THE DIMENSION FORMULA FOR THE RING OF CODE POLYNOMIALS IN GENUS 4

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "THE DIMENSION FORMULA FOR THE RING OF CODE POLYNOMIALS IN GENUS 4"

Transcript

1 Oura, M. Osaka J. Mah. (), - THE DIMENSION FORMULA FOR THE RING OF CODE POLYNOMIALS IN GENUS MANABU OURA (Receved March, ). Inroducon The purpose of hs paper s o sudy he dmenson formula for he nvaran rng C[/ α for aef^] **, whch may be consdered as he rng of code polynomals n genus. We also gve all characersc polynomals of elemens n H. The man ngreden s he deermnaon of he conjugacy classes of he symplecc group /(,). Our resul wll be useful for he nvesgaon of he Segel modular forms n genus four. We recall from [, ] ha he fne group H g s (up o ±) jus he mage of he modular group Γ g = Sp(g,Z) under he hea represenaon (of ndex ) and ha he rng of modular forms of even wegh s gven by Λ(Γ g ) () = Θ [Γ r *] = (qyj*- / {relaon})", fc where N denoes he normalzaon n s feld of fracons and "relaon" are he hea relaons. However, he generaors and he dmenson formulas for A(Γ g ) are known only for genus g<. On he oher hand, he nvaran rng C[/ α ] Hg may be consdered as he rng of code polynomals n genus g. In [], here s he defnon of he g-h wegh polynomal for codes (codes mean he bnary lnear codes) and he connecons among codes, laces, he nvaran rngs of he fne groups, and he heory of modular forms were suded (cf.[], [], [], [], []). In parcular, was shown ha he nvaran rng of he group <// g, >, whch s he subrng of C[/ α ] H «, s generaed by he g-h wegh polynomals for self-dual doubly-even codes, where s he prmve -h roo of uny. Ths nvaran rng corresponds o he rng of he modular forms of weghs dvsble by. The auhor would lke o hank Prof. Banna for suggesng hs work and for hs encouragemen. He owes hanks o Prof. Runge for hs crcal commens on he orgnal manuscrp. Furhermore, he auhor would lke o hank he referee for provdng hm wh many mprovemens houghou he whole paper.

2 M. OURA. On he group H g In hs secon, we sudy he group H g. In addon o Runge, he group H g has been suded by several auhors, for example, see [], []. Le V be he g-dmensonal vecor space over he feld of wo elemens,.e., K=Ff. For x,ye V, le x-y denoe he usual do produc. Se g '~ v and for a symmerc g x g marx S /) s :=dag(/ S[Λ] wh aev), where S[ά]:=aS*a. Le /^:=<^,D s S runs over all symmerc marces n Ma gxg (Z)> be he subgroup of Gl( C) generaed by he elemens T and he D. g s We ge for he nvarn rng C[/ a ] Hg he dmenson formula Φn.(= Σ (dιmc[/j d^ =_^, where C[/ fl ]? g s he rf-h homogeneous par of C[/ α ] Hg, Φ Hg ( s called he Molen seres s of H g. The followng lemma gves he smplfcaon we use. Lemma. (Lemma. []). One has an exac sequence where N g :=(,Dl,T~ l DlT g y and he homomorphsm φ s gven by he conjugaon of H g on he F -vecor space Λ^/</>. Π Therefore we have he obvous formula where {Q} are he conjugacy classes of Sp(g,) and z s some elemen of H g wh φ(z )ec. Our compuaon s done usng (.). Fnally we ls he szes of groups.

3 CODE POLYNOMIALS IN GENUS In our case fe = ), \N \ =, =, \Sp(,)\ =,,, =, \H \=,,,, =. REMARK. H <//? C >, // are he reflecon groups No., No., No. n [], respecvely (cf. Proposon. []).. On /(,) and s conjugacy classes In hs secon, we sudy he symplecc group Sp(,). Ths s denfed wh he Chevalley group of ype (C ) over he feld of wo elemens. We gve all he characersc polynomals of elemens n //. We remark ha we canno read off represenaves of he conjugacy classes of S/?(,) from Alas [] alhough s he good reference for he fne smple groups. As s sad, X,) s one of he Chevalley groups. The properes of such groups are known and we descrbe wha we need. Le Δ = {±f, ±ξ±ξj (/</)! </',./< } be he roo sysem of ype (C ), and choose a = ξ ί ξ, b = ξ ξ^ c = ξ ξ, d=ξ for a fundamenal sysem Π of roos. We denoe by Δ" " he se of posve roos wh respec o Π. We wre an elemen αα -f βb + yc + δd of Δ + as aβyδ. For example, we wre for a + c + d. Ej s he elemenary marx of sze x wh n he (/J)-enry. For < j <, x ξ -</=!+ E^ + E +ja + ( <y ), Then X,) s generaed by x r (reδ) and s known o be one of he fne smple groups (cf.[]). Le X r be he group generaed by x r and pu ^ = A Γ Ar Ar Ar Ύ ^o ^ ^o ^^ ooo^ oo^ o^ ^ ^ ^ Then B s a Sylow -subgroup of S/?(,) and s normal n /?(,). Pu n r = x r x_ r x r and V=<«r reδ>. Λf s somorphc o he Weyl group of ype (C ). We fx he followng correspondence: ~ :=[,,,,,,,],

4 M. OURA <E ~ := [,,,,,,,], ~ := [,,,,,,,], -^ <->-_!:= [,,,,,,,], -ί ~:z:= [,,,,,,,], - ^^-:= [,,,,,,,], -ξ ^-:= [,,,,,,,]. An elemen of N s unquely deermned by s naural acon on,,,. If nεn sasfes In = a?«= /?, «= y, n = δ, hen we denoe n by w(α,/?,y,(). For example, we have In he followng, we gve he conjugacy classes of S/?(,) and all characersc polynomals of elemens n /. To deermne he conjugacy classes of S/?(,), we have o show () () No wo elemens n he ls are conjugae n S/?(,), where C Sp(>) (c,) denoes he cenralzer group of c { n /?(,). These saemens are proved usng GAP []. Then we compue x deermnans of sze x. Snce H s a subgroup of SU(\Z\^^ (Proposon. []), he polynomals have he ype Σ :δl^ έ/ wh α = α = l, ά =α, ά = α, ά = α, ά =, ^ = ^!!, ά =α, ά Ί a g, and ά s = a s (A bar denoes complex conjugaon). There are boxes below and he ί'-h box (<z<) gves he characersc polynomals of elemens n z ( V. In each box, he frs column gves he mulplcy of each polynomal. The nex columns gve he values of α,α,,α, respecvely. For example, n he frs box, he n he frs column means ha here are occurences of he polynomal n he form + ( /)ί /f + (

5 CODE POLYNOMIALS IN GENUS Table. -: + :' - - : - + : -: : - -* order =, co =, \C Sp (Λ,)M\ = -- : : : - -+: : : -: :' : + : - - : :' - - : - : + : - : -: +:' - - : - + -: : :' -:' : -: order =, GI = rooo, \C Sp (e..)(cι)\ = -- : : : : :' : -: : - : - + :' : + : - - :' :' + : - :' + :' - : - - S order =, = #» \Csp fι) (c ) = ι order =, c = α?oιoo*o, Cs P (,)( c )l = ι order =, c = :* xo, \Cs P (,)(c*)\ = ι ί «z

6 M. OURA order =, c = xooo^mo, \C Sp (B.)M\ = - - -ι - " - - ι' order =, cβ = r ιoo*oooι, \C Sp( ι )(c ) = ' - + ' ι -I I S -S - I Sι - - ' ι order =, c = n(,,l,), \C Sp(>} (c )\ = - - S - -S ι ι order =, c β = (xooιm(-, -,, -)), C p( ) (c ) = - ι lo - - order =, c = xoooιn(l,,, -), C ί p ( ( )(c ) = -ί z S - - -ι order =, CJQ = xoooιn(,, -, -), C' Spί ) (cιo) = S - -S

7 CODE POLYNOMIALS IN GENUS - + ' order =, c n = :*, l^ P (.)(cιι) = z ι' « » order =, = # * ^, C'sp(,)( c ) = : ί order =, = #^^^» I^Sjpίβ,)(c) = ' - -' order =, cι = ^oooaoxoo, C's P (,)( c ) = z order =, = #^*, C'sp(,)( c ) = ι order =, GIG = xoιooa:oooι^ιιιo^ιιιι, C's p (,)( c ) = - -- lo lo - -ι - - lo lo

8 M. OURA order =, c = *^, Csp(,)(c) = ί - z - - S order =, cβ = #oιoo^oooι#π, \C p(b,)( c ι*)\ = ί ' order =, cg = :rooo#ooo^oo^» I^p(,)( c ) = f + ~ " ' - -I- + - order =, c o = a ooo^ooo^ooo, I^Spίβ, )(cθ) = order =, = aoιoo*ooιo*oon*ιιιo> C*p(,)( c ) = - *

9 CODE POLYNOMIALS IN GENUS OΓdeΓ =, C = ^^^^^,! C 'pί,)( c ) = lo -lo - -I I - order =, c = *ooo^oonn(l,, -,), C f Sp(>)(c) = order =, C = #ooo'on(-,-, -, ), C l p S (()(c ) = f - order =, c = n(-,, -,), C p () (c ) = - + ι' S - - S-S order =, c β = n(-, -, -, ), \C Sp( - ί ) (c ) =» z + order =, c = n(-,,l,), C r )(c ) = Sp() ι + - -ι Ϊ I - + ; I -f lo -- lo --- W - lo

10 M. OURA order =, c = zooιι^oθn(, -,, -), C p( ) (c ) = ι - - ' order =, c = ^ooo # # n(l,, -,), C r p ( > )(c ) = S order =, c = a:oon(l, l -,), C Sp(ι) (c ) = - z' -ι ϊ order =, c ι = :r ooffooιι*oθrι(-, -,, ), C*s p(ι )(c ι) = order =, c = :rooιo#oooι*on(l,,, ), C ί ( )(c ) = Sp ) » order =, c = xon(-l, -,, -), C p ( )(c ) = f

11 CODE POLYNOMIALS IN GENUS order =, = xoooι^oon^oιιι^oo^o^(l»,, -), I -f Iβ - ι - -f <?Sp(β,)(c) = order =, c = :^^^^(, -,,), Cp(,)( c ) = order =, = ^oooι^oon^oιιι^oo^o^(,,, -), \C Sp l f' I )(cβ) = order =, c? = (acoooιn(- f, -, -)), C r Sp( )(c) = S S S + order =, c = (a"oooaoo^o^on(l, -,,)), C' p (( )(c ) = I - - order =, c g = (^ooon(,,,)), C p ( )(c) = - - order =, = (aooιo^oo^on^ooa:on(, -,,)), C f p ( f )(cθ) = I υ - -

12 M. OURA order =, c J = α: on(-,,, -), C Sp(ι )(c ι) = Ί order =, c = ^ooo^ooo^ooo, C'sp(,)( c ) = + ι f Ί «- - z - + order =, = orooo^ooo^ooo^j ^p(,)( c ) z - - order =, c * = xooo^ooo^ooo^ooo, C'sp(,)( c ) = - ί f -H - + f - -! + «' -I f - -f f - - f -+ -» + ' - -f order =, c = ^ooo^ooo^ooo^oo, I^Spίβ^ί^s)! = -ί f W ' _ lo - - -» - -f W -I - - -' - ί -f < - --f ι' -- order _, c β = #oιoo^ooιo^oooι#ooιι#ιooo> C^p( f )(c ) = f ί - - ί ί -ί ί ί f - - ί

13 CODE POLYNOMIALS IN GENUS order =, = ίcθl^^ίpθ^^^» I^Sρ(,)( c ) = - order =, c = :rooora(-, -l,,), \C S Pί,)(c) = o order =, = #ιι^π(-, -, -, ), \C Sp ( S )( C ) = I - order =, c = xooιm(-,,-l f -), C'sp(,)(cθ) = ι - ι - O order =, c ι = xooιn(-, -, -, ), C Sp() (c ι) = I order =, c = x on(-,, -, -), \C Sp(Bι ) ι ί (c ) =

14 M. OURA order =, c s = ^oooλ oonn(,,, -), C Sp(( )(c) = ' -lo «- - lo' -I order =, c = x oon(-, -,, ), Cs P (,)(c) = ί order =, = xoooιn(,, -, -), C f p( )(c) = ί - - order =, c = #^(,,,), \C Sp (,)(C) = order =, c = :r ol^oon(-, -,, ), Cs P (,)^) = ί ι ' - - ί ί - order =, c = xo#oθra(,,, -), \C Sp(> )(c s)\ = order =, = xoooι^oozόιon(l,,,), Cp( f )(c) =

15 CODE POLYNOMIALS IN GENUS order =, c o = zoooι*ooιxo (-l,,, -), Cs^β^ί^Go)! = I order =, c ι = r ol^ol^o^on(l,,, -), C p()) (c ι ) = + ' ' ' ' ' ' ' order =, cβ = ^^ n(l,,, ), \C Sp f,)(c) = * + ' - ' ϊ + ' order =, CGS = foooι#ooιια;oιιson(, -,, ), \C Sp(,)(C) = order =, c = (#ooo^ooιι^oθn(-, -,, -)), C ί p( ι.)(c) = - - ' order =, c = (xoιιι*oθn(- f, -, -I)), C ί (c p() ) = ' -

16 M. OURA order =, c e = ^ooιo^ooιιxoιιι^ooaon(~, -,,), \C Sp (& )(cββ)\ = - - order =, c = xooιιn(-,, l,-), C Sp(βι) (cβ) = f order =, c β = ^ooι^(-,, -, ), \C Sj X.)(C) = order =, c = (*oonzoon(, -, -, -)), C p( - - -I )(C) = order =, c = aooι^(-, -,, -), C' Sp(f) (co) = I order =, c J = xoooι^ooιιn(-, -,,), C f ί, ( )(c ι) = order =, c = (*oooι*ooιιπ(-, -,,)), C p( )(C) = *

17 CODE POLYNOMIALS IN GENUS order =, c = x ooιn(-,,-, -), C Sp( ) (c ) = order =, en - *ooo*oon(,, -,), Csp(,)( c ) = order =, c = a?ιma?ιn(-, -,, ), C pfβ.)(c) = order =, c?e = #oooι#ooιπ(-, -, -, ), \C [B SP,)(C *)\ = - I ' order =, = ίόoo^oon^oθn(-, -,, -), C f p( )(c) = f order =, c = a?om*oon(-,, -, -), C Sp( ) (c) = ί order =, c = *oo*oon(,-, -, -), C p(β) (c) =

18 M. OURA order =, c = zoon(-,, -, ), Cs P (,)(cθ) = ϊ ' x ι REMARK. The deermnaon of he conjugacy classes of Chevalley groups were suded by several auhors. For example, see [], [], [].. Man resul We have obaned he surjecve homomorphsm φ:h -+Sp(* ) wh Kerφ = ΛΓ and a se {c} <<o of represenaves of conjugacy classes of >$p(,) n he precedng secons. Our man resul can be saed as follows: Theorem.. The Molen seres of H s gven by + / + f + ί + / + ί + f where D = ( - - ί ) (l - ί χ - - r )(l - r χ - ί χ - βs ) x - ί - f + ί + f + ί -h U + H + Γ - ί + f + / + ί + f + ί / -f^ -/ +ί

19 CODE POLYNOMIALS IN GENUS + / +f + + * + f + * + f + ί +? + < + f + ί + / + * + ί +? + / + ί + / + ί + ί + ί + ί + / + ί + / + / +? + ί + ί + / + ί + / + ί + ί + / + ί + ί + ί + ί +ί + / + / + / + ; +? + ί + / + ί + ί + ί + ί + ί + / + ί + ί + ί + < + / +ί +ί + / +ί + * + / +ί + ί + ί +ί + ί + < + ί +? + / + / + ί + / + ί + ί + ί +ί + ί + / + ί + ί + *

20 M. OURA f + f + ί + ί - < + ί + ί. Π References [] M. Broue and M. Enguehard: Polynόmes des pods de cerans codes e funcons hea de cerans reseaux, Ann. Scen. EC. Norm. Sup. (), -. [] B. Chang: The conjugae classes ofchevalley groups of ype (G \ J. Algebra (),. [] Conway, Curs, Noron, Parker and Wlson: Alas of fne groups, Oxford Unversy Press,. [] W. Duke: On codes and Segel modular forms, In. Mah. Research Noces (), -. [] W. Ebelng: Laces and Codes, A course parally based on lecures by F. Hrzeburch, Veweg,. [] H. Enomoo: The conjugacy classes of Chevalley groups of ype (G ) over fne felds of characersc or, J. Fac. Sc. Unv. Tokyo Sec. IA (), -. [] S.P. Glasby: On he fahful represenaons, of degree ", of ceran exensons of -groups by orhogonal and symplecc groups, J. Ausral. Mah. Soc. (Seres A) (),. [] W.C. Huffman: The bwegh enumeraor of selforhogonal bnary codes, Dsc. Mah. (), -. [] B. Runge: Codes and Segel modular forms, Dsc. Mah. (),. [] B. Runge: On Segel modular forms, par I, J. Rene angew. Mah. (), -. [] B. Runge: On Segel modular forms, par II, Nagoyya Mah. J. (), -. [] B. Runge: The Schoky deal, n "Abelan Varees" (Proceedngs of he Inernaonal Conference held n Eggloffsen, Germany, Ocober, ), Waler de Gruyer, Berln-New York,, pp.. [] M. Schόner, e. al: GAP: Groups, Algorhms and Programng, Lehrsuhl D fur Mahemk, RWTH Aachen,. [] G.C. Shephard and J.A. Todd: Fne unary reflecon groups, Canad. J. Mah. (), -. [] K. Shnoda: The conjugacy classes of Chevalley groups of ype (F ) over fne felds of characersc, J. Fac. Sc. Unv. Tokyo (), -. [] N.J.A. Sloane: Error-correcng codes and nvaran heory:new applcaons of a nneeenhcenury echnque, Amer. Mah. Mahly (), -. Graduae School of Mahemacs Kyushu Unversy Hakozak --, Hgash-ku, Fukuoka, -, Japan e-mal address: ohura@mah.kyushu-u.ac.jp

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

On homeomorphisms and C 1 maps

On homeomorphisms and C 1 maps arxv:1804.10691v1 [mah.gm] 7 Apr 018 On homeomorphsms and C 1 maps Nkolaos E. Sofronds Deparmen of Economcs, Unversy of Ioannna, Ioannna 45110, Greece. nsofron@oene.gr, nsofron@cc.uo.gr Absrac Our purpose

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION TAIWANESE JOURNAL OF MATHEMATICS Vol 8, No 5, pp 65-66, Ocober 04 DOI: 0650/m804665 Th paper avalable ole a hp://ouralawamahocorw A NOTE ON ENNOLA RELATION Jae Moo Km ad Jado Ryu* Abrac Eola ve a example

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Modbus basic setup notes for IO-Link AL1xxx Master Block

Modbus basic setup notes for IO-Link AL1xxx Master Block n Modbus has four tables/registers where data is stored along with their associated addresses. We will be using the holding registers from address 40001 to 49999 that are R/W 16 bit/word. Two tables that

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

New symmetries of Black-Scholes equation

New symmetries of Black-Scholes equation Proceedngs of he 03 Inernaonal Conference on Appled Mahemacs and Compuaonal Mehods New symmeres of Black-Scholes equaon TSHIDISO MASEBE Tshwane Unversy of Technology Mahs,Scence& Tech Deparmen No Aubrey

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων 5: Απαρίθμηση, Αρχή της Θυρίδας, Συνδυασμοί και Μεταθέσεις, Γραφήματα και

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Generalized Normal Type-2. Triangular Fuzzy Number

Generalized Normal Type-2. Triangular Fuzzy Number pped Mahemaca Scence, Vo. 7, 203, no. 45, 2239 2252 HIKRI Ld, www.m-hkar.com Generazed orma Type-2 Trangar Fzzy mber bd. Faah Wahab Deparmen of Mahemac, Facy of Scence and Technoogy, Unver Maaya Terenggan,

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα