nn VV BB If AAAA: 01 11 (worst case) VV AA CC xx tt = VV DDDD ee tt ττnn ττ nn = 2RR nn CC oooooo + RR nn CC xx tt ff 2.2ττ nn tt ff = 2.2 2RR nn CC FFFFFF + CC LL + 2.2RR nn CC xx

NOR2 Switching Characteristics tt rr : rise time tt ff : fall time CC oooooo : total output capacitance CC oooooo = CC FFFFFF + CC LL CC FFFFFF : FET capacitance CC FFFFFF = 2CC DDDD + CC DDpp» CC DDDD = CC GGGGnn + CC DDDDnn» CC DDpp = CC GGGGpp + CC DDDDpp CC LL : load capacitance CC xx : parasitic capacitance VV AA VV BB CC yy

NOR2 Switching Characteristics Fall time If AAAA: 00 11 (best case) tt = VV DDDD ee tt ττnn ττ nn = RR nn 2 CC oooooo tt ff 2.2ττ nn VV AA CC yy If AAAA: 00 10 or AAAA: 00 01 (worst case) tt = VV DDDD ee tt ττnn VV BB ττ nn = RR nn CC oooooo tt ff 2.2ττ nn tt ff = 2.2RR nn CC oooooo

NOR2 Switching Characteristics Rise time If AAAA: 01 00 (best case) tt = VV DDDD 1 ee tt ττpp ττ pp = 2RR pp CC oooooo tt rr 2.2ττ pp VV AA CC yy If AAAA: 10 00 or AAAA: 11 00 (worst case) tt = VV DDDD 1 ee tt ττpp VV BB ττ pp = 2RR pp CC oooooo + RR pp CC yy tt rr 2.2ττ pp tt rr = 2.2[2RR pp CC FFFFFF + CC LL ] + 2.2RR pp CC yy

Power Dissipation Dynamic power PP dddddd = ααααααvv DDDD 2 αα: switching activity ff: clock frequency CC: capacitance More accurate formula PP dddddd = ffvv DDDD 2 αα ii CC ii nn ii=1

Transmission Gates and Pass Transistors Transmission gates Approximation ss RR TTTT = max (RR nn, RR pp ) CC iiii = CC nnnnnnnn,ssssssssssss + CC pppppppp,dddddddddd ss Pass transistors Rise time tt rr = 18RR nn CC oooooo Fall time tt ff = 2.94RR nn CC oooooo gg