Finding Lie Symmetries of PDEs with MATHEMATICA: Applications to Nonlinear Fiber Optics
|
|
- Κλωθώ Μοσχοβάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Geomery Inegrably and Qazaon Jne Fndng Le Symmeres of PDEs wh MTHEMTIC: lcaons o Nonlnear Fber Ocs Vladmr Plov Dearmen of Physcs Techncal Unversy-Varna lgara Ivan Uznov Dearmen of led Physcs Techncal Unversy-Sofa lgara Eddy Chacarov Dearmen of Informacs and Mahemacs Varna Free Unversy lgara
2 Plan of Presenaon. MTHEMTIC ackage for fndng Le symmeres of PDE.. lock-scheme and algorhm.. In and o.. Tracng he evalaon.4. Tral rn. lcaons o nonlnear fber ocs.. Physcal model.. Resls obaned. Conclson
3 F Sysem of PDE ( ) ( n) (... ) k K l ( Δ) k G r Symmery Gro of Δ r { T a Ω R Ω } a MTHEMTIC r Creang Defnng Sysem [ F( z )] ( n) ( n ) for Solvng Defnng Sysem ( ) η η ( ) ξ ξ z ( n) Δ F Solvng he Le Eaon df ξ da dϕ η da ( f ϕ ) f a ( f ϕ ) ϕ a asc Infnesmal Generaors ν ξν ( ) η ( ) ν
4 Le Gro of Symmery Transformaons F G ( ) ( n) (... ) k K l k { T a δ δ } R a ( Δ) Each solon of Δ afer ransformaon of he gro G remans a solon of Δ. f ( ) T a ( ) f If f s a solon of Δ hen f T f s also a solon of Δ. a
5 The sysem of PDE and he Prolonged Sace F () ( n) (... ) k K l k ( Δ) ( ) R (... ) R... ( s )... ; k... ; k... s... s... s z Z R R z n ( ) Z ( n) ( ) ( ) ( n)... Z ( n) h s he n rolongaon of he sace Z Δ F ( n) ( n) ( n) ( n) { z Z F( z ) } Z n The sysem Δ s consdered as a sb-manfold n he rolonged sace Z. Δ F ( )
6 rolongaon of he Infnesmal Generaor h n ( ) n n n n r ς ς K K K L ( ) ( ) s s s D D ξ η ς ( ) ( ) s s s k k k k k D D ξ ς ς K K K n n n D K K K L ( ) ( ) η ξ
7 The Infnesmal Creron and he Defnng Sysem ξ ( ) η ( ) r ( n) ς L K ς K n n K n G s a Le gro of symmery ransformaons of he sysem of PDE Δ wh he nfnesmal generaor. The nfnesmal creron holds. r [ F( z )] ( n) ( n ) for z ( n) Δ F Defnng Sysem
8 F Sysem of PDE ( ) ( n) (... ) k K l ( Δ) k G r Symmery Gro of Δ r { T a Ω R Ω } a MTHEMTIC r Creang Defnng Sysem [ F( z )] ( n) ( n ) for Solvng Defnng Sysem ( ) η η ( ) ξ ξ z ( n) Δ F Solvng he Le Eaon df ξ da dϕ η da ( f ϕ ) f a ( f ϕ ) ϕ a asc Infnesmal Generaors ν ξν ( ) η ( ) ν
9 Daa In M T H E M T I C asc Se Solvers lock Evalen Transformaons lock Creang Defnng Sysem Solvng Procedre leas one eaon has been solved. False Tre Daa O
10 PDE ndvar devar derv { F K F } l { K } { K } { } K s Daa In Daa In s daa abo he consdered PDE.
11 asc Se-U LHS { } F K F l Man InfGen Δ F { ξ ( ) K ξ ( ) K η ( ) K η ( ) } ProlGen n r (InfGen) { ξ ( ) K ξ ( ) K η ( ) K η ( ) } are nknown fncons ha are o be deermned and gven a he ackage o as solons of he defnng sysem.
12 Creang Defnng Sysem Infnesmal Creron Defnng Sysem Defnng Sysem s he maor obec n he rogram. Defnng Sysem s creaed by alyng he nfnesmal creron InfGen (LHS) Man. Defnng Sysem consss of lnear aral dfferenal eaons.
13 Solvng Procedre Transformng Defnng Sysem Solvng Defnng Sysem Solvers lock Evalen Transformaons lock Hns leas one eaon has been solved. False Tre Daa O
14 Evalen Transformaons lock Modle- for addng and sbracng of wo eaons Modle- for dfferenang of he eaons Modle-4 for breakng he eaons no ars The block s oen for addng new modles of evalen ransformaons.
15 Solvers lock Modle- C C solver of Modle- solver of C C y Modle- solver of C y C Modle-4 solver of C y C Modle-5 solver of C y C The block s oen for addng new modles for solvng eaons.
16 ser level commands Ineracve Mode
17
18 Hea Eaon In LeInfGeneraor {[]} {[ ]} { } {} { nfgen nfgen } { nfgen } ] O {nfgen c[] c[4] c[5] c[] nfgen c[4] c[5] - c[6] } {nfgen - c[4] - c[4] - c[4] - c[] [ ] } f { ( ) [ ] - ( ) [ ] } f f
19 Tracng he Evalaon Hea eaon C C y C C C y C C C y C y C
20 Tracng he Evalaon C C C C y C y C Coled Nonlnear Schrödnger Eaons ( h ) ( h ) Lengh of Solved Sysem
21 Tral Rn Hea eaon ( ) ( ) ( ) s an arbrary solon of he Hea Eaon
22 Tral Rn KdV eaon sace ranslaon ( ) f ( ) me ranslaon ( ) f ( ) Gallean boos ( ) f ( ) 4 dlaon ( 4) ( e f e e ) ( ) f s an arbrary solon of he KdV Eaon R s he gro arameer
23 References [] Schwarz F. Comng 4 (985) 9. [] amann G. Mah. Com. Smlaon 48 (998) 5. [] amann G. Le Symmeres of Dfferenal eaons: a MTHEMTIC Program o Deermne Le Symmeres a
24 lcaon o Fber Ocs (hyscal model) Coled Nonlnear Schrödnger Eaons (CNSEs) σ θ θ γ σ θ θ γ ν weak brefrngen fbers wo-mode fbers srong brefrngen fbers Raman gan coeffcen σ γ σ γ σ θ
25 Le Gro nalyss Coled nonlnear Schrödnger eaons ν ( γ ) ( γ ) wo mode γ ocal fber srong brefrngen γ gro velocy dserson dmed Le on symmeres ( ) ς e( β ) z e negave ν osve ν gros algebras T a 4 T T T4 β a a β β a4 5 T 5 ν β a5 a5 a5 νa β β νa5 5 6 T 6 z z ( ) ( ) e a 6 e a z z e( a 6 ) ξ ξ e( a 6 ) ς ς 6
26 β 5 β 4 a a a 4 a β β a 5 a a 5 5 a a 5 5 β β gros gros algebras algebras T T 4 T T 5 T ( ) ( ) β ς z e e ( ) ( ) ( ) ( ) θ θ γ θ θ γ srong brefrngen fber γ srong brefrngen fber wh arallel Raman scaerng θ Le Gro nalyss Le Gro nalyss Coled nonlnear Schrödnger eaons dmed Le on symmeres
27 Le Gro nalyss Coled nonlnear Schrödnger eaons ( γ ) dmed Le on symmeres ( γ ) k k fber weak brefrngen γ k nonlnear dreconal coler γ k ( ) ς e( β ) z e gros algebras T a T T a a β β a T 4 4 β a4 a4 β β a4 a4 a4
28 SYMMETRY GROUP REDUCTION symmery gro adon reresenaons classfcaon omal se of sbalgebras omal se of redced ODEs omal se of gro nvaran solons
29 INTERIOR UTOMORPHISMS wo mode fbers srong brefrngen fbers ν ( γ ) ( γ ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ν ) 4 e ( ν ) 4 e ( ν ) e ( ) [ ] [ [ ] L
30 OPTIML SET OF SULGERS OPTIML SET OF SULGERS Case Case C Case ( ) β ν 5 4 β δ δ 4 Case D ( ) β ν δ δ 5 4 Case E β δ ς ς δ z z 6 4 Case F β δ δ 4 ± ± R ± ± δ or R ± δ R δ or δ δ R wo mode fbers wo mode fbers srong brefrngen fbers srong brefrngen fbers ( ) ( ) γ ν γ
31 σ σ Nonlnear dreconal coler Nonlnear dreconal coler Redced sysem Redced sysem ( ) ( ) ( ) ( ) g f gf f g f g f f g cos cos sn sn σ σ δ σ σ ( ) ( ) ( ) dn arcsn 4 e cn h E h E E σ σ ( ) ( ) ( ) dn arcsn 4 e cn h E h E E σ σ 4σ cons E h E Eac solon Eac solon Eac solon for Case
32 REDUCTION PROCES (Case C) wo mode fbers srong brefrngen fbers ν ( γ ) ( γ ) ( ) ς e( β ) z e Generaor δ δ β 4 ± or ± δ R Invarans J z ς J J J δ J 4 β New varables z ( ) ς ( ) f ( ) δ β g( ) Redced sysem f f g g ( f ) γ δ ( g ) ν ν γ ν
33 Eac solon for Case C (wo-mode fbers and srongly brefrngen fbers) ( ) Π m n b h C U λ ; e ( ) Π ± m n b h C U λ ; e ( ) ( ) cn U b b h b m b b λ λ ( ) ( ) [ ] dw m w n m n Π sn ; ± b b b n b b b b m are he roos of he olynomal b b b > > ( ) ( ) 4 h C h C h Q θ θ θ θ and are he Jacobean sne and cosne ellc fncons ( ) m sn ( ) m cn
34 romae vecor solary waves Srong brefrngen fbers wh Raman scaerng generalzed verson of revosly obaned scalar solary-wave solon c ( c a) ( c b) β ( a cy) ( b cy) yy yy C C ( h ) θ ( ) ( h ) θ ( ) y y y y Gallean-lke symmery redced sysem ( z) θ F( z) a sech sech z θ G( z) θ << Raman arameer a a a F anh ( z) z z ln( sech z) z ( z) snh z z G sech ( z) z G sech. L. Gagnon and P.. élanger Solon self-freency shf verss Gallean-lke symmery O. Le. Vol. 5 No. 9 (99)
35 ( z) θ F( z) a sech sech z θ G( z) a a a F anh ( z) z z ln( sech z) z ( z) snh z z G sech ( z) z G sech τ»».8.6 τ»» τ»» 8-6 F ( z) G ( z) G ( z) z z z. L. Gagnon and P.. élanger Solon self-freency shf verss Gallean-lke symmery O. Le. Vol. 5 No. 9 (99) N. khmedev and. nkewcz Novel solon saes and bfrcaon henomena n nonlnear fber colers Phys. Rev. Le. Vol. 7 No. 6 (99)
36 LWS OF CONSERVTION Two-mode fbers and srong brefrngen fbers SYMMETRY LWS OF CONSERVTION TIME TRNSLTION SPCE TRNSLTION J J * * ( ) H - d ( ) ( ) 4 4 ν h d TRNSLTION OF THE PHSE J d TRNSLTION OF THE PHSE β J 4 d GLILEN-LIKE SYMMETRY J 5 ( ) ν d J
37 References [] Chrsodoldes D.N. and R.I. Joseh Ocs Le. () 5-55 (988). [] Trank M. V. and J. E. Se Phys. Rev. 8(4) -7 (988). [] Chrsodoldes D.N. Phys. Le. (8 9) (988). [4] Floranczyk M. and R. Tremblay Phys. Le. 4() 4-6 (989). [5] Kosov N.. and I. M. Uznov O. Commn (99). [6] Floranczyk M. and R. Tremblay O. Commn (994). [7] Plov V. I. Uznov and E. Chacarov Phys. Rev E 57 () (998).
38 Conclson The symbolc comaonal ools of MTHEMTIC have been aled o deermnng he Le symmeres of PDE. n algorhm for creang and solvng he defnng sysem of he symmery ransformaons has been develoed and mlemened n MTHEMTIC ackage. The ackage has been sccessflly aled o basc hyscal eaons from nonlnear fber ocs. Fre work: The ackage caables can be eended by addng new rogrammng modles for ransformng and solvng oher wder classes of dfferenal eaons.
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
New symmetries of Black-Scholes equation
Proceedngs of he 03 Inernaonal Conference on Appled Mahemacs and Compuaonal Mehods New symmeres of Black-Scholes equaon TSHIDISO MASEBE Tshwane Unversy of Technology Mahs,Scence& Tech Deparmen No Aubrey
CNS.1 Compressible Navier-Stokes Time Averaged
CNS.1 Compressble Naver-Sokes Tme Averaged Insananeos flow conservaon prncples, compressble flow D M : L( ρ) = ρ + ( ρ ) = 0 x ρ D P : L( ρ ) = + ρ + pδ = 0 x D E : L( ρe) = ( ρe+ ρ / ) + ( ρh+ ρ / q)
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
IV и. е ые и Си АДИ, ы 5 (51),
IV 493 - «И» Аи - - - - PO - - - Кеые : PO - - - - - ; - И - - - - - - ; - И- - - - - - - - - [] - Веи СиАДИ ы 5 (5) 6 45 - - - (ODE) - - - D- - D - - - - - - - - PO - - - - - - - ( - ) - G - И- f R (
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
On homeomorphisms and C 1 maps
arxv:1804.10691v1 [mah.gm] 7 Apr 018 On homeomorphsms and C 1 maps Nkolaos E. Sofronds Deparmen of Economcs, Unversy of Ioannna, Ioannna 45110, Greece. nsofron@oene.gr, nsofron@cc.uo.gr Absrac Our purpose
D-Wave D-Wave Systems Inc.
D-Wave D-Wave sems Inc. Anaol Yu. mirnov D-Wave sems Inc. Vancouver Briish Columbia HE QUANUM COMPUING COMPANY M Decoherence and Noise Conrol in rongl Driven uperconducing Quanum Bis Collaboraion: M. Grajcar
[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]
OTROL. COISSION OF OTORIZATION AND ENERGETICS IN AGRICULTURE 0, Vol. 6, No. 5, 87 98 -,,, 008,.,., e-mal: mosgv@ukr.net. -,... -. :, -,. [],,.,,.., []. - (Danoss, Rexroth, Char-Lynn. [,, 5]),. -,.. [6]..,
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.
GAUGE BLOCKS Accuracy according to ISO650 Nominal length (mm) Limit deviation of length Grade 0 Tolerance for the variation in length Grade Grade Grade Grade 2 Limit deviations of Tolerance for the Limit
Distributed by: www.jameco.com -800-83-4242 The content and copyrights of the attached material are the property of its owner. φ δ δ φ φφ φ 86 δ φ δ An explanation of the taping dimensions can be found
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ
EE101: Resonance in RLC circuits
EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Probabilistic Image Processing by Extended Gauss-Markov Random Fields
Pobablsc mage Pocessng b Eended Gauss-Makov Random Felds Kauuk anaka Munek asuda Ncolas Mon Gaduae School of nfomaon Scences ohoku Unves Japan and D. M. engon Depamen of Sascs Unves of Glasgow UK 3 Sepembe
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
Fourier Transform. Fourier Transform
ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following
Neutralino contributions to Dark Matter, LHC and future Linear Collider searches
Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων 5: Απαρίθμηση, Αρχή της Θυρίδας, Συνδυασμοί και Μεταθέσεις, Γραφήματα και
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Reflection Models. Reflection Models
Reflecon Models Today Types of eflecon models The BRDF and eflecance The eflecon equaon Ideal eflecon and efacon Fesnel effec Ideal dffuse Thusday Glossy and specula eflecon models Rough sufaces and mcofaces
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
THE DIMENSION FORMULA FOR THE RING OF CODE POLYNOMIALS IN GENUS 4
Oura, M. Osaka J. Mah. (), - THE DIMENSION FORMULA FOR THE RING OF CODE POLYNOMIALS IN GENUS MANABU OURA (Receved March, ). Inroducon The purpose of hs paper s o sudy he dmenson formula for he nvaran rng
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation
Review: Molecules Start with the full amiltonian Ze e = + + ZZe A A B i A i me A ma ia, 4πε 0riA i< j4πε 0rij A< B4πε 0rAB Use the Born-Oppenheimer approximation elec Ze e = + + A A B i i me ia, 4πε 0riA
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Rektangulär fläns, Rectangular fin
Rekangulär fläns, Recangular fin. Z d f d αc d λ ( f ) (3 3) m αc λ α Z λz α λ Randvillkor, Boundary condiions: : d : λ ( f ) d unn och lång fläns, long and hin fin d d f Rekangulär fläns, recangular fin
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
(b) flat (continuous) fins on an array of tubes
(a) Individually finned ues () fla (coninuous) fins on an array of ues Eample Fins Fins on Segosaurus 3 Rekangulär fläns, Recangular fin. Z d f 4 Rekangulär fläns, Recangular fin. Z d f d αc d λ ( f )
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.
Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα
AME SAMPLE REPORT James R. Cole, Ph.D. Neuropsychology
Setting the Standard since 1977 Quality and Timely Reports Med-Legal Evaluations Newton s Pyramid of Success AME SAMPLE REPORT Locations: Oakland & Sacramento SCHEDULING DEPARTMENT Ph: 510-208-4700 Fax:
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.
VOX Feel Pretty MARA et Trois Filles - N 12 BERNSTEN Leonrd Adpttion F. Pissloux Violons Contrebsse A 2 7 2 7 Allegro qd 69 1 2 4 5 6 7 8 9 B 10 11 12 1 14 15 16 17 18 19 20 21 22 2 24 C 25 26 27 28 29
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ