Single-value extension property for anti-diagonal operator matrices and their square

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

High order interpolation function for surface contact problem

A summation formula ramified with hypergeometric function and involving recurrence relation

On the Galois Group of Linear Difference-Differential Equations

Prey-Taxis Holling-Tanner

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

ER-Tree (Extended R*-Tree)

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

The q-commutators of braided groups

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Quick algorithm f or computing core attribute

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

H ΕΠΙ ΡΑΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΤΗΝ ΑΝΑΛΥΤΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ TΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΩΝ ΒΙΟΕΠΙΣΤΗΜΩΝ

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

Homomorphism in Intuitionistic Fuzzy Automata

Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Α Ρ Ι Θ Μ Ο Σ : 6.913

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Congruence Classes of Invertible Matrices of Order 3 over F 2

Probabilistic Approach to Robust Optimization

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Markov chains model reduction

Το φασματικό Θεώρημα

Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

The ε-pseudospectrum of a Matrix

Approximation Expressions for the Temperature Integral

Το φασματικό Θεώρημα

Θεωρία Τελεστών Σημειώσεις Αριστείδης Κατάβο λος1 Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών telmasu, 11 Ιουνίου 2016

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

Discriminantal arrangement

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Electronic Supplementary Information

The Properties of Fuzzy Relations

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

GAUGES OF BAIRE CLASS ONE FUNCTIONS

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

3 : 373 R-LSR-TLS TSVD Tikhonov Tikhonov Ax b, A R m n,b R n,m n (1) min Ax-b Lx δ (5),A ;b ;x,δ ;L 1 b [9] A Lagrange min Ax-b = Δb Ax=b+Δb () L ( x,

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

A General Note on δ-quasi Monotone and Increasing Sequence

Adaptive grouping difference variation wolf pack algorithm

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Resilient static output feedback robust H control for controlled positive systems

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Μοντέρνα Θεωρία Ελέγχου

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

L p approach to free boundary problems of the Navier-Stokes equation

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Arbitrage Analysis of Futures Market with Frictions

On Pseudo-Differential Operator Associated with Bessel Operator

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach. A. Kατάβολος

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

arxiv:math/ v1 [math.rt] 30 Oct 2006

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

a~ 1.1 [4] x, y X. x + λy x, λ C, Ifi x 4 y Φ Birkhoff MIß, a~ 1.2 [8] ε [0, 1), x, y X. x + λy 2 x 2 2ε x λy, λ C, Ifi x 4

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Research on real-time inverse kinematics algorithms for 6R robots

Κβαντικη Θεωρια και Υπολογιστες

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

A :H. S B(H) unilateral shift : Se n = e n+1, n Z + και U B(K) bilateral shift : Ue n = e n+1, n Z. X 0 0 S Y S. U m = B = D A.

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

2 3x 5x x

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Transcript:

1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property for anti-diagonal operator matrices and their square Abstract: CUI Miao-miao, CAO Xiao-hong Department of Mathematics and Information Science, Shaanxi Normal University, Xi an 71119, China In this paper, we mainly proved the equivalence of the perturbation of single-value extension property for anti-diagonal operator matrices and their square on an infinite dimensional separable Hilbert space. Key words: single-value extension property; compact perturbations; anti-diagonal operator matrices 1, H Hilbert. BH H, KH H. T BH, NT RT T. T Fredholm, RT nt nt, nt dim NT, nt dim NT T T. T indt nt nt. Wolf σ SF T σ SF T {λ C : T λi Fredholm }. : 214-1 : 114712, 1137112; GK21317 :,,,. E-mail address: cuiye@snnu.edu.cn. :,,,,. E-mail address: xiaohongcao@snnu.edu.cn.

96 215 ρ SF TC\σ SF T T Fredholm. ρ a T{λ ρ SF T : nt λi}, ρ SF+ T{λ ρ SF T : nt λi < }. T Fredholm, < indt < +, T Fredholm ; indt T Weyl. T asct NT n NT n+1,, asct ; T dest RT n RT n+1,, dest. T Fredholm, T Browder. σ e T, Weyl σ w T σ e T {λ C : T λi Fredholm }, σ w T {λ C : T λi Weyl }. σ T {λ isoσt : T λi Browder }. 2, SVEP, T T SVEP. N. Dunford [1-3], Fredholm., [4-5].,, [6-8] [9].,., T intσ p T, Bishop s β, δ [7], σ p T T.. [1-11],. 2 2.. 2.1 T BH H,. 1 AB ; 2 BA ; 3 T 2. 1 2. AB intσ SF AB ρ SF AB [4], 1.3. 1 intσ SF BA., B δ µ σ SF BA. intσ SF AB, µ 1 B δ µ AB µ 1 I Fredholm. ρ SF AB, AB µ 1 I Browder, µ 2 µ 2 B δ µ AB µ 2 I, BA µ 2 I,. 2 ρ SF BA. : ρ SF BA ρba σ BA. ρ SF BA ρba σ BA. µ ρ SF BA, µ / ρba, µ ρ SF BA σba, B δ µ µ B δ µ BA µi Fredholm. intσ SF AB, µ 1 B δ µ AB µ 1 I Fredholm. ρ SF AB, AB µ 1 I Browder, µ 2 µ 2 B δ µ AB µ 2 I. ρab ρba, BA µ 2 I, µ σba. BA µ I Fredholm BA µ I n d, µ σba, BA µ I Browder [12], 4.9.

1, : 97 ρ SF AB, ρ SF AB ρab E, E C. ρab ρba, ρ SF AB ρ SF BA. 2 3. BA int σ SF BA ρ SF BA [4], 1.3. 1 intσ SF T 2., B δ µ σ SF T 2. intσ SF BA, µ 1 B δ µ BA µ 1 I Fredholm. ρ SF BA, BA µ 1 I Browder, µ 2 µ 2 B δ µ BA µ 2 I. ρab ρba, AB µ 2 I, T 2 µ 2 I [13], 3.9,. 2 ρ SF T 2. BA, 1 2 AB, intσ SF AB ρ SF AB [4], 1.3. AB SVEP BA SVEP, µ C, indab µi indba µi, ρ SF AB ρ SF+ AB, ρ SF BA ρ SF+ BA [5], 11. ρ SF AB ρ SF BA, ρ SF AB ρ SF+ AB ρab E 1, ρ SF BA ρ SF+ BA ρba E 2, E 1 C, E 2 C. ρab ρba, ρ SF AB ρ SF BA ρ SF T 2 ρ SF AB ρ SF BA. 3 1. T 2, K, intσ SF T 2 intσ SF T 2 + K ρ SF T 2 ρ SF T 2 + K [4], 1.3. 1 intσ SF AB., B δ µ σ SF AB. intσ SF T 2, µ 1 B δ µ T 2 µ 1 I Fredholm. ρ SF T 2, T 2 µ 1 I Browder, µ 2 µ 2 B δ µ T 2 µ 2 I, AB µ 2 I [13], 3.9,. 2 ρ SF AB. ρ SF AB, ρ SF AB Ω. Γ Ω. N Γ σ SF AB, K 1 AB + K 1, N σn σ SF N Γ [14], 2.1. N, Φ C\[σN\σ N], [15, 3.1] K 2 σn + K 2 σn Φ Ω, K2 Ω σn + K 2 \σ w N + K 2. K + K 1, K T 2 + K K AB + K BA N + K2 BA,. intσ SF T 2 + K, µ Ω T 2 + K µi Fredholm. ρ SF T 2 + K, µ µ Ω T 2 + K µ I, AB + K µ I [13], 3.9, N + K 2 µ I. N + K 2 µ I Weyl, N + K 2 µ I,. T, σ ω T σ ω AB σ ω BA, σ ω {σ, σ e, σ w } [13], 3.1 4.3. 2 2 T, Wolf.

98 215 2.2 T BH H, 1 T λi Fredholm, AB λ 2 I BA λ 2 I Fredholm indab λ 2 I indba λ 2 I indt λi; 2 σ SF T σ SF T 2. 1 λ, T 2 A Fredholm, AB BA BA Fredholm, A B Fredholm indab indba. 2 indt indt 2 indab+indba, indab indba indt. λi λ, 1: NT λi NAB λ 2 x I. NT λi, B y x λi λix + Ay Bx λy, AB λ 2 Ix, NAB λ 2 I. y B λx λ 2, x NAB λ 2 x + ABx λi I, T λi, x Bx B NT λi. 2: nab λ 2 I nt λi. x 1, x 2,, x n NAB λ 2 I λx1 λx2 λxn, 1,,, NT λi, Bx 1 Bx 2 Bx n nab λ 2 I nt λi. ξ 1 ξ 2 ξ m,,, NT λi, 1 x 1, x 2,, η 1 η 2 η m x m NAB λ 2 ξi λxi λx1 λx2 I, i 1,, m.,,, η i Bx i Bx 1 Bx 2 λxm. a 1 x 1 +a 2 x 2 + +a m x m, a 1, a 2,, a m C, a 1 Bx 1 + Bx m λx 1 λx 2 a 2 Bx 2 + +a m Bx m a 1 λx 1 +a 2 λx 2 + +a m λx m, a 1 +a 2 + Bx 1 Bx 2 λxm +a m, a 1 a 2 a m, x 1, x 2,, x m NAB λ 2 I Bx m. nab λ 2 I nt λi. 3: RAB λ 2 I. AB λ 2 Ix n yn, T 2 λ 2 x n I y x n y n. T +λi z n, T λiz n n. T λi x y x Fredholm RT λi, T λi, y y y AB λ 2 x λ. RAB λ2 I. : I BA λ 2 I Fredholm nba λ 2 I nt λi, dab λ 2 I dba λ 2 I dt λi. T λi Fredholm, AB λ 2 I BA λ 2 I

1, : 99 Fredholm indab λ 2 I indba λ 2 I indt λi; II T λi Fredholm, AB λ 2 I, BA λ 2 I Fredholm indab λ 2 I indba λ 2 I indt λi. 2 λ / σ SF T 2, T 2 λ 2 I Fredholm, T ± λi Fredholm, λ / σ SF T., λ / σ SF T, 1 AB λ 2 I BA λ 2 I Fredholm, T 2 λ 2 I Fredholm, λ / σ SF T 2. 2.1 2.2. 2.1 T, T 2 T. S1 S 2. : S SVEP, S 1 SVEP. S 3 U C, f 1 : U H S 1 λif 1 λ. fλ f 1 λ, S1 λi S 2 f1 λ S λifλ S 1 λif 1 λ. S 3 λi S SVEP, f, f 1, S 1 SVEP. : 1 intσ SF T., B ε λ σ SF T. Γ B ε λ. Γ σ SF T, N K 1 T + K 1, N σn σ SF N Γ [14], 2.1. N, Φ C\[σN\σ N], [15, 3.1] K 2 σn + K 2 σn Φ Ω, Ω σn + K2 K 2 \σ w N + K 2. K + K 1, T 2 + K T + K 2 N + K2 2 K TK + KT + K 2. T 2, 1 N + K 2 2 SVEP. σn Γ, I λ, λ B ε λ, λ / Γ; II λ, ε / B ε λ, λ λ B ε λ, λ / Γ. λ 1 B ε λ λ 1 / Γ, N λ 1 I, N + λ 1 I, N + K 2 2 λ 2 1I Weyl. N + K 2 2 SVEP, N + K 2 2 λ 2 1I Browder [4], 15, N + K 2 λ 1 I Browder, λ 2 Ω N + K 2 λ 2 I,. 2ρ SF T 2., ρ SF T 2, ρ SF T 2 Ω. Γ N Ω. Γ σ SF T, K 1 T 2 + K 1, N σn σ SF N Γ [14], 2.1. N, Φ C\[σN\σ N], [15, 3.1] K 2 σn + K 2 σn Φ Ω,,

1 215 K 2 Ω σn + K 2 \σ w N + K 2. K + K 1, T 2 + K T + K 2 N + K 2 2, K TK+KT +K 2. T 2, T 2 +K, intσ SF T 2 +K ρ SF T 2 +K [4], 1.3. λ Ω, λ / σ SF T. 2.2 T 2 +K λ 2 I Fredholm, ρ SF T 2 +K, T 2 +K λ 2 I Browder, T +K λ I Browder, ascn +K 2 λ I <. N + K 2 λ I Weyl, N + K 2 λ I Browder. 1 :.. ρ SF T 2. 2.2 ρ SF T 2 [ρ SF T] 2. fx x 2, ρ SF ft ρ SF T 2 [ρ SF T] 2 fρ SF T. ρ SF T 2, A, B C ρ SF T 2 A B, [A B] [A B]. ρ SF T 2 [ρ SF T] 2 ρ SF T f 1 A B, f 1 A B A B f. [f 1 A f 1 B] [f 1 A f 1 B] [f 1 A f 1 B] [f 1 A f 1 B] f 1 A B f 1 A B f 1 [A B A B], ρ SF T. intσ SF T 2., B δ µ σ SF T 2. µ λ 2, 2.2 λ σ SF T. intσ SF T, λ n λ T λ n I, T + λ n I λ 2 n λ 2 [13], 3.1 4.3, T 2 λ 2 n I, µ intσ SF T 2. 2.1 2.1 T, T 2 T. 2.1 : 2.1 AB BA T, A B T. : 1 T A B., Ax 1, x 2, x 3,, x 1, x 2,, Bx 1, x 2, x 3, x 2, x 3, x 4,, ABx 1, x 2, x 3,, x 2, x 3,, BAx 1, x 2, x 3, x 1, x 2, x 3,, : σa σb D, σ SF A σ SF B D AB 2 AB, σt 2 {, 1}. T 2 [4], 1.3, 2.1 T. A B [4], 1.3. 2 A B T., A 1 x 1, x 2, x 3,, x 1, x 2,, A 2 x 1, x 2, x 3, x 2, x 3, x 4,, B 1 x 1, x 2, x 3,, x 1,, x 2,, B 2 x 1, x 2, x 3, x 2, x 4, x 6,,

1, : 11 1 A, B Bl 2 l 2, T Bl 2 l 2 l 2 l 2 A A 2 B1, T. B 2 A1 B 2 A T 2 2 B 1 BA B1 A 2, B 2 A 1 A 2 A1 A 2, B 2 B1 B 2. I I, B A 1 A 2 x 1, x 2, x 3,, x 2, x 3, x 4,, B 1 B 2 x 1, x 2, x 3,, x 2,, x 4,, A 1 B 2 x 1, x 2, x 3,, x 2, x 4, x 6,, A 2 B 1 x 1, x 2, x 3, x 1,, x 2,,, B 1 A 2 x 1, x 2, x 3,, x 2,, x 3,, B 2 A 1 x 1, x 2, x 3, x 1, x 3, x 5,. : 1 σa 1 B 2 D, σt 2 σ SF T 2 D. T 2 [4], 1.3, 2.1 T. 2 σa 1 A 2 σb 1 B 2 {, 1}, σa σb {, 1, 1}, A B [4], 1.3. 2.1 T, A B, T. 2.2 T, 1 A SVEP, B AB BA, BA SVEP. 2 A, B, BK KB K, BA + K SVEP. 1 U C, f : U H BA λifλ, f. B, γ 1, γ 2,, γ k B γ 1 B γ 2 B γ k, k. p j λ λ γ 1 λ γ 2 λ γ j, j 1, 2,, k. : p j Bfλ, j 1, 2,, k. BA λifλ, B γ k Afλ + γ k A λfλ. AB BA, p k BAfλ + γ k A λp k 1 Bfλ, γ k A λp k 1 Bfλ. A SVEP, p k 1 Bfλ. p j Bfλ, j 1, 2,, k, p 1 Bfλ B γ 1 fλ, B γ 1 Afλ. BA λifλ, B γ 1 Afλ + γ 1 A λfλ, γ 1 A λfλ. A SVEP, f. : BA SVEP. 2 BK KB K, U C, f : U H BA + K λifλ, f.

12 215 B, γ 1, γ 2,, γ k B γ 1 B γ 2 B γ k, k. p j λ λ γ 1 λ γ 2 λ γ j, j 1, 2,, k. : p j Bfλ, j 1, 2,, k. BA+K λifλ B γ k Afλ+γ k A+K λfλ, AB BA p k BAfλ+γ k A+K λp k 1 Bfλ, γ k A+K λp k 1 Bfλ. A, p k 1 Bfλ. p j Bfλ, j 1, 2,, k, p 1 Bfλ B γ 1 fλ, B γ 1 Afλ. BA + K λifλ, B γ 1 Afλ + γ 1 A + K λfλ, γ 1 A + K λfλ. A, f. 2.1 2.1, : T, A B T?,. [ ] [ 1 ] DUNFORD N. Spectral theory II [J]. Resolutions of the identity. Pacific J Math, 1952, 24: 559-614. [ 2 ] DUNFORD N. Spectral operators [J]. Pacific J Math, 1954, 43: 321-354. [ 3 ] DUNFORD N. A survey of the theory of spectral operators [J]. Bull Amer Math Soc, 1958, 64: 217-274. [ 4 ] ZHU S, LI CH G. SVEP and compact perturbations [J]. Journal of Mathematical Analysis and Applications, 211, 38: 69-75. [ 5 ] FINCH J K. The single valued extension property on a Banach space [J]. Pacific J Math, 1975, 58: 61-69. [ 6 ] AIENA P. Fredholm and Local Spectral Theory, with Applications to Multipliers [M]. Dordrecht: Kluwer Academic Publishers, 24. [ 7 ] LAURSEN K B, NEUMANN M M. An Introduction to Local Spectral Theorey [M]. London Math Soc Monogr New Ser 2. New York: The Clarendon press, 2. [ 8 ] KIM Y, KO E, LEE J E. Opeators with the single valued extension property [J]. Bull Koerean Math Soc, 26, 43: 59-517. [ 9 ] LI J X. The single valued extension property for operator weighted shifts [J]. Northeast Math J, 1994, 11: 99-13. [1] DUGGAL B P. Upper triangular operator matrices with single-valued extension property [J]. J Math Anal, 29, 349: 85-89. [11] SHI W J, CAO X H. Stability of single-valued extension property for 2 2 upper triangular operator [J]. Journal of University of Chinese Academy of Sciences, 213, 34: 45-453, 484. [12] GRABINER S. Uniform ascent and descent of bounded operators [J]. Math Soc Japan, 1982, 342: 317-337. [13] HARTE R E, LEE W Y, LITTLEJOIN L L. On generalized Riesz points [J]. J Operator Theory, 22, 47: 187-196. [14] JI Y Q. Quasitriangular+small compactstrongly irreducible [J]. Trans Amer Math Soc, 1999, 35111: 4657-4673. [15] HERRERO D A. Economical compact perturbations, II, filling in the holes [J]. J Operator Theory, 1988, 191: 25-42.