Οδηγίες σχεδίασης στο περιβάλλον Blender

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Οδηγίες σχεδίασης στο περιβάλλον Blender"

Transcript

1 Οδηγίες σχεδίασης στο περιβάλλον Blender Στον πραγματικό κόσμο, αντιλαμβανόμαστε τα αντικείμενα σε τρεις κατευθύνσεις ή διαστάσεις. Τυπικά λέμε ότι διαθέτουν ύψος, πλάτος και βάθος. Όταν θέλουμε να αναπαραστήσουμε ένα αντικείμενο στην οθόνη του υπολογιστή, θα πρέπει να υπολογίσουμε το γεγονός ότι το πρόσωπο που βλέπει το αντικείμενο περιορίζει την οπτική του σε δύο διαστάσεις: το ύψος, από την κορυφή έως τη βάση της οθόνης και το πλάτος από αριστερά προς τα δεξιά. Οι εφαρμογές που χρησιμοποιούν τρισδιάστατες σκηνές έχουν σχεδιαστεί και προγραμματιστεί με πραγματικές τρισδιάστατες πληροφορίες σε σχέση με τα αντικείμενα, τα τοπία, τους χαρακτήρες κτλ. Όλες οι ενέργειες, οι κινήσεις, οι περιστροφές που συμβαίνουν κατά τη διάρκεια της εξέλιξης μιας σκηνής υπολογίζονται σε τρισδιάστατη εσωτερική απεικόνιση στο πλαίσιο της υπολογιστικής διαδικασίας. Επομένως, είναι απαραίτητο να προσομοιωθεί η Τρίτη διάσταση, το βάθος, στην οθόνη. Αυτή η προσομοίωση των τριών διαστάσεων στην οθόνη αποκαλείται ως 3D μοντέλο. Για να κάνουμε το μοντέλο πιο ρεαλιστικό στην αίσθηση, προσθέτουμε οπτικά χαρακτηριστικά όπως σκίαση, σκιές και υφές. Ολόκληρη η διαδικασία υπολογισμού της εμφάνισης ενός τρισδιάστατου μοντέλου, δηλαδή η μετατροπή του σε μία οντότητα που μπορεί να σχεδιαστεί σε μία δισδιάστατη οθόνη και να απεικονιστεί πραγματικά, ονομάζεται απόδοση (rendering). Συστήματα συντεταγμένων Όταν αναφερόμαστε στη μέτρηση διαστάσεων ενός αντικειμένου, χρησιμοποιούμε ομάδες αριθμών που αποκαλούμε συντεταγμένες για να σηματοδοτήσουμε κάθε κορυφή του αντικειμένου. Συνήθως χρησιμοποιούμε τις μεταβλητές X, Y, Z για να αναπαραστήσουμε κάθε μία από τις τρεις διαστάσεις σε κάθε ομάδα συντεταγμένων ή τριάδα. Υπάρχουν διαφορετικοί τρόποι για να οργανωθεί η έννοια των συντεταγμένων, γνωστή ως συστήματα συντεταγμένων. Θα πρέπει να αποφασίσουμε ποιες από τις μεταβλητές μας θα αναπαριστούν ποια διάσταση ύψος, πλάτος, βάθος και με ποια σειρά σκοπεύουμε να αναφερόμαστε σε αυτές. Στη συνέχεια θα πρέπει να αποφασίσουμε που βρίσκεται το σημείο μηδέν (κορυφή συστήματος συντεταγμένων) για αυτές τις διαστάσεις και τι σημαίνει σε σχέση με το αντικείμενό μας. Αφού έχουμε ολοκληρώσει αυτή τη θεώρηση, θα έχουμε καθορίσει το σύστημα συντεταγμένων μας. Όταν σκεφτόμαστε για 3D αντικείμενα, κάθε μία από τις κατευθύνσεις αντιπροσωπεύεται από έναν άξονα, μία ευθεία μιας διάστασης που διαπερνά το σημείο μηδέν. Το πλάτος ή το δεξιά αριστερά είναι συνήθως ο άξονας Χ, το ύψος ή το πάνω κάτω είναι ο άξονας Υ και το βάθος ή το κοντά μακριά είναι συνήθως ο άξονας Ζ. Χρησιμοποιώντας αυτές τις ευθείες, έχουμε ένα καθορισμένο ΧΥΖ σύστημα αξόνων, όπως φαίνεται στο παρακάτω σχήμα: Τα πρώτα βήματα σχεδίασης με το λογισμικό BLENDER Λιβανός Γ. Παπαδημητρίου Δ. Σελίδα 1

2 Τώρα, όταν εξετάζουμε ένα αντικείμενο σε απομόνωση, ο 3D χώρος που καταλαμβάνει λέγεται χώρος του αντικειμένου. Το σημείο στο χώρο του αντικειμένου όπου Χ, Υ, Ζ είναι 0 είναι συνήθως το γεωμετρικό κέντρο του αντικειμένου. Το γεωμετρικό κέντρο ενός αντικειμένου βρίσκεται συνήθως μέσα στο αντικείμενο. Εάν θετικές τιμές Χ βρίσκονται στα δεξιά, θετικές τιμές Υ βρίσκονται επάνω και θετικές τιμές Ζ είναι μακριά από εμάς, το σύστημα συντεταγμένων ονομάζεται αριστερόστροφο. Κάθε εφαρμογή/πρόγραμμα δύναται να χρησιμοποιήσει το δικό της σύστημα συντεταγμένων, με δικές της/του συμβάσεις κι ονομασίες. Οι έννοιες αριστερόστροφο-δεξιόστροφο καθορίζονται από τον κανόνα των τριών δακτύλων του χεριού, όπως φαίνεται στο παρακάτω σχήμα: Αριστερόστροφο σύστημα συντεταγμένων Δεξιόστροφο σύστημα συντεταγμένων Έχοντας ορίσει ένα σύστημα συντεταγμένων, μπορούμε να καθορίσουμε οποιαδήποτε τοποθεσία σε ένα αντικείμενο ή σε έναν κόσμο χρησιμοποιώντας μία τριάδα, όπως π.χ. (5,-3,2). Κατά σύμβαση, αυτό θα μπορούσε να ερμηνευτεί ως Χ=5, Υ=-3, Ζ=2. Μία τριάδα διαστάσεων ορίζεται πάντα στη μορφή ΧΥΖ. Ας δούμε ένα απλό παράδειγμα: οι διαστάσεις του κύβου του παρακάτω σχήματος είναι δύο μονάδες σε εύρος, 2 μονάδες σε βάθος και δύο μονάδες σε ύψος ή 2_2_2. Σε αυτό το σχέδιο, το οποίο απεικονίζεται στο χώρο του αντικειμένου, το γεωμετρικό κέντρο είναι μετατοπισμένο σε μία θέση έξω από τον κύβο, γεγονός που έρχεται σε αντίθεση με το γενικό ισχυρισμό ότι τα γεωμετρικά κέντρα βρίσκονται συνήθως μέσα στα αντικείμενα. Υπάρχουν φορές που οι εξαιρέσεις δεν είναι μόνο δυνατές, αλλά αναγκαίες. Εξετάζοντας το σχέδιο, μπορούμε να δούμε το σχήμα του αντικειμένου και τις διαστάσεις του πολύ καθαρά. Η κάτω αριστερή πρόσθια γωνία του κύβου βρίσκεται στη θέση X=0, Y=1, Z=-2. Στο σχήμα υπάρχουν περισσότερες πληροφορίες από ό, τι χρειάζεται, ενώ θα μπορούσαμε να σχεδιάσουμε τις συντεταγμένες χρησιμοποιώντας τις κατευθυντήριες γραμμές και να βρούμε τις θέσεις των κορυφών στους άξονες. Οι γραμμές των αξόνων με σημειωμένες τις τιμές πραγματικά φορτώνουν το σχέδιο κι έτσι έχει γίνει κοινά αποδεκτό στα γραφικά των υπολογιστών να μην αναπαρίστανται αυτοί οι δείκτες. Αντίθετα, προσπαθούμε να χρησιμοποιούμε το ελάχιστο ποσό των πληροφοριών που απαιτούνται για την απεικόνιση του αντικειμένου. Έτσι, το μόνο που πραγματικά χρειάζεται να διευκρινιστεί είναι αν το αντικείμενο βρίσκεται στο χώρο αντικειμένου (local view) ή στο χώρο του κόσμου (global view) και ποιες είναι οι συντεταγμένες κάθε κορυφής. Θα πρέπει επίσης να συνενώσουμε τις κορυφές με τις γραμμές που δείχνουν τις ακμές. Τα πρώτα βήματα σχεδίασης με το λογισμικό BLENDER Λιβανός Γ. Παπαδημητρίου Δ. Σελίδα 2

3 Προβολή 3D μοντέλων Εφόσον έχουμε ορίσει το 3D μοντέλο του αντικειμένου ενδιαφέροντος, πιθανόν να θέλουμε να προβάλουμε μία όψη του. Τα μοντέλα δημιουργούνται στο χώρο του αντικειμένου, αλλά για να τα προβάλλουμε στον τρισδιάστατο κόσμο, χρειάζεται να τα μετατρέψουμε σε χωρικές συντεταγμένες του κόσμου. Αυτό απαιτεί τρία βήματα μετατροπής πέρα από την πραγματική δημιουργία του μοντέλου στο χώρο του. Κάθε μία από αυτές μετατροπές περιλαμβάνει μαθηματικές πράξεις που πραγματοποιούνται στις κορυφές του αντικειμένου. Το πρώτο βήμα επιτυγχάνεται με τη διαδικασία που ονομάζεται μετασχηματισμός, το βήμα 2 είναι αυτό που αποκαλούμε 3D απόδοση και το βήμα 3 περιγράφει αυτό που είναι γνωστό ως 2D απόδοση. Μετασχηματισμός: Η πρώτη μετατροπή, η οποία λαμβάνει χώρα στις συντεταγμένες του χώρου μας, είναι απαραίτητη διότι πρέπει να τοποθετήσουμε το αντικείμενο μας σε κάποια θέση. Καλούμε αυτή τη μετατροπή, ως μετασχηματισμό. Ο χρήστης υποδεικνύει, εφαρμόζοντας μετασχηματισμό στο αντικείμενο, τα εξής: Μία λειτουργία κλιμάκωσης (που ελέγχει το μέγεθος του αντικειμένου) Μία περιστροφή ( η οποία θέτει τον προσανατολισμό) Μία απόδοση (η οποία θέτει τη θέση) Ο μετασχηματισμός στο χώρο υποθέτει ότι το αντικείμενο αρχίζει με ένα μετασχηματισμό με τιμές (1.0, 1.0, 1.0) για κλιμάκωση, τιμές (0, 0, 0) για περιστροφή και (0, 0, 0) για απόδοση. Κάθε αντικείμενο σε ένα τρισδιάστατο κόσμο μπορεί να έχει τις δικές του τιμές μετασχηματισμού, οι οποίες θα πρέπει να εφαρμόζονται όταν ο κόσμος/σκηνή μας ετοιμάζεται για απόδοση. 1. Κλιμάκωση ( scaling ): θέτουμε μία κλίμακα στα αντικείμενα με βάση μία τριάδα παραγόντων κλίμακας όπου 1.0 δείχνει μία κλίμακα 1:1. Η λειτουργία κλιμάκωσης είναι γραμμένη παρόμοια με τις συντεταγμένες ΧΥΖ που χρησιμοποιούνται για να υποδηλώσουν τον μετασχηματισμό, εκτός του γεγονότος ότι η λειτουργία αυτή δείχνει πως έχει αλλάξει το μέγεθος του αντικειμένου. Τιμές μεγαλύτερες από 1.0 υποδεικνύουν ότι το αντικείμενο θα πρέπει να γίνει μεγαλύτερο, ενώ τιμές μικρότερες από 1.0 (και μεγαλύτερες από 0) δείχνουν ότι το αντικείμενο θα πρέπει να συρρικνωθεί. 2. Περιστροφή ( rotation ): η περιστροφή δηλώνεται με τον ίδιο τρόπο που οι ΧΥΖ συντεταγμένες χρησιμοποιούνται για να υποδηλώσουν το μετασχηματισμό, εκτός από το ότι η περιστροφή δείχνει το πόσο έχει περιστραφεί το αντικείμενο γύρω από τους τρεις άξονες. Στις περισσότερες περιπτώσεις, οι περιστροφές καθορίζονται χρησιμοποιώντας μία τριάδα βαθμών ως μονάδα μέτρησης. Υπάρχουν επίσης άλλες μέθοδοι αναπαράστασης της περιστροφής που χρησιμοποιούνται σε πιο πολύπλοκες καταστάσεις. Είναι σημαντικό να γίνει αντιληπτό ότι η σειρά περιστροφής που εφαρμόζεται στο αντικείμενο έχει μεγάλη σημασία. Η σύμβαση που είναι πιο επικρατής είναι η roll-pitch-yaw μέθοδος, η οποία υιοθετήθηκε από την αεροπορική κοινότητα και στηρίζεται στην εξής ιδέα: Όταν περιστρέφουμε το αντικείμενο, το κυλάμε γύρω από τον επιμήκη άξονα Z. Μετά το ρίχνουμε γύρω από τον πλευρικό άξονα Χ και τέλος το εκτρέπουμε γύρω από τον κατακόρυφο άξονα Υ. Οι περιστροφές του αντικειμένου εφαρμόζονται στο χώρο του αντικειμένου. Αν εφαρμόσουμε την περιστροφή με διαφορετική σειρά, θα καταλήξουμε με έναν πολύ διαφορετικό προσανατολισμό, παρά το γεγονός ότι οι περιστροφές θα γίνουν με τις ίδιες τιμές. 3. Μετάφραση - μετατόπιση ( translation): η μετάφραση/μετατόπιση είναι η απλούστερη των μετασχηματισμών και η πρώτη που εφαρμόζεται στο αντικείμενο, όταν αυτό μετατρέπεται από το χώρο του αντικειμένου στο χώρο του κόσμου μας. Για να μετατοπίσουμε ένα αντικείμενο εφαρμόζουμε ένα διάνυσμα στις συντεταγμένες της θέσης του. Τα διανύσματα καθορίζονται με διάφορους τρόπους, όμως ο συμβολισμός που χρησιμοποιείται είναι ίδιος με την τριάδα Χ, Υ, Ζ και ονομάζουμε διανυσματική τριάδα. Για παράδειγμα το διάνυσμα με τιμή (3, 9, 7) υποδεικνύει ότι το αντικείμενο θα μετακινηθεί τρεις μονάδες στη θετική κατεύθυνση του άξονα Χ, εννέα μονάδες στη θετική κατεύθυνση του άξονα Υ και επτά μονάδες στη θετική κατεύθυνση στον άξονα Ζ. Η μετατόπιση εφαρμόζεται στο χώρο του κόσμου, οπότε η κατεύθυνση Χ σε αυτή την περίπτωση θα είναι ανατολική, η Ζ κατεύθυνση θα είναι προς τα κάτω (προς το έδαφος). Ούτε ο προσανατολισμός ούτε το μέγεθος του αντικειμένου αλλάζει. Τα πρώτα βήματα σχεδίασης με το λογισμικό BLENDER Λιβανός Γ. Παπαδημητρίου Δ. Σελίδα 3

4 Ο πλήρης μετασχηματισμός περιλαμβάνει όλες τις παραπάνω ενέργειες μαζί. Η σειρά που θα χρησιμοποιήσουμε για να εφαρμόσουμε τις μεταμορφώσεις είναι σημαντική. Στη μεγάλη πλειονότητα των περιπτώσεων η σωστή σειρά είναι κλιμάκωση, περιστροφή και στη συνέχεια μετατόπιση. Ο λόγος είναι ότι διαφορετικά πράγματα συμβαίνουν ανάλογα με τη σειρά. Θα πρέπει να θυμόμαστε ότι τα αντικείμενα δημιουργήθηκαν στο χώρο των αντικειμένων και μετακινήθηκαν στο χώρο του κόσμου. Όταν περιστρέφουμε το αντικείμενο, το περιστρέφουμε γύρω από τους άξονες με την αρχή στο (0, 0, 0) και μετά το μεταφράζουμε στη νέα θέση. Αν πρώτα μετατοπίσουμε το αντικείμενο στο χώρο και μετά το περιστρέψουμε, το αντικείμενο θα καταλήξει σε μία διαφορετική θέση. Απόδοση ( rendering ) Η απόδοση είναι η διαδικασία της μετατροπής του 3D μαθηματικού μοντέλου ενός αντικειμένου σε μία οθόνη 2D. Όταν αποδίδουμε ένα αντικείμενο, πρωταρχικό μας καθήκον είναι να υπολογίσουμε την εμφάνιση των διαφόρων όψεων του αντικειμένου, να μετατρέψουμε αυτές τις όψεις σε 2D και να στείλουμε το αποτέλεσμα στην κάρτα οθόνης, η οποία στη συνέχεια θα λάβει όλα τα αναγκαία μέτρα για να εμφανιστεί το αντικείμενο στην οθόνη. Υπάρχουν διάφορες τεχνικές απόδοσης. Ορισμένες από αυτές παρέχουν μία φυσική και ρεαλιστική εμφάνιση, ωστόσο αυτή η προσέγγιση χαρακτηρίζεται από το ακόλουθο trade-off: όσο καλύτερη είναι η τεχνική τόσο μεγαλύτερη είναι η υπολογιστική ισχύς που απαιτείται. Έτσι, δεν είναι όλες οι εφαρμογές και το υλικό ικανά να χειριστούν όλους τους τύπους απόδοσης. Οι τεχνικές rendering μπορούν να παράγουν ποικίλα αποτελέσματα, τα οποία ενδεχομένως να μην είναι ικανοποιητικά. Τα πρώτα βήματα σχεδίασης με το λογισμικό BLENDER Λιβανός Γ. Παπαδημητρίου Δ. Σελίδα 4

5 Γραφήματα σκηνής Δημιουργία σκηνών Εκτός από τη γνώση του τρόπου με τον οποίο κατασκευάζονται και αποδίδονται τρισδιάστατα τα αντικείμενα, οι μηχανές 3D χρειάζεται να γνωρίζουν πώς τα αντικείμενα ορίζονται στον εικονικό κόσμο και πώς παρακολουθούνται οι αλλαγές, ο προσανατολισμός και άλλες δυναμικές πληροφορίες. Αυτό γίνεται χρησιμοποιώντας ένα μηχανισμό ο οποίος καλείται γράφημα σκηνής, μία εξειδικευμένη μορφή ενός κατευθυνόμενου γράφου. Ο γράφος σκηνής διατηρεί πληροφορίες σχετικά με όλες τις οντότητες στον εικονικό κόσμο σε δομές που ονομάζονται κόμβοι. Η 3D μηχανή διασχίζει το γράφημα, εξετάζοντας κάθε κόμβο, έναν κάθε φορά, για να καθορίσει πώς θα αποδώσει κάθε οντότητα στον εικονικό κόσμο. Στο παράδειγμα του παρακάτω σχήματος απεικονίζεται μία απλή παραθαλάσσια σκηνή με το γράφημά της. Οι κόμβοι που χαρακτηρίζονται από ελλείψεις είναι ομάδες κόμβων, οι οποίοι περιέχουν πληροφορίες για την ομάδα και δείχνει σε άλλους κόμβους. Οι κόμβοι που χρησιμοποιούν ορθογώνια είναι απλοί κόμβοι. Αυτοί οι κόμβοι περιέχουν μόνο πληροφορίες σχετικά με τους ίδιους. Στη γενική περίπτωση, δεν περιέχουν όλοι οι κόμβοι όλες τις πληροφορίες που έχουν άλλοι κόμβοι. Πολλές από τις οντότητες σε μία σκηνή δε χρειάζεται καν να αποδοθούν. Σε ένα γράφημα σκηνής, ο κόμβος μπορεί να είναι ο,τιδήποτε. Η πιο συνηθισμένη οντότητα είναι τα τρισδιάστατα σχήματα, ήχοι, φώτα (ή πληροφορίες φωτισμού), ομίχλη και άλλα περιβαλλοντικά φαινόμενα, απόψεις και γεγονότα. Όταν έρχεται η στιγμή για να αποδοθεί μία σκηνή, η εκάστοτε μηχανή απόδοσης θα διαβάσει τους κόμβους στο δένδρο του γραφήματος σκηνής, εφαρμόζοντας όποιες λειτουργίες καθορίζονται. Μετά χρησιμοποιεί τους δείκτες για να μετακινηθεί στον επόμενο κόμβο που θα πρέπει να αποδοθεί. Παράδειγμα γραφήματος σκηνής: οντότητες, κόμβοι, διασυνδέσεις Το τελευταίο μέρος της δημιουργίας μιας 3D εφαρμογής είναι η κατασκευή 3D σκηνών με τα αντικείμενά τους, χαρακτηριστικά που περιλαμβάνουν χαρακτήρες, επίπλωση, αντικείμενα, κτλ. Πολλά αντικείμενα θα είναι κινούμενα και θα έχουν κάποια συμπεριφορά. Όλα αυτά τα αντικείμενα και η σκηνή πρέπει να δημιουργηθούν μέσω κάποιου λογισμικού. Μόλις τα αντικείμενα δημιουργηθούν, αποθηκεύονται σε αρχεία, οπότε μπορούν να χρησιμοποιηθούν και σε άλλα στάδια δημιουργίας της 3D εφαρμογής (π.χ. ένα παιχνίδι). Το λογισμικό 3D που χρησιμοποιείται τείνει να είναι περίπλοκο και σε πολλά από αυτά έχουν ενσωματωθεί και άλλες δυνατότητες. Ένα από τα πιο διαδεδομένα προγράμματα τέτοιου είδους είναι το Blender, με το οποίο έχουμε ξεκινήσει σιγά σιγά να δουλεύουμε! Τα πρώτα βήματα σχεδίασης με το λογισμικό BLENDER Λιβανός Γ. Παπαδημητρίου Δ. Σελίδα 5

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Oι οπτικές επιδράσεις, που μπορεί να προκαλέσει μια εικόνα στους χρήστες, αποτελούν ένα από τα σπουδαιότερα αποτελέσματα των λειτουργιών γραφικών με Η/Υ. Τον όρο της οπτικοποίησης

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

5.1.1 Περιγραφή των συστατικών τμημάτων ενός γραφήματος

5.1.1 Περιγραφή των συστατικών τμημάτων ενός γραφήματος 5. Γραφήματα 5.1 Εισαγωγή 5.1.1 Περιγραφή των συστατικών τμημάτων ενός γραφήματος Το Discoverer παρέχει μεγάλες δυνατότητες στη δημιουργία γραφημάτων, καθιστώντας δυνατή τη διαμόρφωση κάθε συστατικού μέρους

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

Εισαγωγή στο 3DS Max 2009

Εισαγωγή στο 3DS Max 2009 Μάθημα 1ο Εισαγωγή στο 3DS Max 2009 Σε αυτό το μάθημα πραγματοποιείται εκμάθηση του περιβάλλοντος του προγράμματος 3DS Max 2009. Το 3D Studio Max είναι ένα από τα ισχυρότερα προγράμματα δημιουργίας και

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου

Διαβάστε περισσότερα

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διαλέξεις #-# Σύνθεση Δ Μετασχηματισμών Ομογενείς Συντεταγμένες Παραδείγματα Μετασχηματισμών

Διαβάστε περισσότερα

Θεωρία μετασχηματισμών

Θεωρία μετασχηματισμών Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα Κεφάλαιο 3 Μαθηματικό υπόβαθρο Μαθησιακοί στόχοι Μετά την ολοκλήρωση αυτού του κεφαλαίου, ο αναγνώστης θα είναι σε θέση: Να γνωρίζει τις βασικές ιδιότητες και να πραγματοποιεί πράξεις των σημείων και των

Διαβάστε περισσότερα

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή 7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή O θόρυβος 2Δ μας δίνει τη δυνατότητα να δημιουργίας υφής 2Δ. Στο παρακάτω παράδειγμα, γίνεται σχεδίαση γραμμών σε πλέγμα 300x300 με μεταβαλόμενη τιμή αδιαφάνειας

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 1 η Σειρά Ασκήσεων Πλαίσια, γεωμετρικοί μετασχηματισμοί και προβολές 1. Y B (-1,2,0) A (-1,1,0) A (1,1,0)

Διαβάστε περισσότερα

Prost S: Οδοποιΐα Σιδηροδρομική Υδραυλικά έργα

Prost S: Οδοποιΐα Σιδηροδρομική Υδραυλικά έργα Prost S: Οδοποιΐα Σιδηροδρομική Υδραυλικά έργα Χαρακτηριστικά Οριζοντιογραφία Στο γραφικό περιβάλλον της εφαρμογής είναι δυνατή η σχεδίαση οριζοντιογραφιών δρόμων, σιδηροδρομικών γραμμών, ανοικτών και

Διαβάστε περισσότερα

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1

Γραφικά & Οπτικοποίηση. Κεφάλαιο 1. Εισαγωγή. Γραφικά & Οπτικοπίηση: Αρχές & Αλγόριθμοι Κεφάλαιο 1 Γραφικά & Οπτικοποίηση Κεφάλαιο 1 Εισαγωγή Ιστορικά Ιστορική ανασκόπηση : 2 Ιστορικά (2) Ρυθμοί ανάπτυξης CPU και GPU 3 Εφαρμογές Ειδικά εφέ για ταινίες & διαφημίσεις Επιστημονική εξερεύνηση μέσω οπτικοποίησης

Διαβάστε περισσότερα

Αρχιτεκτονική σχεδίαση με ηλεκτρονικό υπολογιστή

Αρχιτεκτονική σχεδίαση με ηλεκτρονικό υπολογιστή Γ Αρχιτεκτονική σχεδίαση με ηλεκτρονικό υπολογιστή Η χρήση των ηλεκτρονικών υπολογιστών στο τεχνικό σχέδιο, και ιδιαίτερα στο αρχιτεκτονικό, αποτελεί πλέον μία πραγματικότητα σε διαρκή εξέλιξη, που επηρεάζει

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Dcad 1.0

ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Dcad 1.0 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Dcad 1.0 20130510 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εγκατάσταση προγράμματος DCAD 2 2. Ενεργοποίηση Registration 2 3. DCAD 3 3.1 Εισαγωγή σημείων 3 3.2 Εξαγωγή σημείων 5 3.3 Στοιχεία ιδιοκτησίας

Διαβάστε περισσότερα

Περιοχή εργασίας. Τμ. Γραφιστικής (Γραφιστική με Η/Υ - In Design) 2

Περιοχή εργασίας. Τμ. Γραφιστικής (Γραφιστική με Η/Υ - In Design) 2 Περιοχή εργασίας A. Παράθυρο εγγράφου B. Συγκέντρωση πινάκων συμπτυγμένων σε εικονίδια Γ. Γραμμή τίτλου πίνακα Δ. Γραμμή μενού E. Γραμμή επιλογών Στ. Παλέτα εργαλείων Ζ. Κουμπί σύμπτυξης σε εικονίδια Η.

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis)

Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η ΜΕΘΟΔΟΣ PCA (Principle Component Analysis) Η μέθοδος PCA (Ανάλυση Κύριων Συνιστωσών), αποτελεί μία γραμμική μέθοδο συμπίεσης Δεδομένων η οποία συνίσταται από τον επαναπροσδιορισμό των συντεταγμένων ενός

Διαβάστε περισσότερα

Γραφικά με Η/Υ / Εισαγωγή

Γραφικά με Η/Υ / Εισαγωγή Γραφικά με Η/Υ Εισαγωγή Πληροφορίες μαθήματος (1/4) Υπεύθυνος μαθήματος: Μανιτσάρης Αθανάσιος, Καθηγητής ιδάσκοντες: Μανιτσάρης Αθανάσιος: email: manits@uom.gr Μαυρίδης Ιωάννης: email: mavridis@uom.gr

Διαβάστε περισσότερα

Μορφές των χωρικών δεδομένων

Μορφές των χωρικών δεδομένων Μορφές των χωρικών δεδομένων Eάν θελήσουμε να αναπαραστήσουμε το περιβάλλον με ακρίβεια, τότε θα χρειαζόταν μιά απείρως μεγάλη και πρακτικά μη πραγματοποιήσιμη βάση δεδομένων. Αυτό οδηγεί στην επιλογή

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος B Δημιουργία Συντεταγμένων Υφής Γ. Γ. Παπαϊωάννου, - 2008 Γενικά Είδαμε ότι μπορούμε να αποθηκεύσουμε συντεταγμένες υφής στις κορυφές των τριγώνων

Διαβάστε περισσότερα

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering)

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Υφή Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3D Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης Απομάκρυνση Πίσω Επιφανειών

Διαβάστε περισσότερα

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη;

1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης. Στην Κινηματική

Διαβάστε περισσότερα

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ

Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ Κίνηση ΚΕΦΑΛΑΙΟ 2 Β ΓΥΜΝΑΣΙΟΥ 2.1 Περιγραφή της Κίνησης 1. Τι είναι η Κινηματική; Ποια κίνηση ονομάζεται ευθύγραμμη; Κινηματική είναι ο κλάδος της Φυσικής που έχει ως αντικείμενο τη μελέτη της κίνησης.

Διαβάστε περισσότερα

9. Τοπογραφική σχεδίαση

9. Τοπογραφική σχεδίαση 9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7: ΠΕΡΙΣΤΡΟΦΗ (συνέχεια)

ΜΑΘΗΜΑ 7: ΠΕΡΙΣΤΡΟΦΗ (συνέχεια) ΜΑΘΗΜΑ 7: ΠΕΡΙΣΤΡΟΦΗ (συνέχεια) 1. Να επιλέξεις το λογισμικό Μαθαίνω Γεωμετρία και Μετρώ. Δραστηριότητα 1 2. Από το μενού δραστηριοτήτων, να επιλέξεις το «Περιστροφή, Μεταφορά, Αντιστροφή». Εξερευνώντας

Διαβάστε περισσότερα

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles

Διαβάστε περισσότερα

9. Συστολικές Συστοιχίες Επεξεργαστών

9. Συστολικές Συστοιχίες Επεξεργαστών Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε

Διαβάστε περισσότερα

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; ΚΕΦΑΛΑΙΟ 2 ο ΚΙΝΗΣΗ 2.1 Περιγραφή της Κίνησης 1. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά; Μονόμετρα ονομάζονται τα μεγέθη τα οποία, για να τα προσδιορίσουμε πλήρως, αρκεί να γνωρίζουμε

Διαβάστε περισσότερα

Προγραμματισμός. Το περιβάλλον του scratch

Προγραμματισμός. Το περιβάλλον του scratch Προγραμματισμός Η τέχνη του να μπορούμε να γράφουμε τα δικά μας προγράμματα ονομάζεται προγραμματισμός. Γενικότερα ως προγραμματιστικό πρόβλημα θεωρούμε κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση

Διαβάστε περισσότερα

Αντικείμενα και γεωμετρικοί μετασχηματισμοί

Αντικείμενα και γεωμετρικοί μετασχηματισμοί Αντικείμενα και γεωμετρικοί μετασχηματισμοί Τα βασικά γεωμετρικά αντικείμενα και οι μεταξύ τους σχέσεις μπορούν να περιγραφούν με τρεις βασικές γεωμετρικές οντότητες: σημεία, βαθμωτά μεγέθη, διανύσματα

Διαβάστε περισσότερα

Εκκίνηση προγράμματος

Εκκίνηση προγράμματος Στην απλή αυτή άσκηση θα δούμε πώς μπορούμε να δημιουργήσουμε αντικείμενα, χρησιμοποιώντας το λογισμικό Google Sketchup. Στις ακόλουθες γραμμές περιγράφεται η μεθοδολογίας κατασκευής ενός τραπεζιού, ακολουθώντας

Διαβάστε περισσότερα

Εναλλασσόμενο και μιγαδικοί

Εναλλασσόμενο και μιγαδικοί (olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ

ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ ΣΤΕΡΕΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΤΟΥ ΡΗΓΜΑΤΟΣ ΚΑΙ ΤΩΝ ΚΙΝΗΜΑΤΙΚΩΝ ΑΞΟΝΩΝ Σκοπός Σκοπός της άσκησης αυτής είναι η στερεογραφική απεικόνιση του επιπέδου του ρήγματος, καθώς και του βοηθητικού επιπέδου

Διαβάστε περισσότερα

Πρακτική εφαρμογή στην ειδικότητα: Λογισμικό για τη δημιουργία εργασίας εξαμήνου

Πρακτική εφαρμογή στην ειδικότητα: Λογισμικό για τη δημιουργία εργασίας εξαμήνου Το SketchUp αρχικά ήταν ένα πρόγραμμα της εταιρείας @Last Software σχεδιασμένο για αρχιτέκτονες, πολιτικούς μηχανικούς, σκηνοθέτες, παραγωγούς video-games και ξεκίνησε να γίνεται γνωστό ως ένα γενικής

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

ΣΥΜΒΟΛΙΣΜΟΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΟΝΤΟΤΗΤΩΝ

ΣΥΜΒΟΛΙΣΜΟΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΟΝΤΟΤΗΤΩΝ ΣΥΜΒΟΛΙΣΜΟΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΟΝΤΟΤΗΤΩΝ Χαρτογραφία Ι 1 ΟΡΙΣΜΟΙ Φαινόμενο: Ο,τιδήποτε υποπίπτει στην ανθρώπινη αντίληψη Γεωγραφικό (Γεωχωρικό ή χωρικό) φαινόμενο: Ο,τιδήποτε υποπίπτει στην ανθρώπινη αντίληψη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΚΕΦΑΛΑΙΟ 3 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχεδίαση με τη χρήση Η/Υ ΚΕΦΑΛΑΙΟ 3 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Διαδικασία κατασκευής ορθογωνίου με χρήση προοπτικής

Διαβάστε περισσότερα

Δημιουργώντας 3D μοντέλα από ακμές

Δημιουργώντας 3D μοντέλα από ακμές Δημιουργώντας 3D μοντέλα από ακμές Στην άσκηση αυτή θα μάθετε πώς να δημιουργήσετε ένα ξίφος χρησιμοποιώντας το λογισμικό Blender, κάνοντας επεξεργασία ακμών και ομαδοποιώντας τις με το εργαλείο merge.

Διαβάστε περισσότερα

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3

Σύμβολα και σχεδιαστικά στοιχεία. Μάθημα 3 Σύμβολα και σχεδιαστικά στοιχεία Μάθημα 3 Τα αρχιτεκτονικά σύμβολα αποτελούν μια διεθνή, συγκεκριμένη και απλή γλώσσα. Είναι προορισμένα να γίνονται κατανοητά από τον καθένα, ακόμα και από μη ειδικούς.

Διαβάστε περισσότερα

Το ελικόπτερο. Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

Το ελικόπτερο. Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Το ελικόπτερο Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το ελικόπτερο Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή

ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΚΑΤΑΣΚΕΥΗΣ ΠΑΙΧΝΙΔΙΩΝ: Εργασία με το λογισμικό Valve Editor

ΕΡΓΑΛΕΙΑ ΚΑΤΑΣΚΕΥΗΣ ΠΑΙΧΝΙΔΙΩΝ: Εργασία με το λογισμικό Valve Editor Στην άσκηση αυτή θα εξοικειωθείτε με τη σχεδίαση διαδρόμων με τα εργαλεία Clipping και Vertex καθώς και με τη χρήση οντοτήτων που επιτρέπουν τη σύνδεση χαρτών μεταξύ τους, χρησιμοποιώντας το λογισμικό

Διαβάστε περισσότερα

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙ. OpenOffice 3.x Draw

ΚΕΦΑΛΑΙΟ ΙΙ. OpenOffice 3.x Draw ΚΕΦΑΛΑΙΟ ΙΙ OpenOffice 3.x Draw Στόχοι: Με τη βοήθεια του οδηγού αυτού ο εκπαιδευόμενος θα μπορεί να: χρησιμοποιήσει τα βασικά εργαλεία του OpenOffice Draw για δημιουργία διαγραμμάτων κατασκευάσει τα δικά

Διαβάστε περισσότερα

Σχεδιασμός αρχιτεκτονικών σχεδίων

Σχεδιασμός αρχιτεκτονικών σχεδίων 4. Σχεδιασμός αρχιτεκτονικών σχεδίων ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΕΙΣ Σαμίρ Μπαγιούκ Για να κάνουμε αντιληπτό ένα αντικείμενο στον χώρο, μπορούμε να χρησιμοποιήσουμε τη φωτογράφιση με πολλαπλές λήψεις από διάφορες

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια

ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια ΕΝΟΤΗΤΑ 2 η Μηχανολογικά Κατασκευαστικά Σχέδια Μάθημα 2.6 Τρισδιάστατη στερεά μοντελοποίηση εξαρτημάτων ημιουργία ενός τρισδιάστατου μοντέλου από ένα σχέδιο δύο διαστάσεων. Ορθές προβολές (Top, Bottom,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Μετασχηματισμοί συντεταγμένων στις 2 διαστάσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα

Διαβάστε περισσότερα

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Παράθυρα των εγγράφων Επιφάνεια του σχεδίου. Σχεδιάστε εδώ νέα αντικείμενα με τα εργαλεία σημείων, διαβήτη, σχεδίασης ευθύγραμμων αντικειμένων και κειμένου.

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"

Σημειώσεις για το μάθημα Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM) ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα

Διαβάστε περισσότερα

Μπορούμε να χρησιμοποιήσουμε τις παρακάτω μορφές συντεταγμένων με οποιοδήποτε συνδυασμό θέλουμε. Καρτεσιανές συντεταγμένες

Μπορούμε να χρησιμοποιήσουμε τις παρακάτω μορφές συντεταγμένων με οποιοδήποτε συνδυασμό θέλουμε. Καρτεσιανές συντεταγμένες ΣΥΝΤΕΤΑΓΜΕΝΕΣ Όταν σχεδιάζουμε, πρέπει να προσδιορίζουμε σημεία πάνω σε ένα επίπεδο. Μπορούμε να εντοπίσουμε οποιοδήποτε σημείο στο χώρο, αν ορίσουμε πρώτα ένα απόλυτο, σταθερό σημείο και να μετρήσουμε

Διαβάστε περισσότερα

Μάθημα 1 ο : Εντολές κίνησης

Μάθημα 1 ο : Εντολές κίνησης Μάθημα 1 ο : Εντολές κίνησης Στο πρώτο µάθηµα θα εξοικειωθείς µε τις βασικές εντολές του Scratch που βρίσκονται στην παλέτα κίνηση. Θα µάθεις να µετακινείς ένα αντικείµενο, να το περιστρέφεις και να το

Διαβάστε περισσότερα

Γραφικά Ι. Ενότητα 1: Εισαγωγή. Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Γραφικά Ι. Ενότητα 1: Εισαγωγή. Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Γραφικά Ι Ενότητα 1: Εισαγωγή Θεοχάρης Θεοχάρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ενότητα 1 Εισαγωγή Ιστορικά Ιστορική ανασκόπηση : 3 Ιστορικά (2) Ρυθμοί ανάπτυξης CPU και

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2013 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

Δημιουργώντας γραφικά στο περιβάλλον 3Ds Max χρησιμοποιώντας βασικά εργαλεία

Δημιουργώντας γραφικά στο περιβάλλον 3Ds Max χρησιμοποιώντας βασικά εργαλεία Δημιουργώντας γραφικά στο περιβάλλον 3Ds Max χρησιμοποιώντας βασικά εργαλεία Στην άσκηση αυτή θα μάθετε πώς να χρησιμοποιήσετε βασικά εργαλεία στο περιβάλλον 3Ds Max για να δημιουργήσετε ένα τρισδιάστατο

Διαβάστε περισσότερα

Γραφικά Υπολογιστών & Εικονική Πραγματικότητα. Μετασχηματισμός απεικόνισης & Αλγόριθμοι αποκοπής

Γραφικά Υπολογιστών & Εικονική Πραγματικότητα. Μετασχηματισμός απεικόνισης & Αλγόριθμοι αποκοπής Γραφικά Υπολογιστών & Εικονική Πραγματικότητα Μετασχηματισμός απεικόνισης & Αλγόριθμοι αποκοπής Βασικές λειτουργίες απεικόνισης μετατροπή του παγκόσμιου συστήματος συντεταγμένων, ενός αντικειμένου, σε

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι:

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: ΗΛΙΑΚΑ ΩΡΟΛΟΓΙΑ Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: Οριζόντια Κατακόρυφα Ισημερινά Το παρακάτω άρθρο αναφέρεται στον τρόπο λειτουργίας αλλά και κατασκευής

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Εργαλεία Δημιουργίας Τρισδιάστατων Γραφικών

Εργαλεία Δημιουργίας Τρισδιάστατων Γραφικών Τεχνικός Εφαρμογών Πληροφορικής Εργαλεία Δημιουργίας Τρισδιάστατων Γραφικών Εισαγωγή Εξάμηνο: 2014Β Διδάσκουσα: Ηλεκτρονική Τάξη: http://moodleforall.ictlab.edu.gr/ Περιεχόμενα Τι είναι τα γραφικά Είδη

Διαβάστε περισσότερα

Blender HSGR Lesson Series Lab 1. Presentation by Antony Riakiotakis, this document is licenced under CC BY-SA

Blender HSGR Lesson Series Lab 1. Presentation by Antony Riakiotakis, this document is licenced under CC BY-SA Blender HSGR Lesson Series Lab 1 Presentation by Antony Riakiotakis, this document is licenced under CC BY-SA Όπως λένε και στο πρώτο μαθήμα οδήγησης Αυτό είναι ένα αυτοκίνητο Αυτό είναι το blender Τι

Διαβάστε περισσότερα

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ

Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ ΜΑΘΗΜΑ 2: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης)

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα με γεωγραφική

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ http://users.sch.gr/cdfan ΣΧΟΛΙΚΟ ΕΤΟΣ 2016-2017 Τα φυσικά μεγέθη, θέση,

Διαβάστε περισσότερα

Εισαγωγή στο περιβάλλον Blender

Εισαγωγή στο περιβάλλον Blender Εισαγωγή στο περιβάλλον Blender To Blender αποτελεί μια open source εφαρμογή για τον σχεδιασμό τρισδιάστατων αντικειμένων και περιβαλλόντων. Διανέμεται δωρεάν και υπόκειται στην άδεια χρήσης GNU/GPL. Στις

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Ενότητα: Εισαγωγή στα Υπολογιστικά Φύλλα Εργασίας-Μέρος 2

Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Ενότητα: Εισαγωγή στα Υπολογιστικά Φύλλα Εργασίας-Μέρος 2 Τίτλος Μαθήματος: Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Ενότητα: Εισαγωγή στα Υπολογιστικά Φύλλα Εργασίας-Μέρος 2 Διδάσκων: Αναπληρωτής Καθηγητής Αλέξιος Δούβαλης Τμήμα: Φυσικής Πανεπιστήμιο Ιωαννίνων

Διαβάστε περισσότερα

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

Τι θα απαντούσατε αλήθεια στην ίδια ερώτηση για την περίπτωση της επόμενης εικόνας;

Τι θα απαντούσατε αλήθεια στην ίδια ερώτηση για την περίπτωση της επόμενης εικόνας; Κίνηση με συντεταγμένες Στην προηγούμενη υποενότητα είδαμε πως μπορούμε να κάνουμε το χαρακτήρα σας να κινηθεί με την εντολή κινήσου...βήματα που αποτελεί και την απλούστερη εντολή της αντίστοιχης παλέτας

Διαβάστε περισσότερα

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων

Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Π. Ασβεστάς Γ. Λούντος Τμήμα Τεχνολογίας Ιατρικών Οργάνων Χρήσιμοι Σύνδεσμοι Σημειώσεις μαθήματος: http://medisp.bme.teiath.gr/eclass/ E-mail: gloudos@teiath.gr Σύνθεση και Ανάλυση Δυνάμεων και Ροπών

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 2.9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΑΣΥΜΠΤΩΤΕΣ-ΚΑΝΟΝΑΣ

Διαβάστε περισσότερα

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων 5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o προβλέπετε με βάση τη συμμετρία αν ένα μόριο έχει μόνιμη

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-ΕΙΣΑΓΩΓΗ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-ΕΙΣΑΓΩΓΗ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-ΕΙΣΑΓΩΓΗ Χαρτογραφία Η τέχνη ή επιστήμη της δημιουργίας χαρτών Δημιουργεί την ιστορία μιας περιοχής ενδιαφέροντος Αποσαφηνίζει και κάνει πιο ξεκάθαρο κάποιο συγκεκριμένο

Διαβάστε περισσότερα

Δημιουργώντας 3D μοντέλα από ακμές με χρήση λογικών τελεστών

Δημιουργώντας 3D μοντέλα από ακμές με χρήση λογικών τελεστών Δημιουργώντας 3D μοντέλα από ακμές με χρήση λογικών τελεστών Στην άσκηση αυτή θα μάθετε πώς να δημιουργήσετε ένα ζεύγος ζαριών χρησιμοποιώντας το λογισμικό Blender, κάνοντας επεξεργασία ακμών, εφαρμογή

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

Τελευταία(μεταβολή:(Αύγουστος(2013( 11

Τελευταία(μεταβολή:(Αύγουστος(2013( 11 ΠΑΝΕΠΙΣΤΗΜΙΟΚΡΗΤΗΣ ΤΜΗΜΑΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟΗΛΕΚΤΡΙΣΜΟΥ Χ.Γ.ΜΠΑΧΑΡΙΔΗΣ ΠΑΛΜΟΓΡΑΦΟΣ Ο παλμογράφος είναι το πιο πολύπλοκο όργανο που θα συναντήσει ένας φοιτητής στα εργαστήρια ηλεκτρισμού. Η πλήρης εκμάθηση

Διαβάστε περισσότερα

Οδηγός χρήσης λογισμικού οργάνωσης γραφείου: PowerPoint 2007 Επιμέλεια κειμένων: Ελένη Καραγεώργου-Βράντζα

Οδηγός χρήσης λογισμικού οργάνωσης γραφείου: PowerPoint 2007 Επιμέλεια κειμένων: Ελένη Καραγεώργου-Βράντζα - 317-2. Στην περιοχή Εργαλεία SmartArt, στην καρτέλα Μορφή, της ομάδας Στυλ WordArt, κάντε κλικ στο βέλος που βρίσκεται δίπλα από την επιλογή Γέμισμα κειμένου, και στη συνέχεια κάντε ένα από τα εξής:

Διαβάστε περισσότερα

Λίγα λόγια από το συγγραφέα Κεφάλαιο 1: PowerPoint Κεφάλαιο 2: Εκκίνηση του PowerPoint... 13

Λίγα λόγια από το συγγραφέα Κεφάλαιο 1: PowerPoint Κεφάλαιο 2: Εκκίνηση του PowerPoint... 13 Περιεχόμενα Λίγα λόγια από το συγγραφέα... 7 Κεφάλαιο 1: PowerPoint... 9 Κεφάλαιο 2: Εκκίνηση του PowerPoint... 13 Κεφάλαιο 3: Δημιουργία νέας παρουσίασης... 27 Κεφάλαιο 4: Μορφοποίηση κειμένου παρουσίασης...

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΚΕΦΑΛΑΙΟ 5 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχεδίαση με τη χρήση Η/Υ ΚΕΦΑΛΑΙΟ 5 Ο ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΣΧΕΔΙΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σκιές αντικειμένων (cast shadows): Ορισμός: πρόκειται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Μηχανική Στερεού Σώματος. Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Μηχανική Στερεού Σώματος. Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Εισαγωγή Στην Α Λυκείου είχαμε μελετήσει τη δύναμη προκειμένου

Διαβάστε περισσότερα

Διαγράμματα. Νίκος Σκουλίδης, Σημειώσεις Φυσικής Α` Γυμνασίου, , Διαγράμματα_1_0.docx

Διαγράμματα. Νίκος Σκουλίδης, Σημειώσεις Φυσικής Α` Γυμνασίου, , Διαγράμματα_1_0.docx Διαγράμματα Στα περισσότερα από τα Φύλλα Εργασίας που εργαστήκατε και συμπληρώσατε, είχατε να σχεδιάσετε και ένα διάγραμμα. Ίσως ήταν η πρώτη φορά που ασχοληθήκατε με αυτό το αντικείμενο και να σας φάνηκε

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

ΕΚΘΕΣΗ ΠΕΠΡΑΓΜΕΝΩΝ. καταστροφές υπό το πρίσμα των ψηφιακών τεχνολογιών»

ΕΚΘΕΣΗ ΠΕΠΡΑΓΜΕΝΩΝ. καταστροφές υπό το πρίσμα των ψηφιακών τεχνολογιών» ΕΚΘΕΣΗ ΠΕΠΡΑΓΜΕΝΩΝ του Ευάγγελου Ι. Φιλιππίδη για τη συμμετοχή στο έργο «Εκπαιδευτική εμβάθυνση στις φυσικές καταστροφές υπό το πρίσμα των ψηφιακών τεχνολογιών» και επιστημονικό υπεύθυνο τον κ. Δημήτριο

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

Ένα παιχνίδι των πολυγώνων

Ένα παιχνίδι των πολυγώνων Ένα παιχνίδι των πολυγώνων Το παιγνίδι αυτό, αναπτύχθηκε στα πλαίσια του μαθήματος πληροφορικής της Γ τάξης, στην ενότητα που αφορά στο σχεδιασμό πολυγώνων, απ όλα τα παιδιά, της Γ τάξης του σχολείου μας.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΤΕΡΕΟ ΣΩΜΑ. Ταυτόχρονη διατήρηση της ορμής και της στροφορμής σε κρούση

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΤΕΡΕΟ ΣΩΜΑ. Ταυτόχρονη διατήρηση της ορμής και της στροφορμής σε κρούση N B P Y T ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΤΕΡΕΟ ΣΩΜΑ 9 5 Ταυτόχρονη διατήρηση της ορμής και της στροφορμής σε κρούση - y y h + O x Ω + O V x υ a Σχήμα : Το σύστημα με τους δύο παρατηρητές του φαινομένου

Διαβάστε περισσότερα

Οι θέσεις ενός σημείου στο επίπεδο και στο χώρο Φύλλο εργασίας 1

Οι θέσεις ενός σημείου στο επίπεδο και στο χώρο Φύλλο εργασίας 1 Οι θέσεις ενός σημείου στο επίπεδο και στο χώρο Φύλλο εργασίας 1 1 2 3 Στη «Περιοχή επεξεργασίας αντικειμένων» επιλέξτε την εντολή «Νέο αντικείμενο» και στον κατάλογο που θα εμφανιστεί επιλέξτε «Ευθύγραμμο

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

Σχεδίαση με AutoCAD Περιβάλλον εφαρμογής Βασικές ρυθμίσεις

Σχεδίαση με AutoCAD  Περιβάλλον εφαρμογής Βασικές ρυθμίσεις Σχεδίαση με AutoCAD Ένα από τα πλέον διαδεδομένα και ισχυρά λογισμικά για αρχιτεκτονικό σχεδιασμό είναι το AutoCAD. Στο κεφάλαιο αυτό επιδεικνύονται εισαγωγικά θέματα που χρειάζονται στην φάση αυτή και

Διαβάστε περισσότερα

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ

Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το

Διαβάστε περισσότερα