Γεωμετρικοί μετασχηματιμοί εικόνας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γεωμετρικοί μετασχηματιμοί εικόνας"

Transcript

1 Γεωμετρικοί μετασχηματιμοί εικόνας Μάθημα: Υπολογιστική Οραση Κ. Δελήμπασης Κ. Δελήμπασης 1

2 Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στονευκλείδιοχώρο: p=[x p,y p,z p ] T, όπου x p, y p, z p πραγματικοί αριθμοί. ΕστωΕ 3 τοσύνολοτωνp. Ενας γεωμετρικός μετασχηματισμός Τ(π), μεδιάνυσμαπαραμέτρωνπ, ορίζεταιως: T: Ε 3 --> Ε 3 Οι μετασχηματισμοί σε 2D αποτελoύν υποπερίπτωση των 3D. Παραδείγματα: Μεταφορά(translation), περιστροφή(rotation), αλλαγή κλίμακας (scaling). Κάθε γεωμετρικός μετασχηματισμός που μπορεί να περιγραφεί σαν συνδυασμός μεταφορών, περιστροφώ, ή αλλαγής κλίμακας λέγεται γενικευμένος συσχετισμένος μετασχηματισμός(affine). Κ. Δελήμπασης

3 Ομογενείς συντεταγμένες Σύνθεση μετασχηματισμών Ακολουθία μετασχηματισμών εκφράζεται σαν γινόμενο των αντίστοιχων πινάκων, με τον πίνακα του 1ου μετασχηματισμού αριστερά Η μετατόπιση είναι ο μόνος μετασχηματισμός ο οποίος απαιτεί πρόσθεση Ομογενείς συντεταγμένες: για κάθε σημείο P(x,y), εισάγουμε μία επιπλέον συντεταγμένη w, P(x,y,w 0 ), Το σημείο P (x/w 0, y/w 0, 1) αποτελεί την αναπαράσταση ομογενών συντεταγμένων στο επίπεδο w=w 0 Συνήθως χρησιμοποιείται η βασική αναπαράσταση με w 0 =1 Με την εφαρμογή των ομογενών συντεταγμένων η μετατόπιση γίνεται με πολλαπλασιασμό πινάκων και έτσι είναι δυνατή η σύνθεση πολλών διαδοχικών μετασχηματισμών σε ένα μόνο πίνακα μετασχηματισμού. Κ. Δελήμπασης

4 Συχνά είναι απαραίτητο να εφαρμόσουμε ένα συσχετισμένο μετασχηματισμό σε μία εικόνα, πχ Περιστροφή της εικόνας γύρω από το κέντρο μάζας της Αλλαγή κλίμακας της εικόνας (ισοδύναμα interpolation). Εστω Το μετασχηματισμός T: Ε 3 --> Ε 3 εικόνας που μετρέπει μία εικόνα Ιστην εικόνα Ι 1. I1 ( T( x, y) ) = I( x, y) (, ) T x y x = T y 1 Τείναι ο πίνακας του μετασχηματισμού (σε ομογενείς συντεταγμένες), ο οποίος εφαρμοζόμενος στις συντεταγμένες ενός pixelπαράγει τις συντεταγμένες του αντίστοιχου pixel της μετασχηματισμένης εικόνας. Κ. Δελήμπασης

5 Μετατώπιση (Translation)κατά d x, d y : Αλλαγή κλίμακας (ανεξάρτητα σε κάθε διάσταση), ως προς την αρχή των αξόνων. Περιστροφή (Rotation) γύρω από τον άξονα των z, ως προς την αρχή των αξόνων. Οποιοσδήποτε συσχετισμένος μετασχηματισμός (στις 2 διαστάσεις) μπορεί να περιγραφεί από ένα πίνακα της μορφής: T T ( s s ) 1 0 d x = 0 1 d y sx = x, y sy cos Rθ ( ) = sin 0 T ( θ) sin( θ) ( θ) cos( θ) 0 a11 a12 a13 = a21 a22 a Κ. Δελήμπασης 5

6 Ο μετασχηματισμός Affine εφαρμόζεται ως εξής: Για κάθε pixel(x1,y1)της Ι1, υπολογίζονται οι νέες συντεταγμένες (x2,y2) ως εξής: Επισημαίνεται ότι: x2 a00 a01 a02 x1 y 2 a10 a11 a 12 y = Τα (x2,y2)δεν είναι πάντα ακέραια, μπορεί να πάρουν και αρνητικές τιμές, ή τιμές μεγαλύτερες από τον αριθμό γραμμών και στηλών της Ι1. Εφαρμογή του μετασχηματισμού σε Matlab: I2=imtransform(I1,T,'nearest','XData',XData,'YData',Y Data,'FillValues',0); Κ. Δελήμπασης 6

7 Παράδειγμα Εστω ότι επιθυμούμε να μετατοπίσουμε μία εικόνα μεγέθους 256x256κατά 10,-8 στους δύο άξονες, να την περιστρέψουμε κατά θ=6 0 και να αλλάξουμε την κλίμακα στον άξονα Χκαι Υκατά 1.2 και 0.8 αντίστοιχα. Πίνακας µετατόπισης Πίνακας αλλαγής (0,0) > κέντρο µάζας κλίµακας ( θ) ( θ) ( θ) ( θ) 1 0 cx sx 0 0 cos sin dx 1 0 cx T = 0 1 cy 0 sy 0 sin cos dy 0 1 cy Πίνακας περιστροφής Πίνακας µετατόπισης Πίνακας µετατόπισης dx, dy κέντρου µάζας --> (0,0) T 6π 6π cos sin π 6π = sin cos Πίνακας µετατόπισης Πίνακας αλλαγής (0,0) > κέντρο µάζας κλίµακας Πίνακας περιστροφής +6 µοιρών Πίνακας µετατόπισης Πίνακας µετατόπισης dx, dy κέντρου µάζας --> (0,0) Κ. Δελήμπασης 7

8 Εφαρμογή του μετασχηματισμού του προηγούμενου παραδείγματος T = Πίνακας Μετασχηματισμού Αρχική εικόνα Μετασχηματισμένη εικόνα Κ. Δελήμπασης

9 Απλός αλγόριθμος εφαρμογής συσχετισμένου μετασχηματισμού: μη ενδεικνυόμενος Εστω ότι θέλουμε να μετασχηματίσουμε γεωμετρικά δοθείσα εικόνα I 1, βάσει συσχετισμένου μετασχηματισμού με πίνακα Α. Βήμα 1ο: Προσδιορίζουμε τη προβολή (απεικόνιση) του κέντρου του κάθε pixel (x,y) τηςαρχικής εικόνας I 1 στη νέα εικόνα I 2 : (x 1,y 1,1) T =A (x,y,1) T. Βήμα 2ο:Βρίσκουμε το pixelτης νέας εικόνας I 2 του οποίου το κέντρο βρίσκεται πιο κοντά στο σημείο της προβολής(στρογγυλοποίηση συντεταγμένων) Βήμα 3ο:Θέτουμε τη φωτεινότητα του ζητούμενου pixelτης τελικής εικόνας ίση με τη φωτεινότητα του pixel, από το βήμα 2, της αρχικής εικόνας: I 2 (round(x 1 ),round(y 1 )) =I 1 (x,y). Κ. Δελήμπασης

10 Παράδειγμα ψευδοκώδικα του προηγούμενου αλγόριθμου για περιστροφή εικόνας κατά γωνία θ γύρω από το κέντρο μάζας της CM. Α=T(-CM)R(θ)T(CM) for i=1:256 for j=1:256 [i1,j1] T =A*[i,j] T if i1>256 i1=256; if i1<=1 i1=1; if j1>256 j1=256; if j1<=1 j1=1; IM(round(i1),round(j1))=I(i,j); end; end; Κ. Δελήμπασης

11 Παράδειγμα περιστροφής εικόνας με χρήση του προηγούμενου αλγόριθμου Παρατηρούμε το artifactτων μηδενικών Pixel(τα οποία δεν έχουν πάρει τιμές). Η χρήση της παρεμβολής βάσει του κοντινότερου γείτονα είναι πολύ απλή στην υλοποίηση αλλά έχει το μειονέκτημα ότι θολώνει την περιεστραμένη εικόνα. Εναλλακτικά μπορεί να χρησιμοποιηθεί η διγραμμική παρεμβολή. Κ. Δελήμπασης 11

12 Γενικός αλγόριθμος εφαρμογής συσχετισμένου μετασχηματισμού Βήμα 1ο: Προσδιορίζουμε τη προβολή (απεικόνιση) του κέντρου του κάθε pixel (x,y) τηςνέας εικόνας Ι2 στην αρχική εικόνα I 1 : (x 1,y 1,1) T =A -1 (x,y,1) T. Ύπολογίζουμε την τιμή του (x,y)της νέας εικόνας I 2 με 2 τρόπους: Βήμα 2α:Παρεμβολή κοντινότερου γείτονα: Βρίσκουμε το pixelτης αρχικής εικόνας του οποίου το κέντρο βρίσκεται πιο κοντά στο σημείο της προβολής με στρογγυλοποίηση: I 2 (x,y)= I 1 (round(x 1 ),round(y 1 )) Βήμα 2β:Διγραμμική Παρεμβολή: Θέτουμε την τιμή του (x 1,y 1 ) ζητούμενου pixelτης τελικής εικόνας I 2, ίση με την τιμή της αρχικής εικόνας I 1 στη θέση (x,y). Επειδή τα (x 1,y 1 )είναι εν γένει πραγματικοί αριθμοί, εφαρμόζουμε διγραμμική παρεμβολή: ( ) ( 1 1 ) ( ) ([ 1] [ 1] ) ( ) 1( [ 1] [ 1] ) ( ) (, ) (, ) [ ],[ ] ( )( ) [ ] [ ] + abi [ y ] + 1, [ x ] + 1 I y x = I y x = I y + a y + b = a 1 b I y, x + a 1 b I y, x a bi y + 1, x Κ. Δελήμπασης

13 Αλγόριθμος περιστροφής εικόνας για διόρθωση artifact, βάσει του κοντινότερου γείτονα Α=T(-CM)R(θ)T(CM) for i=1:256 end; for j=1:256 end; [i1,j1] T =(A -1 )*[i,j] T if i1>256 i1=256; if i1<=1 i1=1; if j1>256 j1=256; if j1<=1 j1=1; IM2(i,j)= IM(round(i1),round(j1)); // Υπολογισμός του πίνακα περιστροφής Α // Για κάθε pixelτης νέας εικόνας Ι2 // Υπολογισμός του pixel της Ι1 από το οποίο // προέρχεται με χρήση του αντίστροφου του Α // Ελεγχος αν το (i1,j1) είναι εντός // της αρχικής εικόνας // Μέθοδος του κοντινότερου γείτονα Κ. Δελήμπασης

14 Παράδειγμα περιστροφής εικόνας χωρίς artifactsμε χρήση του προηγούμενου αλγόριθμου Παρατηρούμε ότι το artifactτων μηδενικών Pixelέχει διορθωθεί. Η χρήση της παρεμβολής βάσει του κοντινότερου γείτονα είναι πολύ απλή στην υλοποίηση αλλά έχει το μειονέκτημα ότι θολώνει την περιεστραμένη εικόνα. Εναλλακτικά μπορεί να χρησιμοποιηθεί η διγραμμική παρεμβολή. Κ. Δελήμπασης

15 Παραμόρφωση εικόνας με χρήση 4 1 σημείων Μετασχηματισμοί όπως διγραμμικός και προβολικός απαιτούν τουλάχιστον 4 ζεύγη ομόλογων σημείων Κ. Δελήμπασης

16 Γενική μορφή μετασχηματισμού Διγραμμικός (δεν διατηρεί ευθείες) (, ) (, ) x = F x y y = F x y x = a + a x+ a y+ a xy y = b + b x+ b y+ b xy Προβολικός (διατηρεί ευθείες) x a + a x+ a y b + b x+ b y =, y = c x c y c x c y Οι παράμετροι του μετασχηματισμού υπολογίζονται από τα 4 σημεία με τις μετατοπίσεις τους Κ. Δελήμπασης

17 Γεωμετρικοί μετασχηματισμοί ομογενών συντεταγμένων σε 3διαστάσεις (3D) Μετατώπιση, Αντίστροφος μετασχηματισμός ( ) T d d x d y = d z ( ) = ( ) 1 T d T d Κ. Δελήμπασης 17

18 Αλλαγή κλίμακας: S sx s 0 0 y = 0 0 sz Αντίστροφος μετασχηματισμός S ( sx, sy, sz) = S( sx, sy, sz ) Κ. Δελήμπασης 18

19 Περιστροφή γύρω από τους 3 άξονες: Γωνίες Euler Πίνακες περιστροφής γύρω από τους άξονες Χ, Υ, Ζκατά γωνία θ. Ομογενείς συντεταγμένες. Αντίστροφος μετασχηματισμός R x (-θ x ) Προφανώς R x (θ x ) R x (-θ x )=I R x R R y z cos( θ x) sin( θ ) 0 x = 0 sin( θx) cos( θ x) ( θ y) ( θ y) cos 0 sin = sin( θ y) 0 cos( θ y) ( θz) ( θz) ( θ ) ( θ ) cos sin 0 0 sin z cos z 0 0 = Κ. Δελήμπασης 19

20 Γενική μορφή affine 3D με ομογενείς συντεταγμένες Μετασχημ. σημείο xc a11 a12 a13 a14 x y c a21 a22 a23 a 24 y = z c a31 a32 a33 a 34 z Πίνακας Affine Μετασχ. Για να μετασχηματίσουμε Ν σημεία: a11 a12 a13 a14 x1 x2... xn a a a a y y... y N Συντεταγμ. σημείου a31 a32 a33 a 34 z1 z2... z N Κ. Δελήμπασης 20

21 Χωρική ταύτιση εικόνων: Καθορισμός του πίνακα μετασχηματισμού βάσει ομόλογων σημείων Εστω 2 εικόνες Ι1, Ι2 του ίδιου αντικειμένου, που έχουν συλλεχθεί υπό διαφορετική γεωμετρία. Εστω ένας αριθμός από ζεύγη ομόλογωνσημείωνμεταξύ δύο εικόνων: {p ia } στην Ι1 και {p ib }στην Ι2. Ζητείται ο πίνακας που μετασχηματίζει γεωμετρικά την Ι1 στην Ι2, ώστε τα μετασχηματισμένα σημεία {p ia }να συμπίπτουν με τα {p ib }. Λέμε τότε ότι οι δύο εικόνες ταυτίζονται χωρικά (spatial registration). Τα ζεύγη ομόλογων σημείων {p ia }στην Ι1 και {p ib }στην Ι2, i=1,,ν Ν>3, ορίζονται είτε από το χρήστη είτε από κάποια αυτόματη μέθοδο. Ομόλογαείναι δύο σημεία πάνω στα ίδια αντικείμενα στις δύο διαφορετικές εικόνες. Οι εικόνες δεν ταυτίζονται χωρικά, άρα οι συντεταγμένες δύο ομόλογων σημείων δεν θα είναι ίδιες (πχ η μύτη του ασθενή στην Ι1 δεν βρίσκεται στα pixel στα οποία βρίσκεται η μύτη του ίδιου ασθενή στην Ι2). Κ. Δελήμπασης

22 Image I1 Transformed I Παράδειγμα δύο εικόνων Ι1 και Ι2 του ιδίου αντικειμένου (MRI εγκεφάλου) με 5 ζεύγη ομολόγων σημείων που έχουν τοποθετηθεί σε κοινές ανατομικές δομές από τον χρήστη. Κ. Δελήμπασης

23 Για να καθορίσουμε τον μετασχηματισμό Affineχρειαζόμαστε τον πίνακα του μετασχηματισμού ο οποίος έχει 6 αγνώστους: a00, a01, a02, a10, a11, a12 Οι 3 άγνωστοι α 00, α 01, α 02 υπολογίζονται από τις Χ συντεταγμένες των ζευγών ομολόγων σημείων και οι 3 άγνωστοι α 10, α 11, α 12 υπολογίζονται από τις Υ συντεταγμένες. Αν Ν>3 (συνήθης περίπτωση) τότε τα 2 γραμμικά συστήματα είναι υπερκαθορισμένα. Κ. Δελήμπασης

24 Εστω οι πίνακες T (,, ), (,, ) p= a a a q= a a a b T A A A B B B ( x, x,..., xn), b ( x, x,..., xn) = = Πρέπει να επιλυθούν τα γραμμικά συστήματα T T A A x1 y1 1 A A x2 y2 1 A= A A xn y2 1 Ap= b Aq= b 1 2 Ο Α είναι διαστάσεων Nx3 ενώ τα p,qείναι διαστάσεων 3x1και τα b 1,b 2 είναι δαστάσεων Νx1. Μπορεί να χρησιμοποιηθεί ο τελεστής «\» του Matlab: p=a\b1 και q=a\b2. Η παραπάνω λύση ισοδυναμεί με τη μέθοδο ελαχίστων τετραγώνων: T ( ) T ( ) A A p = T A b T 1 A A q= A b 2 Κ. Δελήμπασης

25 Ελαστικοί γεωμετρικοί μετασχηματισμοί Πολλά είδη μετασχηματισμών δε προσεγγίζονται από ολικούς (global) μετασχηματισμούς, όπως affine, bilinear, projective κλπ Ελαστική παραμόρφωση λόγω Αναπνοής, κίνησης καρδιάς, μεταβολή σχήματος στομάχου, ουροδόχος κύστη κλπ Ο πιο γνωστός ελαστικός γεωμετρικός μετασχηματισμός είναι το μοντέλο TPS (Thin Plate Splines)(Bookstein 1989). Κ. Δελήμπασης 25

26 Το μοντέλο TPS (Thin Plate Splines) Εστω ότι έχουμε επιλέξει 2 σύνολα ομόλογων σημείων {x i,y i }, {x i,y i } Κατασκευάζουμε τους πίνακες P, Y Ορίζουμε την συνάρτηση U(r)=r 2 logr 2 : R + R + και κατασκευάζουμε τον πίνακα Κ, όπου r ij η απόσταση των σημείων i, j. Κ. Δελήμπασης 26

27 Κατασκευάζουμε τοn πίνακα L Κατασκευάζουμε τον πίνακα Υ Υπολογίζουμε για κάθε σημείο (x,y)τις νέες του συντεταγμένες βάσει της ακόλουθης διανυσματικής συνάρτησης: Κ. Δελήμπασης 27

28 Παράδειγμα: ταύτιση εικόνων με ελαστικό μετασχηματιισμό (α) (β) Εστω δύο εικόνες του ίδιου αντικειμένου που έχει παραμορφωθεί ελαστικά. Ορίζουμε ζεύγη ομόλογων σημείων στις εικόνες Άναζητούμε τον μετασχηματισμό που παραμορφώνει τη (α) ώστε να ταυτιστεί με την (β) Κ. Δελήμπασης 28

29 Η εφαρμογή του ελαστικού μετασχηματσμού σε συνθετική εικόνα Οι ακμές της Ι2 μετά την εφαρμογή του ελαστικού μετασχηματσμού προβεβλημένες επί της Ι1 Κ. Δελήμπασης 29

30 RANSAC A more robust approach for parameter estimation of geometric transformation Immune to outliers Can be applied to many geometric models Easy to code Computationally efficient Κ. Δελήμπασης 30

31 Linear regression vsrobust approaches Score = Mileage 6 Mileage Time Prof. Noah Snavely Time

32 Testing goodness How can we tell if a point agrees with a line? Compute the distance the point and the line, and threshold Mileage Time Prof. Noah Snavely

33 Testing goodness If the distance is small, we call this point an inlierto the line If the distance is large, it s an outlierto the line For an inlier point and a good line, this distance will be close to (but not exactly) zero For an outlier point or bad line, this distance will probably be large Objective function: find the line with the most inliers (or the fewest outliers) 33 Prof. Noah Snavely

34 Optimizing for inlier count How do we find the best possible line? Score = 7 8 Mileage Time Prof. Noah Snavely

35 RANSAC for estimating homography RANSAC loop: 1. Select four feature pairs (at random) 2. Compute homography H (exact) 3. Compute inlierswhere SSD(p i, H p i) < ε 4. Keep largest set of inliers 5. Re-compute least-squares H estimate on all of the inliers Prof. Noah Snavely

36 RANSAC RANSAC loop: 1. Randomly select a seed groupof matches 2. Compute transformation from seed group 3. Find inliers to this transformation 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers Keep the transformation with the largest number of inliers

37 RANSAC example: Translation Putative matches : Computational Photography Alexei Efros, CMU, Fall 2005 Source: A. Efros

38 RANSAC example: Translation Select one match, count inliers : Computational Photography Alexei Efros, CMU, Fall 2005 Source: A. Efros

39 RANSAC example: Translation Select one match, count inliers : Computational Photography Alexei Efros, CMU, Fall 2005 Source: A. Efros

40 RANSAC example: Translation Select translation with the most inliers Source: A. Efros

41 How Many Samples? On average N I m number of point number of inliers size of the sample P(good) = mean time before the success E(k) = 1 / P(good)

42 How Many Samples? With confidence p

43 How Many Samples? N I m number of point number of inliers size of the sample With confidence p P(good) = P(bad) = 1 P(good) P(bad ktimes) = (1 P(good)) k

44 How Many Samples? With confidence p P(bad ktimes) = (1 P(good)) k 1 -p klog (1 P(good)) log(1 p) k log(1 p) / log (1 P(good))

45 How Many Samples I/ N[%] Size of the sample m

Γεωμετρικοί μετασχηματιμοί εικόνας

Γεωμετρικοί μετασχηματιμοί εικόνας Γεωμετρικοί μετασχηματιμοί εικόνας Μάθημα: Υπολογιστική Οραση 1 Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στονευκλείδιοχώρο: p=[x p,y p,z p ] T, όπου x p, y p, z p πραγματικοί αριθμοί. ΕστωΕ 3 τοσύνολοτωνp.

Διαβάστε περισσότερα

Βασικές αρχές παρεμβολής σημάτων και εικόνων

Βασικές αρχές παρεμβολής σημάτων και εικόνων Βασικές αρχές παρεμβολής σημάτων και εικόνων Κ. Δελήμπασης ΠΜΣ : Υπολογιστική Ιατρική και Βιολογία Μάθημα: Ειδικά θέματα Αριθμητικής Ανάλυσης και Εφαρμοσμένων Μαθηματικών Παρεμβολή (interpolation) Τα διακριτά

Διαβάστε περισσότερα

Γεωμετρικοί Μετασχηματισμοί

Γεωμετρικοί Μετασχηματισμοί Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στον Ευκλείδιο χώρο: p=[ p, p,z p ] T, όπου p, p, z p πραγματικοί αριθμοί. Εστω Ε 3 το σύνολο των p. Ενας γεωμετρικός μετασχηματισμός Τ(π), με διάνυσμα παραμέτρων

Διαβάστε περισσότερα

2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων

2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων 2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Επανάληψη 3 Συσχετισμένοι 4 Γραμμικοί

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί εξιόστροφο σύστημα Θετικές περιστροφές ως προς τους άξονες συντεταγμένων x, y, z Αριστερόστροφο Σύστημα Αναπαράσταση

Διαβάστε περισσότερα

References. Chapter 10 The Hough and Distance Transforms

References.   Chapter 10 The Hough and Distance Transforms References Chapter 10 The Hough and Distance Transforms An Introduction to Digital Image Processing with MATLAB https://en.wikipedia.org/wiki/circle_hough_transform Μετασχηματισμός HOUGH ΤΕΧΝΗΤΗ Kostas

Διαβάστε περισσότερα

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι

Διαβάστε περισσότερα

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διαλέξεις #-# Σύνθεση Δ Μετασχηματισμών Ομογενείς Συντεταγμένες Παραδείγματα Μετασχηματισμών

Διαβάστε περισσότερα

ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΒΙΟΜΗΧΑΝΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Συµπληρωµατικές Σηµειώσεις Προχωρηµένο Επίπεδο Επεξεργασίας Εικόνας Σύνθεση Οπτικού Μωσαϊκού ρ. Γ. Χ. Καρράς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Τοµέας Μηχανολογικών

Διαβάστε περισσότερα

Θεωρία μετασχηματισμών

Θεωρία μετασχηματισμών Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί

Διαβάστε περισσότερα

Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής

Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης ΣΤ Εξάμηνο Δρ Κωνσταντίνος Δεμερτζής η Μετασχηματισμοί kdemertz@fmenr.duth.gr Μετασχηματισμοί Κατά τον σχηματισμό του εικονικού κόσμου

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ

ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Ευθυγράμμιση ιατρικών δεδομένων:

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

Advances in Digital Imaging and Computer Vision. Image Registration and Transformation

Advances in Digital Imaging and Computer Vision. Image Registration and Transformation Advances in Digital Imaging and Computer Vision Image Registration and Transformation Γεωμετρικοί Μετασχηματισμοί Εικόνας και Ευθυγράμμιση Image Transformation and Registration Κώστας Μαριάς Αναπληρωτής

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ

Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός Ax μπορεί να ειδωθεί σαν μετασχηματισ Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Μετασχηματισμοί στον R 2 Μπορούν να παρασταθούν (και να υλοποιηθούν) με πολλαπλασιασμό πινάκων Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

Μετασχηματισμοί Μοντελοποίησης (modeling transformations)

Μετασχηματισμοί Μοντελοποίησης (modeling transformations) Μετασχηματισμοί Δ Μετασχηματισμοί Μοντελοποίησης (modeling trnformtion) Καθορισμός μετασχηματισμών των αντικειμένων Τα αντικείμενα περιγράφονται στο δικό τους σύστημα συντεταγμένων Επιτρέπει την χρήση

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα

Απεικόνιση Υφής. Μέρος Α Υφή σε Πολύγωνα Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος Α Υφή σε Πολύγωνα Γ. Γ. Παπαϊωάννου, - 2008 Τι Είναι η Υφή; Η υφή είναι η χωρική διαμόρφωση των ποιοτικών χαρακτηριστικών της επιφάνειας ενός αντικειμένου,

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας Τεχνικές Μείωσης Διαστάσεων Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας 1 Εισαγωγή Το μεγαλύτερο μέρος των δεδομένων που καλούμαστε να επεξεργαστούμε είναι πολυδιάστατα.

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Μετασχηματισμοί συντεταγμένων στις 2 διαστάσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα

Διαβάστε περισσότερα

Γραφικά με υπολογιστές

Γραφικά με υπολογιστές Γραφικά με Υπολογιστές Ενότητα # 3: Εισαγωγή Φοίβος Μυλωνάς Τμήμα Πληροφορικής Φοίβος Μυλωνάς Γραφικά με υπολογιστές 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Μετασχηµατισµοί 2 &3

Μετασχηµατισµοί 2 &3 Μετασχηµατισµοί &3 Περιγράφονται σαν σύνθεση βασικών: µετατόπιση, αλλαγή κλίµακας,περιστροφή, στρέβλωση Χωρίζονται σε γεωµετρικούς (εδώ) και αξόνων (αντίστροφοι) Θέσεις αντικειµένων και φωτεινών πηγών

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Διδάσκων : Επίκ Καθ Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM. Ενότητα # 6: Γραφικά

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM. Ενότητα # 6: Γραφικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα CAD / CAM Ενότητα # 6: Γραφικά Δημήτριος Τσελές Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου,

Σπιν 1/2. Γενικά. 2 Υπενθυμίζουμε ότι τα έξι κουάρκ και τα έξι λεπτόνια του Καθιερωμένου Προτύπου, Σπιν / Γενικά Θα χρησιμοποιήσουμε τις γενικές σχέσεις που αποδείξαμε στην ανάρτηση «Εύρεση των ιδιοτιμών της στροφορμής», που, όπως είδαμε, ισχύουν για κάθε γενική r στροφορμή Jˆ με συνιστώσες Jˆ x, Jˆ

Διαβάστε περισσότερα

Οδηγίες σχεδίασης στο περιβάλλον Blender

Οδηγίες σχεδίασης στο περιβάλλον Blender Οδηγίες σχεδίασης στο περιβάλλον Blender Στον πραγματικό κόσμο, αντιλαμβανόμαστε τα αντικείμενα σε τρεις κατευθύνσεις ή διαστάσεις. Τυπικά λέμε ότι διαθέτουν ύψος, πλάτος και βάθος. Όταν θέλουμε να αναπαραστήσουμε

Διαβάστε περισσότερα

Βαθμονόμηση κάμερας Camera Calibration. Κ Δελήμπασης 1

Βαθμονόμηση κάμερας Camera Calibration. Κ Δελήμπασης 1 Βαθμονόμηση κάμερας Camera Calibration Κ Δελήμπασης 1 Βασικές αρχές σχηματισμού εικόνας Σκοτεινός θάλαμος Pinhole camera camera obscura Απόσταση αντικ - κάμ Απόσταση κάμ - είδωλο Ομοια τριγωνα Ομοια τριγωνα

Διαβάστε περισσότερα

Τα ρομπότ στην βιομηχανία

Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Δρ. Φασουλάς Γιάννης

Διαβάστε περισσότερα

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering)

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Υφή Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3D Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης Απομάκρυνση Πίσω Επιφανειών

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας

Διαβάστε περισσότερα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα Κεφάλαιο 3 Μαθηματικό υπόβαθρο Μαθησιακοί στόχοι Μετά την ολοκλήρωση αυτού του κεφαλαίου, ο αναγνώστης θα είναι σε θέση: Να γνωρίζει τις βασικές ιδιότητες και να πραγματοποιεί πράξεις των σημείων και των

Διαβάστε περισσότερα

Κλασικη ιαφορικη Γεωµετρια

Κλασικη ιαφορικη Γεωµετρια Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων, Τοµεας Γεωµετριας Κλασικη ιαφορικη Γεωµετρια Πρώτη Εργασία, 2018-19 1 Προαπαιτούµενες γνώσεις και ϐασική προετοιµασία

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

Χωρικές Περιγραφές και Μετασχηµατισµοί

Χωρικές Περιγραφές και Μετασχηµατισµοί Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"

Σημειώσεις για το μάθημα Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM) ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

Παραλληλισμός δεδομένων ή Φυσικός παραλληλισμός

Παραλληλισμός δεδομένων ή Φυσικός παραλληλισμός Παραλληλισμός δεδομένων ή Φυσικός παραλληλισμός Κ.Γ. Μαργαρίτης προσαρμογή από το μάθημα του Barry Wilkinson ITCS 4145/5145 2006 Cluster Computing Univ. of North Carolina at Charlotte 3.2 Ένας υπολογισμός

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - Π. ΑΣΒΕΣΤΑΣ E MAIL: pasv@uniwa.gr Εφαρμογές ρομποτικής στην Ιατρική Κλασσική χειρουργική Ορθοπεδικές επεμβάσεις Νευροχειρουργική Ακτινοθεραπεία Αποκατάσταση φυσιοθεραπεία 2 Βασικοί

Διαβάστε περισσότερα

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί 5 Γενικά Γραμμικοί Μετασχηματισμοί Μία σχέση μεταξύ των στοιχείων δύο συνόλων Α,Β αντιστοιχίζει στοιχεία του Α με στοιχεία του Β άλλου μέσω ενός κανόνα που μπορεί να

Διαβάστε περισσότερα

h(x, y) = card ({ 1 i n : x i y i

h(x, y) = card ({ 1 i n : x i y i Κεφάλαιο 1 Μετρικοί χώροι 1.1 Ορισμός και παραδείγματα Ορισμός 1.1.1 μετρική). Εστω X ένα μη κενό σύνολο. Μετρική στο X λέγεται κάθε συνάρτηση ρ : X X R με τις παρακάτω ιδιότητες: i) ρx, y) για κάθε x,

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Fast Fourier Transform

Fast Fourier Transform Fast Fourier Transform Παναγιώτης Πατσιλινάκος ΕΜΕ 19 Οκτωβρίου 2017 Παναγιώτης Πατσιλινάκος (ΕΜΕ) Fast Fourier Transform 19 Οκτωβρίου 2017 1 / 20 1 Εισαγωγή Στόχος Προαπαιτούμενα 2 Η ιδέα Αντιστροφή -

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 1 η Σειρά Ασκήσεων Πλαίσια, γεωμετρικοί μετασχηματισμοί και προβολές 1. Y B (-1,2,0) A (-1,1,0) A (1,1,0)

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων

5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων 5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Ευθεία Κύκλος Έλλειψη Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ευθεία 3 Κύκλος

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Μετασχηματισμοί Παρατήρησης και Προβολές

Μετασχηματισμοί Παρατήρησης και Προβολές Μετασχ. Γραφικά Παρατήρησης Υπολογιστών και Προβολές Μετασχηματισμοί Παρατήρησης και Προβολές Γ. Γ. Παπαϊωάννου, - 2008 Στάδια Προβολής στο Επίπεδο Περνάμε από WCS στοτοπικόσύστημα συντεταγμένων του παρατηρητή

Διαβάστε περισσότερα

Φωτογραμμετρία II Ορθοφωτογραφία(Μέρος I) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.

Φωτογραμμετρία II Ορθοφωτογραφία(Μέρος I) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. Φωτογραμμετρία II Ορθοφωτογραφία(Μέρος I) Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. drag@central.ntua.gr Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο

Διαβάστε περισσότερα

Παραμαγνητικός συντονισμός

Παραμαγνητικός συντονισμός Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Τα ρομπότ στην

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης

Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Create Sprite at Runtime

Create Sprite at Runtime Create Sprite at Runtime (with ActionScript 3.0) Free Flash Demos Tested on Adobe CS4 Το σενάριο: Να φτιάξεις ένα sprite (που στον «μουσαμά» του να υπάρχει μια ζωγραφιά, π.χ. ένα τετράγωνο). Αυτό να το

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής:

Με τη σύμβαση της «κινηματικής αλυσίδας», ο μηχανισμός αποτυπώνεται σε πίνακα παραμέτρων ως εξής: ΑΝΩΤΑΤΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΕΙΡΑΙΑ ΤΕΧΝΟΛΟΓΙΚΟΥ ΤΟΜΕΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Τ.Ε. ΤΟΜΕΑΣ ΙΙΙ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Π. Ράλλη & Θηβών 250, 12244 Αθήνα Καθηγητής Γ. Ε. Χαμηλοθώρης αρχείο: θέμα:

Διαβάστε περισσότερα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα 3-Φεβ-2009 ΗΜΥ 429 4. Σήματα 1 Σήματα Σήματα είναι: σχήματα αλλαγών που αντιπροσωπεύουν ή κωδικοποιούν πληροφορίες σύνολο πληροφορίας ή δεδομένων σχήματα αλλαγών στο χρόνο, π.χ. ήχος, ηλεκτρικό σήμα εγκεφάλου

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές

Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές Σύνοψη Το παρόν κεφάλαιο είναι θεμελιώδες για τα συστήματα γραφικών. Αποτελεί τη βάση για την υλοποίηση πολλών πιο πολύπλοκων διαδικασιών όπως ο φωτισμός,

Διαβάστε περισσότερα

Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ

Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ Διπλωματική Εργασία Μεταπτυχιακού Προγράμματος στην Εφαρμοσμένη Πληροφορική Κατεύθυνση: Συστήματα Υπολογιστών

Διαβάστε περισσότερα

Μετασχηµατισµοί 2 & 3

Μετασχηµατισµοί 2 & 3 Μετασχηµατισµοί & 3 Περιγράφονται σαν σύνεση βασικών: µετατόπιση αλλαγή κλίµακαςπεριστροφή στρέβλωση Χωρίζονται σε γεωµετρικούς (εδώ) και αξόνων (αντίστροφοι) Θέσεις αντικειµένων και φωτεινών πηγών Θέση

Διαβάστε περισσότερα

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης Προβολές Προβολές Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε Δ συσκευές. Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3Δ Μαθηματικά Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

t : (x, y) x 2 +y 2 y x

t : (x, y) x 2 +y 2 y x Σύνοψη Κεφαλαίου 5: Αντιστροφική Γεωμετρία Αντιστροφή 1. Η ανάκλαση σε μία ευθεία l στο επίπεδο απεικονίζει ένα σημείο A σε ένα σημείο A που απέχει ίση απόσταση από την l αλλά βρίσκεται στην άλλη πλευρά

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής. Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ειδικά Θέµατα Υπολογιστικής Όρασης & Γραφικής Εµµανουήλ Ζ. Ψαράκης & Αθανάσιος Τσακαλίδης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μωσαϊκά-Συρραφή Εικόνων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Θέαση στις 3D

Γραφικά Υπολογιστών: Θέαση στις 3D 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Θέαση στις 3D Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Σήμερα θα δούμε τα παρακάτω θέματα: Μετασχηματισμοί

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b) 1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό

Διαβάστε περισσότερα

Κεφάλαιο 1: Κινηματική των Ταλαντώσεων

Κεφάλαιο 1: Κινηματική των Ταλαντώσεων Κεφάλαιο : Κινηματική των Ταλαντώσεων Κεφάλαιο : Κινηματική των Ταλαντώσεων. Φαινομενολογικός ορισμός ταλαντώσεων Μεταβολές σε φυσικά φαινόμενα που χαρακτηρίζονται από μια κανονική επανάληψη κατά ορισμένα

Διαβάστε περισσότερα

Το στοιχείο που διαφοροποιεί τις γεωγραφικές πληροφορίες από τους υπόλοιπους τύπους πληροφοριών

Το στοιχείο που διαφοροποιεί τις γεωγραφικές πληροφορίες από τους υπόλοιπους τύπους πληροφοριών Γεωγραφική θέση Το στοιχείο που διαφοροποιεί τις γεωγραφικές πληροφορίες από τους υπόλοιπους τύπους πληροφοριών Η τριάδα: () θέση στο χώρο, (2) θέση στο χρόνο και (3) θεματικά χαρακτηριστικά αποτελεί τη

Διαβάστε περισσότερα

από t 1 (x) = A 1 x A 1 b.

από t 1 (x) = A 1 x A 1 b. Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από

Διαβάστε περισσότερα

Περιεχόμενα 1 ΑΝΑΘΕΩΡΗΣΕΙΣ ΓΕΝΙΚΑ ΓΕΩΑΝΑΦΟΡΑ ΕΙΚΟΝΩΝ ΜΕΣΩ RASTER DESIGN (AUTOCAD)... 3

Περιεχόμενα 1 ΑΝΑΘΕΩΡΗΣΕΙΣ ΓΕΝΙΚΑ ΓΕΩΑΝΑΦΟΡΑ ΕΙΚΟΝΩΝ ΜΕΣΩ RASTER DESIGN (AUTOCAD)... 3 Περιεχόμενα 1 ΑΝΑΘΕΩΡΗΣΕΙΣ... 2 2 ΓΕΝΙΚΑ... 3 3 ΓΕΩΑΝΑΦΟΡΑ ΕΙΚΟΝΩΝ ΜΕΣΩ RASTER DESIGN (AUTOCAD)... 3 Σελίδα: 1 από 11 1 ΑΝΑΘΕΩΡΗΣΕΙΣ Α/Α Έκδοση Παρατηρήσεις 1 1.00 / 26-03-2018 Αρχική έκδοση 2. 3. Σελίδα:

Διαβάστε περισσότερα

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς

ΠΟΛΥΚΡΙΤΗΡΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΠΟΦΑΣΕΩΝ. Χάρης Δούκας, Πάνος Ξυδώνας, Ιωάννης Ψαρράς Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών Και Μηχανικών Υπολογιστών ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ Εργαστήριο Συστημάτων Αποφάσεων και Διοίκησης ΠΟΛΥΚΡΙΤΗΡΙΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα