Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής"

Transcript

1 Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης ΣΤ Εξάμηνο Δρ Κωνσταντίνος Δεμερτζής

2 η Μετασχηματισμοί

3

4 Μετασχηματισμοί Κατά τον σχηματισμό του εικονικού κόσμου και την αλληλεπίδραση του χρήστη με αυτόν, οι συντεταγμένες των εικονικών αντικειμένων αλλάζουν πολύ συχνά: κάθε αντικείμενο δίνεται σε μία αρχική θέση και μέγεθος, όμως κατόπιν τοποθετείται στον εικονικό κόσμο αλλάζοντας θέση, προσανατολισμό και μέγεθος. Επίσης ο χρήστης κινείται μέσα στον εικονικό κόσμο και επομένως αλλάζουν αυτά που βλέπει και συγκεκριμένα οι συντεταγμένες των αντικειμένων ως προς αυτόν. Η κίνηση και γενικότερα η δυναμική είναι ένα εγγενές στοιχείο των συστημάτων γραφικών. Έτσι πρέπει να υπάρχει η δυνατότητα να αλλάζουν κάποιες ιδιότητες πολλών εκ των αντικειμένων μιας σκηνής. Για παράδειγμα ένα αυτοκίνητο εν κινήσει «μεταφέρει» και «περιστρέφει» τη γεωμετρία του στον εικονικό κόσμο. Ακόμα είναι δυνατό να χρησιμοποιούνται αντίγραφα ενός αντικειμένου (π.χ. δένδρο) σε διαφορετικές κλίμακες και σε διαφορετικές θέσεις. Το μαθηματικό εργαλείο για την υλοποίηση όλων των παραπάνω παραδειγμάτων είναι οι μετασχηματισμοί, οι οποίοι συνθέτουν μία από τις πλέον θεμελιώδεις έννοιες των συστημάτων γραφικών.

5 Μετασχηματισμοί Οι επιφάνειες των αντικειμένων στα Γραφικά δημιουργούνται με τη βοήθεια απλών γεωμετρικών σχημάτων (συνηθέστερα τριγώνων) που ενώνονται μεταξύ τους. Με τη βοήθεια των Μαθηματικών μπορεί να δειχθεί ότι για να μετασχηματιστεί ένα τέτοιο απλό σχήμα, αρκεί να εφαρμοστεί ο αντίστοιχος μετασχηματισμός μόνο στις κορυφές του και οι μετασχηματισμένες κορυφές θα σχηματίσουν ακριβώς το ζητούμενο μετασχηματισμένο σχήμα. Αντίστοιχα, για να μετασχηματιστεί ένα ολόκληρο αντικείμενο αρκεί να μετασχηματιστούν μόνο οι κορυφές του.

6 Γραμμικοί Μετασχηματισμοί Έστω ένα 3Δ σύστημα συντεταγμένων Σ1, στο οποίο ένα σημείο P εκφράζεται μέσω των συντεταγμένων του (x,y,z). Έστω τώρα ένα δεύτερο σύστημα συντεταγμένων Σ2, στο οποίο το ίδιο σημείο εκφράζεται μέσω των συντεταγμένων (a,b,c), οι οποίες μπορούν να εκφραστούν ως γραμμικός συνδυασμός των συντεταγμένων (x,y,z) του Σ1. Οι παραπάνω σχέσεις ορίζουν ένα γραμμικό μετασχηματισμό του Σ1 στο Σ2 που μπορεί να γραφεί ως:

7 Γραμμικοί Μετασχηματισμοί Υπό την προϋπόθεση ότι ο μετασχηματισμός είναι αντιστρέψιμος, ο γραμμικός μετασχηματισμός του Σ2 στο Σ1 προκύπτει ως: Το διάνυσμα t=(t1, t2, t3) αντιστοιχεί στη μεταφορά της αρχής των αξόνων του Σ1, ώστε αυτή να συμπέσει με αυτή του Σ2, ενώ ο πίνακας W, συνήθως, σε επανυπολογισμό των διανυσμάτων βάσης. Στις επόμενες παραγράφους και πιο συγκεκριμένα στους ομογενείς μετασχηματισμούς θα δούμε έναν έξυπνο τρόπο να συνδυάσουμε έναν μετασχηματισμό που απαρτίζεται από έναν 3x3 πίνακα W και ένα διάνυσμα t σε έναν και μόνο πίνακα διάστασης 4x4.

8 Γεωμετρικοί Μετασχηματισμοί Συντεταγμένων - Μεταφορά Ο μετασχηματισμός μεταφοράς περιγράφει τη μετακίνηση προς συγκεκριμένη κατεύθυνση κατά συγκεκριμένη απόσταση. Σημαντική πληροφορία για την υλοποίηση του μετασχηματισμού μεταφοράς είναι η ποσότητα της μετακίνησης tx και ty στον άξονα των x και των y αντίστοιχα. Στις 2Δ, ένα σημείο p1=(x,y) μπορεί να μεταφερθεί κατά t=(tx,ty) και το νέο σημείο p2 προκύπτει ως εξής:

9 Γεωμετρικοί Μετασχηματισμοί Συντεταγμένων - Μεταφορά Μεταφορά αντικειμένου με διάνυσμα μετατόπισης (6, -1)

10 Γεωμετρικοί Μετασχηματισμοί Συντεταγμένων - Μεταφορά Ο μετασχηματισμός μεταφοράς γενικεύεται εύκολα στις τρεις διαστάσεις, όπως περιγράφει η παρακάτω σχέση:

11 Γεωμετρικοί Μετασχηματισμοί Συντεταγμένων - Αλλαγή Κλίμακας Ο μετασχηματισμός αλλαγής κλίμακας επηρεάζει και μεταβάλλει εξ ορισμού το μέγεθος των αντικειμένων. Σημαντική πληροφορία για την υλοποίηση του μετασχηματισμού αλλαγής κλίμακας είναι η ποσότητα της μεγέθυνσης ή σμίκρυνσης sx και sy στον άξονα των x και των y αντίστοιχα. Στις 2D, ένα σημείο p1=(x,y) μπορεί να κλιμακωθεί με τη χρήση ενός πίνακα κλιμάκωσης S και το νέο σημείο p2 προκύπτει ως εξής:

12 Γεωμετρικοί Μετασχηματισμοί Συντεταγμένων - Αλλαγή Κλίμακας Στην περίπτωση όπου sx=sy=s, μιλάμε για ομοιόμορφη αλλαγή κλίμακας, όπου η κλιμάκωση λαμβάνει χώρα με τον ίδιο τρόπο και ως προς τους δύο άξονες. Στην περίπτωση αυτή ο πίνακας S μπορεί να αντικατασταθεί με τη βαθμωτή ποσότητα s. Όταν ο συντελεστής κλιμάκωσης έχει τιμή ίση με τη μονάδα, τότε δεν υπάρχει αλλαγή κλίμακας, ενώ μιλάμε για μεγέθυνση ή σμίκρυνση όταν έχει τιμή μεγαλύτερη ή μικρότερη της μονάδας αντίστοιχα.

13 Γεωμετρικοί Μετασχηματισμοί Συντεταγμένων - Αλλαγή Κλίμακας Στην Εικόνα παρουσιάζεται ένα παράδειγμα κλιμάκωσης ενός σχήματος σε 2D.

14 Γεωμετρικοί Μετασχηματισμοί Συντεταγμένων - Αλλαγή Κλίμακας Η κλιμάκωση ως μετασχηματισμός πολλαπλασιάζει με ένα συντελεστή τις συντεταγμένες ενός αντικειμένου. Έστω τώρα το μαύρο τετράγωνο στο παρακάτω σχήμα, το οποίο θέλουμε να μετασχηματίσουμε ώστε να συμπίπτει με το κόκκινο τετράγωνο. Με μια πρώτη ματιά παρατηρούμε ότι το μέγεθος του αντικειμένου έχει διπλασιαστεί. Άρα ένας μετασχηματισμός ομοιόμορφης κλιμάκωσης κατά 2 S(2,2) ίσως να μας έδινε την απάντηση στο πρόβλημά μας. Δεν είναι όμως έτσι, διότι ο μετασχηματισμός εφαρμόζεται στις συντεταγμένες κάθε σημείου του αντικειμένου. Έτσι η παραπάνω κλιμάκωση αντί να επιφέρει το επιθυμητό αποτέλεσμα, θα φέρει το αποτέλεσμα της παρακάτω Εικόνας.

15 Γεωμετρικοί Μετασχηματισμοί Συντεταγμένων - Αλλαγή Κλίμακας Για να μπορέσουμε τώρα να εφαρμόσουμε κλιμάκωση θα πρέπει να χρησιμοποιήσουμε σύνθετους μετασχηματισμούς. Πρέπει, δηλαδή, αρχικά να μεταφέρουμε το αντικείμενο στην αρχή των αξόνων, στη συνέχεια να εκτελέσουμε την επιθυμητή κλιμάκωση και τέλος να το επαναφέρουμε στην επιθυμητή θέση. Οι σύνθετοι μετασχηματισμοί θα αναλυθούν σε επόμενη παράγραφο. Ο μετασχηματισμός κλιμάκωσης γενικεύεται εύκολα στις τρεις διαστάσεις, όπως περιγράφει η παρακάτω σχέση:

16 Περιστροφή σε 2D Η περιστροφή στις δύο διαστάσεις περιστρέφει ένα αντικείμενο γύρω από την αρχή των αξόνων. Σημαντική πληροφορία για την υλοποίηση του μετασχηματισμού περιστροφής στις δύο διαστάσεις είναι η γωνία περιστροφής θ. Ακόμα υιοθετούμε τη σύμβαση ότι θετική είναι μία περιστροφή κατά φορά αντίθετη αυτής των δεικτών του ρολογιού. Έστω, λοιπόν, το σημείο p1=(x,y) το οποίο, όπως απεικονίζει η Εικόνα 3.5 πρέπει να περιστραφεί κατά θ μοίρες και να μετασχηματιστεί στο σημείο p2=(a,b). Περιστροφή κατά θ στις δύο διαστάσεις

17 Περιστροφή σε 2D Παρατηρώντας την Εικόνα 3.5 και έχοντας υπόψη ότι κατά την περιστροφή το μήκος του διανύσματος Οp παραμένει σταθερό, μπορούμε να εξάγουμε εύκολα τις παρακάτω σχέσεις: Η παραπάνω σχέση μπορεί να εκφραστεί και σε μορφή πίνακα ως εξής: όπου R(θ) ο πίνακας περιστροφής:

18 Περιστροφή σε 2D Η παρακάτω εικόνα παρουσιάζει ένα παράδειγμα 2D περιστροφής ενός αντικειμένου: Περιστροφή αντικειμένου κατά θ στις δύο διαστάσεις

19 Περιστροφή σε 2D Όπως και η κλιμάκωση έτσι και η περιστροφή ως μετασχηματισμός επηρεάζει τις συντεταγμένες ενός αντικειμένου. Έστω τώρα το μαύρο τετράγωνο στο παρακάτω σχήμα, το οποίο θέλουμε να μετασχηματίσουμε στο κόκκινο τετράγωνο. Θέλουμε, δηλαδή, να εκτελέσουμε μία περιστροφή 90ο γύρω από το κέντρο βάρους του. Ένας μετασχηματισμός R(90) θα έδινε τη λύση στο πρόβλημά μας; Η απάντηση είναι όχι, διότι ο μετασχηματισμός εφαρμόζεται στις συντεταγμένες κάθε σημείου του αντικειμένου και η περιστροφή λαμβάνει χώρα γύρω από την αρχή των αξόνων. Έτσι, εφαρμόζοντας την παραπάνω περιστροφή αντί να πάρουμε το επιθυμητό αποτέλεσμα, θα πάρουμε αντί αυτού το παρακάτω αποτέλεσμα: Για να μπορέσουμε τώρα να εφαρμόσουμε την περιστροφή πρέπει να χρησιμοποιήσουμε σύνθετους μετασχηματισμούς. Πρέπει, δηλαδή, αρχικά να μεταφέρουμε το αντικείμενο στην αρχή των αξόνων στη συνέχεια να εκτελέσουμε την επιθυμητή περιστροφή και τέλος να το επαναφέρουμε στην επιθυμητή θέση.

20 Περιστροφή σε 3D Η σημαντικότερη θεμελιώδης διαφορά της περιστροφής σε 3D σε σχέση με τις 2D είναι ότι σε 3D δεν ορίζεται περιστροφή γύρω από σημείο, αλλά μπορεί να οριστεί περιστροφή γύρω από άξονα. Έτσι σημαντική πληροφορία για την υλοποίηση του μετασχηματισμού περιστροφής σε 3D είναι η γωνία περιστροφής θ και ο άξονας περιστροφής v. Για την περίπτωση περιστροφής γύρω από έναν από τους τρεις άξονες βάσης του συστήματος συντεταγμένων τα πράγματα είναι απλά. Θεωρώντας την περίπτωση της περιστροφής γύρω από τον άξονα z, τότε έχουμε πρακτικά μια περιστροφή δύο διαστάσεων, κατά την οποία αλλάζουν οι συντεταγμένες x και y, ενώ παραμένει σταθερή η z.

21 Περιστροφή σε 3D Αυτό μπορεί να μοντελοποιηθεί επεκτείνοντας τον 2x2 πίνακα περιστροφής σε πίνακα 3x3 με τη χρήση του μοναδιαίου πίνακα για την τρίτη διάσταση, όπως περιγράφει η παρακάτω σχέση: Κατά αναλογία μπορούν να οριστούν και οι πίνακες που εκτελούν περιστροφή κατά γωνία θ γύρω από τον άξονα των x και y αντίστοιχα:

22 Σύνθετοι 2D Μετασχηματισμοί Πρέπει αρχικά να υπενθυμίσουμε ότι εν γένει είναι σημαντική η σειρά με την οποία εφαρμόζονται οι μετασχηματισμοί. Στις παρακάτω εικόνες απεικονίζονται οι διαφορές στην εφαρμογή με διαφορετική σειρά ενός μετασχηματισμού μεταφοράς t(-3,0) και ενός μετασχηματισμού περιστροφής R(90). Εφαρμογή μετασχηματισμού μεταφοράς t(-3,0) και έπειτα μετασχηματισμού περιστροφής R(90)

23 Σύνθετοι 2D Μετασχηματισμοί Όταν ένας μετασχηματισμός εφαρμοστεί σε ένα σημείο μίας σκηνής τότε έχουμε ως αποτέλεσμα ένα νέο σημείο στη σκηνή. Στο αποτέλεσμα μπορούν να εφαρμοστούν στη συνέχεια επιπλέον μετασχηματισμοί. Για παράδειγμα έστω ένα αντικείμενο με 100 σημεία, το οποίο θέλουμε να κλιμακώσουμε με τον πίνακα S, και να περιστρέψουμε με τον πίνακα R. Δηλαδή, κάθε σημείο του αντικειμένου θέλουμε να μετασχηματιστεί ως εξής: Η πράξη αυτή ισοδυναμεί με δύο πολλαπλασιασμούς πινάκων για κάθε σημείο, άρα για τα 100 σημεία έχουμε 200 πολλαπλασιασμούς πινάκων. Ωστόσο, αντί να πολλαπλασιάσουμε τον πίνακα S με το σημείο p και στη συνέχεια το αποτέλεσμα με το R, μπορούμε να υπολογίσουμε ένα σύνθετο μετασχηματισμό ο οποίος να συμπεριλαμβάνει το R και το S σε έναν πίνακα και να πολλαπλασιάσουμε το αποτέλεσμα με όλα τα σημεία του αντικειμένου. Στην περίπτωση αυτή έχουμε 100 πολλαπλασιασμούς πινάκων συν 1 για τον υπολογισμό του σύνθετου μετασχηματισμού. Άρα έχουμε:

24 Σύνθετοι 2D Μετασχηματισμοί Εφαρμογή μετασχηματισμού περιστροφής R(90) και έπειτα μεταφοράς t(-3,0)

25 Σύνθετοι 2D Μετασχηματισμοί Εδώ πρέπει να προσέξουμε ότι ο πολλαπλασιασμός πινάκων δεν έχει την αντιμεταθετική ιδιότητα, οπότε έχει σημασία η σειρά με την οποία πολλαπλασιάζονται οι πίνακες. Επομένως, όταν θέλουμε να εφαρμόσουμε διαδοχικά ένα σύνολο μετασχηματισμών Μ1, Μ2,, Μn, πρέπει να υπολογίσουμε το σύνθετο πίνακα πολλαπλασιάζοντας με αντίστροφη φορά: Τι γίνεται, όμως, όταν θέλουμε στο σύνθετο μετασχηματισμό μας να εφαρμόσουμε και μεταφορά; Στην περίπτωση αυτή, δυστυχώς, η μεταφορά δεν μπορεί να εκφραστεί ως γραμμικός συνδυασμός των συντεταγμένων του σημείου, δηλαδή με την παρακάτω μορφή: Η μεταφορά ας θυμηθούμε ότι απλώς προσθέτει μία ποσότητα σε κάθε συντεταγμένη:

26 Ομογενείς Συντεταγμένες Έστω τώρα ότι θέλουμε να εφαρμόσουμε μία αλλαγή συστήματος συντεταγμένων. Αυτό, συνήθως, απαιτεί μία περιστροφή και μία μεταφορά, ώστε να συμπέσουν οι άξονες. Άρα καταλήγουμε σε ένα μετασχηματισμό της παρακάτω μορφής: όπου R είναι ο αντιστρέψιμος πίνακας περιστροφής και t το διάνυσμα μεταφοράς. Τι γίνεται, όμως, όταν θέλουμε να επαναλάβουμε άλλον έναν όμοιο μετασχηματισμό με διαφορετικό πίνακα περιστροφής και διάνυσμα μεταφοράς; Αυτή η πολύ κοινή διεργασία στους γράφους σκηνής και στη σκελετική κίνηση, όπως θα περιγράψουμε σε επόμενα κεφάλαια, γίνεται ιδιαίτερα πολύπλοκη, όπως περιγράφεται στην παρακάτω σχέση: Για n μετασχηματισμούς, η παραπάνω σχέση υποδεικνύει ότι πρέπει να αποθηκεύουμε τους συνδυασμένους πίνακες περιστροφής αλλά και τους όρους μεταφοράς

27 Ομογενείς Συντεταγμένες Οι ομογενείς συντεταγμένες μας παρέχουν τη δυνατότητα με ένα έξυπνο τρόπο να παρακάμψουμε το παραπάνω πρόβλημα και προσθέτοντας μία ακόμα διάσταση να περιγράψουμε καθολικά όλους τους βασικούς μετασχηματισμούς με πίνακες (n+1)x(n+1), όπου n είναι η διάσταση του προβλήματος. Ένα σημείο δύο διαστάσεων αναπαρίσταται, πλέον, με ένα διάνυσμα τριών στοιχείων. Η τρίτη συντεταγμένη w ονομάζεται ομογενής και θέτουμε ίση με 1. Άρα η ομογενής αναπαράσταση του σημείου p θα είναι: Για ένα δισδιάστατο πρόβλημα μπορούμε να ορίσουμε τον 3x3 ομογενή πίνακα μετασχηματισμού M, ο οποίος συμπεριλαμβάνει και την περιστροφή αλλά και τη μετατόπιση ως εξής:

28 Ομογενείς Συντεταγμένες Ο πίνακας Μ αν πολλαπλασιαστεί με ένα σημείο p, το μετασχηματίζει ακριβώς και έχει ως αποτέλεσμα ένα σημείο με w συντεταγμένη ίση με 1. Όπως θα δούμε στη συνέχεια και στους μετασχηματισμούς προβολής, δεν «αφήνουν» όλοι η μετασχηματισμοί ανεπηρέαστο το w. Στην περίπτωση αυτή μπορούμε να ανακτήσουμε τις καρτεσιανές συντεταγμένες ενός σημείου διαιρώντας όλες τις συντεταγμένες με το w. Δηλαδή:

29 Ομογενής 2D Κλιμάκωση Με τις ομογενείς συντεταγμένες μπορούμε να υπολογίσουμε ένα μετασχηματισμό κλιμάκωσης ενός ζεύγους συντεταγμένων βάσει των παρακάτω εξισώσεων: Οπότε η ομογενής κλιμάκωση στις δύο διαστάσεις περιγράφεται από τον παρακάτω πίνακα: όπου sx και sy οι συντελεστές κλιμάκωσης κατά τον άξονα των x και y αντίστοιχα.

30 Ομογενής 2D Περιστροφή Με τον ίδιο τρόπο μπορεί να επεκταθεί και ο μετασχηματισμός περιστροφής, ώστε να εφαρμόζεται πάνω σε σημεία τα οποία αναπαρίστανται με ομογενείς συντεταγμένες. Για την περιστροφή ενός σημείου μπορεί να χρησιμοποιηθεί η παρακάτω σχέση: Οπότε η ομογενής περιστροφής στις δύο διαστάσεις περιγράφεται από τον παρακάτω πίνακα, όπου θ είναι η γωνία περιστροφής γύρω από την αρχή των αξόνων.

31 Ομογενής 2D Μεταφορά Ένα από τα προβλήματα τα οποία λύνουν οι ομογενείς συντεταγμένες είναι η δυνατότητα έκφρασης της μεταφοράς ως γραμμικού συνδυασμού των συντεταγμένων εισόδου, δηλαδή με τη χρήση ενός πίνακα 3x3, αντίστοιχου με αυτόν της περιστροφής και της κλιμάκωσης. Αυτό επιτυγχάνεται βάσει της συντεταγμένης w των ομογενών συντεταγμένων, η οποία έχει την τιμή 1 για κάθε σημείο (x, y, w) όπου τα x, y αντιστοιχούν σε σημεία του 2D κόσμου (αλλιώς θα αντιστοιχούσαν οι συντεταγμένες x/w και y/w σε σημεία του 2D κόσμου) μπορούμε να εκφράσουμε τη μεταφορά ως γραμμικό συνδυασμό της εισόδου ως: Οπότε η ομογενής μεταφορά στις δύο διαστάσεις περιγράφεται από τον παρακάτω πίνακα όπου tx και ty είναι η μετατόπιση ως προς τον άξονα των x και y αντίστοιχα.

32 Ομογενής 2D Σύνθετοι Μετασχηματισμοί Πλέον, όλοι οι βασικοί μετασχηματισμοί μπορούν να εκφραστούν ως γραμμικός συνδυασμός των ομογενών συντεταγμένων του σημείου, δηλαδή με την παρακάτω μορφή: Οπότε, όταν θέλουμε να εφαρμόσουμε διαδοχικά ένα σύνολο μετασχηματισμών Μ1, Μ2,, Μn, συμπεριλαμβανομένης της μεταφοράς, πρέπει να υπολογίσουμε το σύνθετο πίνακα πολλαπλασιάζοντας με αντίστροφη φορά:

33 Ομογενής 3D Κλιμάκωση Με τις ομογενείς συντεταγμένες μπορούμε να υπολογίσουμε ένα μετασχηματισμό κλιμάκωσης στις τρεις χωρικές διαστάσεων βάσει των παρακάτω εξισώσεων: Οπότε η ομογενής κλιμάκωση στις τρείς διαστάσεις περιγράφεται από τον παρακάτω πίνακα: όπου sx, sy και sz οι συντελεστές κλιμάκωσης κατά τον άξονα των x, y και z.

34 Ομογενής 3D Κλιμάκωση Πολλές φορές είναι χρήσιμο να γνωρίζουμε και τους αντίστροφους μετασχηματισμούς, όταν για παράδειγμα θέλουμε να αναιρέσουμε μία κίνηση σε μία προσομοίωση. Σε γενικές γραμμές ο αντίστροφος Μ-1 ενός μετασχηματισμού M είναι ο αντίστροφος του πίνακα Μ, οπότε πρέπει να ικανοποιεί την παρακάτω σχέση: Για την περίπτωση της κλιμάκωσης, ο αντίστροφος μετασχηματισμός μιας κλιμάκωσης (sx, sy, sz) προκύπτει από τον παρακάτω πίνακα:

35 Ομογενής 3D Μεταφορά Με τις ομογενείς συντεταγμένες μπορούμε να υπολογίσουμε ένα μετασχηματισμό μεταφοράς στις τρεις χωρικές διαστάσεων βάσει των παρακάτω εξισώσεων: Οπότε η ομογενής μεταφορά στις δύο διαστάσεις περιγράφεται από τον παρακάτω πίνακα, όπου tx, ty και tz είναι η μετατόπιση ως προς τον άξονα των x και y αντίστοιχα.

36 Ομογενής 3D Μεταφορά Για την περίπτωση της μεταφοράς ο αντίστροφος μετασχηματισμός μίας μετατόπισης (tx, ty, tz) προκύπτει από τον παρακάτω πίνακα:

37 Ομογενής 3D Περιστροφή Με τις ομογενείς συντεταγμένες μπορούμε να υπολογίσουμε ένα μετασχηματισμό περιστροφής κατά γωνία θ, γύρω από έναν από τους άξονες βάσης. Θεωρώντας την περίπτωση της περιστροφής γύρω από τον άξονα z, μπορούμε να υπολογίσουμε την περιστροφή ενός σημείου ως εξής: Οπότε ο πίνακας ομογενούς περιστροφής γύρω από τον άξονα z έχει ως εξής:

38 Ομογενής 3D Περιστροφή Κατά αναλογία μπορούν να οριστούν και οι πίνακες που εκτελούν περιστροφή κατά γωνία θ, γύρω από τον άξονα των x και y αντίστοιχα: Για την περίπτωση της περιστροφής ο αντίστροφος μετασχηματισμός προκύπτει, θέτοντας όπου θ το θ. Οπότε οι αντίστροφοι πίνακες περιστροφής είναι οι εξής:

39 Περιστροφή Γύρω από Τυχαίο Άξονα Ο υπολογισμός μίας τυχαίας περιστροφής στις τρεις διαστάσεις είναι ένα αρκετά περίπλοκο πρόβλημα. Εάν κανείς θέλει να συνδυάσει τρεις περιστροφές γύρω από τους άξονες βάσης για να συνθέσει μία τυχαία περιστροφή, πρέπει να είναι ιδιαίτερα προσεκτικός και να λάβει υπόψη ότι οι σύνθετοι μετασχηματισμοί δεν έχουν την αντιμεταθετική ιδιότητα. Δηλαδή, αν εκτελέσει κανείς μία περιστροφή γύρω από τον άξονα των x και μετά μία περιστροφή γύρω από τον άξονα των z, δε θα καταλήξει στο ίδιο αποτέλεσμα που θα κατέληγε αν εκτελούσε τους μετασχηματισμούς με αντίστροφη σειρά. Έστω ότι έχουμε το διάνυσμα p, το οποίο θέλουμε να περιστρέψουμε γύρω από το μοναδιαίο διάνυσμα (άξονα) v, όπως απεικονίζεται στην παρακάτω εικόνα: Το διάνυσμα p περιστρέφεται γύρω από το διάνυσμα v κατά θ και καταλήγει στο p

40 Περιστροφή Γύρω από Τυχαίο Άξονα Το διάνυσμα p μπορεί να αποσυντεθεί σε δύο συνιστώσες: την p1 παράλληλη με το v και την κάθετη σε αυτό p2. Το διάνυσμα p μπορεί να αποσυντεθεί στην παράλληλη ως προς το v συνιστώσα p1 και στην κάθετη p2 Δεδομένου ότι το v είναι μοναδιαίο, οι δύο αυτές συνιστώσες προκύπτουν από τις παρακάτω σχέσεις:

41 Περιστροφή Γύρω από Τυχαίο Άξονα Τώρα είναι προφανές ότι η παράλληλη συνιστώσα δεν περιστρέφεται, οπότε το πρόβλημα περιορίζεται στον υπολογισμό της περιστροφής του p2 γύρω από το v. Στη συνέχεια το αποτέλεσμα θα προστεθεί στο p1. O υπολογισμός της περιστροφής υπολογίζεται, όπως απεικονίζεται και στο παρακάτω σχήμα, με τη περιστροφή του p2 σε ένα επίπεδο κάθετο στο v. Η περιστροφή του p2 γίνεται σε επίπεδο κάθετο στο v. Ο υπολογισμός του διανύσματος w το οποίο βρίσκεται πάνω στο επίπεδο και είναι κάθετο στο p2, βοηθάει στον τριγωνομετρικό υπολογισμό της περιστροφής. Εάν γνωρίζαμε το διάνυσμα w του σχήματος, τότε θα μπορούσαμε να χρησιμοποιήσουμε γνωστές τριγωνομετρικές σχέσεις, ώστε να υπολογίσουμε την περιστροφή:

42 Περιστροφή Γύρω από Τυχαίο Άξονα Με μια προσεκτικότερη ματιά της παραπάνω εικόνας, βλέπουμε ότι το διάνυσμα w που θέλουμε να υπολογίσουμε είναι κάθετο στο επίπεδο που σχηματίζεται από το p και το v και μπορεί να υπολογιστεί από το εξωτερικό τους γινόμενο: Επίσης, παρατηρούμε ότι τα w και p2 έχουν ίδιο πλάτος. Άρα το περιστραμμένο διάνυσμα προκύπτει από την παρακάτω σχέση: Άρα τελικά το περιστραμμένο διάνυσμα είναι: και κάνοντας τις πράξεις προκύπτει ο παρακάτω πίνακας περιστροφής:

43 Συνοψίζοντας Βασικοί μετασχηματισμοί σε 3D Η μεταφορά (translation) ενός σημείου p = (x, y, z) αφορά στην μετακίνησή του κατά συγκεκριμένη απόσταση προς συγκεκριμένη κατεύθυνση. Aυτά τα χαρακτηριστικά της μεταφοράς μπορούν να εκφραστούν ως ένα διάνυσμα d = (d x, d y, d z ). Η θέση p = (x, y, z ) του σημείου μετά την μεταφορά του θα είναι:

44 Συνοψίζοντας Βασικοί μετασχηματισμοί σε 3D Η αλλαγή κλίμακας (scaling) ενός σημείου p αφορά απλώς τον πολλαπλασιασμό των συντεταγμένων του με κάποιους συντελεστές s x, s y, s z κατά τους τρεις άξονες αντίστοιχα. Η θέση p = (x, y, z ) του σημείου μετά την μεταφορά του θα έχει συντεταγμένες: O μετασχηματισμός αλλαγής κλίμακας σε ένα σχήμα, εφαρμόζεται με τον μετασχηματισμό στα σημεία που αποτελούν τις κορυφές του σχήματος. Αν ένας συντελεστής αλλαγής κλίμακας είναι μεγαλύτερος του 1, τότε προκύπτει μεγέθυνση του σχήματος κατά την αντίστοιχη διάσταση, ενώ αν είναι μεταξύ 0 και 1 προκύπτει σμίκρυνση του σχήματος.

45 Συνοψίζοντας Βασικοί μετασχηματισμοί σε 3D Στην αλλαγή κλίμακας (scaling) παρατηρούμε ότι, επειδή έχουμε απλώς έναν πολλαπλασιασμό των συντεταγμένων, αυτός ο βασικός μετασχηματισμός επιφέρει, ταυτόχρονα με την αλλαγή του μεγέθους του σχήματος και μετακίνησή του ανάλογη με τον αντίστοιχο συντελεστή. Αυτό σπάνια είναι το επιθυμητό καθώς θέλουμε να διατηρήσουμε κάποιο σημείο του αντικειμένου σταθερό (π.χ. ένα άκρο ή το κέντρο του). Μετασχηματισμός αλλαγής κλίμακας (κατά s x = 3, s y = 2, s z = 2)

46 Συνοψίζοντας Βασικοί μετασχηματισμοί σε 3D Η περιστροφή (rotation) ενός σημείου p αφορά την περιστροφή του γύρω από έναν άξονα και στην πιο βασική μορφή γύρω από έναν από τους άξονες συντεταγμένων. Για παράδειγμα, με την περιστροφή κατά γωνία θ γύρω από τον άξονα x, οι συντεταγμένες ενός σημείου p διαμορφώνονται ως εξής: Περιστροφή γύρω από τον άξονα x κατά θ = 45 Ανάλογα ισχύουν για τις περιστροφές γύρω από τους άξονες y και z, δηλαδή η αντίστοιχη συντεταγμένη παραμένει αναλλοίωτη και οι άλλες δύο διαμορφώνονται με παρόμοιους τύπους.

47 Συνοψίζοντας Βασικοί μετασχηματισμοί σε 3D Στους τύπους της περιστροφής είναι σημαντικό να λαμβάνεται υπόψιν σωστά η φορά της γωνίας θ. Σε ένα δεξιόστροφο σύστημα συντεταγμένων, θετική γωνία θεωρείται αυτή που περιστρέφει κατά τη φορά των δεικτών του ρολογιού, αν κοιτάζουμε κατά τη φορά του άξονα περιστροφής. Εναλλακτικά, χρησιμοποιούμε το δεξί χέρι μας για να «αγκαλιάσουμε» τον άξονα περιστροφής, με τον ανοικτό αντίχειρα να δείχνει κατά τη φορά του άξονα, οπότε η φορά που δείχνουν τα υπόλοιπα δάκτυλα είναι η θετική. Σε ένα αριστερόστροφο σύστημα ισχύουν τα αντίστροφα και η θετική φορά προκύπτει από το αριστερό χέρι.

48 Συνοψίζοντας Βασικοί μετασχηματισμοί σε 3D Στην εικόνα το σύστημα συντεταγμένων είναι δεξιόστροφο, επομένως η περιστροφή που απεικονίζεται γίνεται κατά θετική γωνία θ.

49 Συνοψίζοντας Βασικοί μετασχηματισμοί σε 3D Η στρέβλωση (shearing) «στρεβλώνει» (πλαγιάζει) αντικείμενα ως προς ένα από τα επίπεδα που σχηματίζουν οι άξονες συντεταγμένων. Για παράδειγμα, θεωρούμε τη στρέβλωση ενός σημείου p ως προς το επίπεδο xy. Η στρέβλωση αυτή ορίζεται από δύο παράγοντες, έστω sh x και sh y. Οι συντεταγμένες του σημείου μετά από αυτή τη στρέβλωση διαμορφώνονται ως εξής: Στρέβλωση αντικειμένου ως προς το επίπεδο xy, με παράγοντες sh x = 3, sh y = 0)

50 Συνοψίζοντας Βασικοί μετασχηματισμοί σε 3D Στη στρέβλωση παρατηρούμε ότι η συντεταγμένη x του σημείου αυξάνεται κατά το γινόμενο της συντεταγμένης z επί τον αντίστοιχο παράγοντα στρέβλωσης (και αντίστοιχα η y), επομένως όσο πιο μακριά (στον άξονα z) βρίσκεται το σημείο, τόσο περισσότερο θα απομακρυνθεί. Η στρέβλωση χρησιμοποιείται σπανιότερα από τη μεταφορά, την αλλαγή κλίμακας και την περιστροφή, όμως περιλαμβάνεται στους βασικούς μετασχηματισμούς καθώς δεν μπορεί να προκύψει από τους υπόλοιπους.

51 Συνοψίζοντας Ομογενείς συντεταγμένες Ένα σημείο p με καρτεσιανές συντεταγμένες [x, y, z] T έχει ομογενείς συντεταγμένες τέσσερις αριθμούς της μορφής [xk, yk, zk, k] T για οποιοδήποτε k 0. Για παράδειγμα, το σημείο [1, 3, 5] T έχει ομογενείς συντεταγμένες [1, 3, 5, 1] T, [2, 6, 10, 2] T, [ 3, 9, 15, 3] T κ.ο.κ. όλες αυτές αντιστοιχούν στο ίδιο σημείο. Αντίστροφα, αν δίνεται ένα σημείο σε ομογενείς συντεταγμένες [a, b, c, w] T (πάντα με w 0), αυτό αντιστοιχεί στο σημείο με καρτεσιανές συντεταγμένες [a=w, b=w, c=w] T. Από όλες τις παραστάσεις ενός σημείου σε ομογενείς συντεταγμένες, πιο εύχρηστη είναι αυτή στην οποία η επιπλέον συντεταγμένη είναι 1:p=[x, y, z] T = [x, y, z, 1] T. Αυτή καλείται βασική παράσταση του p σε ομογενείς συντεταγμένες. Oμογενείς συντεταγμένες της μορφής [x, y, z, 0] αντιπροσωπεύουν το διάνυσμα [x, y, z] T και όχι το σημείο με αυτές τις συντεταγμένες.

52 Συνοψίζοντας Πίνακες μετασχηματισμών Χρησιμοποιώντας ομογενείς συντεταγμένες για τα 3D σημεία, είναι δυνατό καθένας από τους βασικούς μετασχηματισμούς να αναπαρασταθεί με έναν πίνακα 4x4 έτσι ώστε να εφαρμόζεται σε ένα σημείο πολλαπλασιάζοντας τον πίνακα αυτό με τον πίνακα-στήλη των ομογενών συντεταγμένων του σημείου.

53 Συνοψίζοντας Πίνακες μετασχηματισμών Οι πίνακες αυτοί είναι οι ακόλουθοι:

54 Συνοψίζοντας Πίνακες μετασχηματισμών Οι πίνακες αυτοί είναι οι ακόλουθοι:

55 Συνοψίζοντας Πίνακες μετασχηματισμών Οι πίνακες αυτοί είναι οι ακόλουθοι:

56 Συνοψίζοντας Πίνακες μετασχηματισμών Οι πίνακες αυτοί είναι οι ακόλουθοι:

57 Βιβλιογραφία Σ. Καλαφατούδη, Γραφικά με Υπολογιστή, Εκδόσεις Νέων Τεχνολογιών, Α. Στυλιάδη, Γραφικά με Η/Υ, Εκδόσεις Ζήτη, Θ. Θεοχάρης, Α. Μπέμ, "Γραφικά: Αρχές και Αλγόριθμοι, Εκδόσεις Συμμετρία, Γ. Παρασχάκη, Μ. Παπαδοπούλου, Π. Πατιάς, Σχεδίαση με Η/Υ, Εκδόσεις Ζήτη, J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, R. L. Phillips, Introduction to Computer Graphics, Addison Wesley, Κ. Μουστάκας Ι. Παλιόκας Α. Τσακίρης Δ. Τζοβάρας, (2015), Γραφικά και Εικονική Πραγματικότητα, ISBN: , Λαζαρίνης, Φ, (2015), Πολυμέσα, ISBN: , Γεώργιος Λέπουρας, Αγγελική Αντωνίου, Νίκος Πλαιής, Δημήτρης Χαρίχος, (2015), Ανάπτυξη συστημάτων εικονικής πραγματικότητας, ISBN: ,

Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές

Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές Κεφάλαιο 3 - Γεωμετρικοί Μετασχηματισμοί και Προβολές Σύνοψη Το παρόν κεφάλαιο είναι θεμελιώδες για τα συστήματα γραφικών. Αποτελεί τη βάση για την υλοποίηση πολλών πιο πολύπλοκων διαδικασιών όπως ο φωτισμός,

Διαβάστε περισσότερα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα Κεφάλαιο 3 Μαθηματικό υπόβαθρο Μαθησιακοί στόχοι Μετά την ολοκλήρωση αυτού του κεφαλαίου, ο αναγνώστης θα είναι σε θέση: Να γνωρίζει τις βασικές ιδιότητες και να πραγματοποιεί πράξεις των σημείων και των

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διαλέξεις #-# Σύνθεση Δ Μετασχηματισμών Ομογενείς Συντεταγμένες Παραδείγματα Μετασχηματισμών

Διαβάστε περισσότερα

Μετασχηματισμοί Μοντελοποίησης (modeling transformations)

Μετασχηματισμοί Μοντελοποίησης (modeling transformations) Μετασχηματισμοί Δ Μετασχηματισμοί Μοντελοποίησης (modeling trnformtion) Καθορισμός μετασχηματισμών των αντικειμένων Τα αντικείμενα περιγράφονται στο δικό τους σύστημα συντεταγμένων Επιτρέπει την χρήση

Διαβάστε περισσότερα

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι

Διαβάστε περισσότερα

2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων

2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων 2ο Μάθημα Μετασχηματισμοί 2Δ/3Δ και Συστήματα Συντεταγμένων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Επανάληψη 3 Συσχετισμένοι 4 Γραμμικοί

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ. Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ & ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Τρισδιάστατοι γεωμετρικοί μετασχηματισμοί εξιόστροφο σύστημα Θετικές περιστροφές ως προς τους άξονες συντεταγμένων x, y, z Αριστερόστροφο Σύστημα Αναπαράσταση

Διαβάστε περισσότερα

Οδηγίες σχεδίασης στο περιβάλλον Blender

Οδηγίες σχεδίασης στο περιβάλλον Blender Οδηγίες σχεδίασης στο περιβάλλον Blender Στον πραγματικό κόσμο, αντιλαμβανόμαστε τα αντικείμενα σε τρεις κατευθύνσεις ή διαστάσεις. Τυπικά λέμε ότι διαθέτουν ύψος, πλάτος και βάθος. Όταν θέλουμε να αναπαραστήσουμε

Διαβάστε περισσότερα

Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής

Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης ΣΤ Εξάμηνο Δρ Κωνσταντίνος Δεμερτζής η Προαπαιτούμενα για kdemertz@fmenr.duth.gr Αξιολόγηση Μαθήματος Τρόποι αξιολόγησης Γραπτή Εξέταση

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 1 η Σειρά Ασκήσεων Πλαίσια, γεωμετρικοί μετασχηματισμοί και προβολές 1. Y B (-1,2,0) A (-1,1,0) A (1,1,0)

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Συστήματα συντεταγμένων Χρησιμοποιούνται για την περιγραφή της θέσης ενός σημείου στον χώρο. Κοινά συστήματα συντεταγμένων: Καρτεσιανό (x, y, z) Πολικό (r, θ) Καρτεσιανό σύστημα συντεταγμένων Οι άξονες

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,

Διαβάστε περισσότερα

Χωρικές Περιγραφές και Ομογενείς Μετασχηματισμοί

Χωρικές Περιγραφές και Ομογενείς Μετασχηματισμοί Χωρικές Περιγραφές και Ομογενείς Μετασχηματισμοί ΚΕΦΑΛΑΙΟ.. Εισαγωγή Η λειτουργία των ρομποτικών χειριστών είναι συνυφασμένη με τη μετακίνηση υλικών και εργαλείων μέσα στο χώρο με τη βοήθεια κάποιου μηχανισμού

Διαβάστε περισσότερα

Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής

Γραφικά Υπολογιστών. Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης. Γραφικά Υπολογιστών ΣΤ Εξάμηνο. Δρ Κωνσταντίνος Δεμερτζής Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας και Θράκης ΣΤ Εξάμηνο Δρ Κωνσταντίνος Δεμερτζής η Παραμετρική Αναπαράσταση Γεωμετρικών Σχημάτων και Σχεδίαση ευθείας kdemertz@fmenr.duth.gr Αξιολόγηση

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Θεωρία μετασχηματισμών

Θεωρία μετασχηματισμών Μήτρα Μετασχηματισμού Η γεωμετρία ενός αντικειμένου μπορεί να παρουσιαστεί από ένα σύνολο σημείων κατανεμημένων σε διάφορα επίπεδα. Έτσι λοιπόν ένα πλήθος δεδομένων για κάποιο αντικείμενο μπορεί να αναπαρασταθεί

Διαβάστε περισσότερα

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές

Σχεδίαση με Ηλεκτρονικούς Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Μετασχηματισμοί συντεταγμένων στις 2 διαστάσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 05 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση.. Σφάλμα! Δεν έχει οριστεί σελιδοδείκτης. Σκοποί Μαθήματος

Διαβάστε περισσότερα

Χωρικές Περιγραφές και Μετασχηµατισµοί

Χωρικές Περιγραφές και Μετασχηµατισµοί Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές

Διαβάστε περισσότερα

Γεωμετρικοί μετασχηματιμοί εικόνας

Γεωμετρικοί μετασχηματιμοί εικόνας Γεωμετρικοί μετασχηματιμοί εικόνας Μάθημα: Υπολογιστική Οραση 1 Γεωμετρικοί Μετασχηματισμοί Ορισμός σημείου στονευκλείδιοχώρο: p=[x p,y p,z p ] T, όπου x p, y p, z p πραγματικοί αριθμοί. ΕστωΕ 3 τοσύνολοτωνp.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - Π. ΑΣΒΕΣΤΑΣ E MAIL: pasv@uniwa.gr Εφαρμογές ρομποτικής στην Ιατρική Κλασσική χειρουργική Ορθοπεδικές επεμβάσεις Νευροχειρουργική Ακτινοθεραπεία Αποκατάσταση φυσιοθεραπεία 2 Βασικοί

Διαβάστε περισσότερα

Μετασχηµατισµοί 2 &3

Μετασχηµατισµοί 2 &3 Μετασχηµατισµοί &3 Περιγράφονται σαν σύνθεση βασικών: µετατόπιση, αλλαγή κλίµακας,περιστροφή, στρέβλωση Χωρίζονται σε γεωµετρικούς (εδώ) και αξόνων (αντίστροφοι) Θέσεις αντικειµένων και φωτεινών πηγών

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα ΠΑΡΑΡΤΗΜΑ Γ Επικαμπύλια και Επιφανειακά Ολοκληρώματα Η αναγκαιότητα για τον ορισμό και την περιγραφή των ολοκληρωμάτων που θα περιγράψουμε στο Παράρτημα αυτό προκύπτει από το γεγονός ότι τα μεγέθη που

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

cos ϑ sin ϑ sin ϑ cos ϑ

cos ϑ sin ϑ sin ϑ cos ϑ ΜΕΜ 102 Γεωμετρία και Γραμμική Άλγεβρα Διάλεξη 33 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης Νοε 2014 Χ.Κουρουνιώτης (Παν.Κρήτης) ΜΕΜ 102-33 Νοε 2014 1 / 11 Μετασχηματισμοί του επιπέδου Πολλοί μετασχηματισμοί

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

Κεφάλαιο M3. Διανύσµατα

Κεφάλαιο M3. Διανύσµατα Κεφάλαιο M3 Διανύσµατα Διανύσµατα Διανυσµατικά µεγέθη Φυσικά µεγέθη που έχουν τόσο αριθµητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούµε µε τις µαθηµατικές πράξεις των

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

από t 1 (x) = A 1 x A 1 b.

από t 1 (x) = A 1 x A 1 b. Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από

Διαβάστε περισσότερα

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"

Σημειώσεις για το μάθημα Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM) ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η

Διαβάστε περισσότερα

Παραμαγνητικός συντονισμός

Παραμαγνητικός συντονισμός Παραμαγνητικός συντονισμός B B teˆ teˆ B eˆ, όπου Έστω ηλεκτρόνιο σε μαγνητικό πεδίο cos sin x y z B, B. Θεωρούμε ότι η σταθερή συνιστώσα του μαγνητικού πεδίου, Be, ˆz είναι ισχυρότερη από τη χρονοεξαρτώμενη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Πολλαπλασιασμός αριθμού με διάνυσμα

Πολλαπλασιασμός αριθμού με διάνυσμα Μαθηματικά Προσανατολισμού Β Λυκείου Επανάληψη Χριστουγέννων Αφού κάνετε μια επανάληψη στο πρώτο κεφάλαιο και θυμηθείτε όλους τους τύπους και τις μεθοδολογίες, να λύσετε τις παρακάτω ασκήσεις από την τράπεζα

Διαβάστε περισσότερα

d E dt Σχήμα 3.4. (α) Σχηματικό διάγραμμα απλού εναλλάκτη, όπου ένας αγώγιμος βρόχος περιστρέφεται μέσα

d E dt Σχήμα 3.4. (α) Σχηματικό διάγραμμα απλού εναλλάκτη, όπου ένας αγώγιμος βρόχος περιστρέφεται μέσα Παράδειγμα 3.1. O περιστρεφόμενος βρόχος με σταθερή γωνιακή ταχύτητα ω μέσα σε σταθερό ομογενές μαγνητικό πεδίο είναι το πρότυπο μοντέλο ενός τύπου γεννήτριας εναλλασσόμενου ρεύματος, του εναλλάκτη. Αναπτύσσει

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ

ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Μαθηματικά Κατεύθυνσης Β Λυκείου-Απ Παπανικολάου ÅÓÙÔÅÑÉÊÏ ÃÉÍÏÌÅÍÏ ÄÉÁÍÕÓÌÁÔÙÍ ΟΡΙΣΜΟΣ Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων και και το συμβολίζουμε με α β τον πραγματικό αριθμό αβ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ- ΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕ Ο ΚΑΙ ΣΤΟ ΧΩΡΟ Στη συνέχεια θα δοθούν ορισμένες βασικές έννοιες μαθηματικών και φυσικήςμηχανικής που είναι απαραίτητες για την κατανόηση του μαθήματος

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α. 3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Αναλυτική θεωρία Λυμένα παραδείγματα Ερωτήσεις κατανόησης Ασκήσεις Επαναληπτικά διαγωνίσματα ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Διανύσματα Ενότητα I: Η έννοια

Διαβάστε περισσότερα

Μετασχηµατισµοί συντεταγµένων

Μετασχηµατισµοί συντεταγµένων Μετασχηµατισµοί συντεταγµένων Περιεχόµενα ενότητας: Έννοια και χρησιµότητα του µετασχηµατισµού συντεταγµένων Μητρώα µετασχηµατισµού Συντεταγµένες µοντέλου Μετασχηµατισµός µοντέλου Στοιχειώδεις µετασχηµατισµοί

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

OpenGL. Μετασχηματισμοί. Μάθημα: Γραφικά Υπολογιστών και Εικονική Πραγματικότητα. Κατερίνα Παπαδοπούλου /

OpenGL. Μετασχηματισμοί. Μάθημα: Γραφικά Υπολογιστών και Εικονική Πραγματικότητα. Κατερίνα Παπαδοπούλου / OpenGL Μετασχηματισμοί Κατερίνα Παπαδοπούλου / pakate@unipi.gr Μάθημα: Γραφικά Υπολογιστών και Εικονική Πραγματικότητα Τύποι μετασχηματισμών Μετασχηματισμοί μοντέλου (modeling transformations) με glmatrixmode

Διαβάστε περισσότερα

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών.

Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών. Ταξινόμηση καμπυλών και επιφανειών με τη βοήθεια των τετραγωνικών μορφών (βλ ενότητες 8 και 8 από το βιβλίο Εισαγωγή στη Γραμμική Άλγεβρα, Ι Χατζάρας, Θ Γραμμένος, 0) (Δείτε τα παραδείγματα 8 (, ) και

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

Τα ρομπότ στην βιομηχανία

Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Δρ. Φασουλάς Γιάννης

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή 7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή O θόρυβος 2Δ μας δίνει τη δυνατότητα να δημιουργίας υφής 2Δ. Στο παρακάτω παράδειγμα, γίνεται σχεδίαση γραμμών σε πλέγμα 300x300 με μεταβαλόμενη τιμή αδιαφάνειας

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y. ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού

Διαβάστε περισσότερα

Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.

Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση. Ενότητα 4 Τριγωνομετρία Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3)

Η Επιτάχυνση. η τα- χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει (3) Η Επιτάχυνση η τα- Έστω r ( t ) ( t ) i ( t ) j z ( t ) k το διάνυσμα θέσης του κινητού Μ και ( t ) χύτητά του ( Σχήμα 1 ). Από τον ορισμό της ταχύτητας θα ισχύει r ( t ) r ( t ) ή πιο απλά (1) t t Άρα

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους

Διαβάστε περισσότερα

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013

ETY-202 ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ ETY-202 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ. Στέλιος Τζωρτζάκης 1/11/2013 stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 02. ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΚΒΑΝΤΟΜΗΧΑΝΙΚΗΣ Στέλιος Τζωρτζάκης 1 3 4 Ο διανυσματικός χώρος των φυσικών καταστάσεων Η έννοια

Διαβάστε περισσότερα

Εναλλασσόμενο και μιγαδικοί

Εναλλασσόμενο και μιγαδικοί (olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας

Διαβάστε περισσότερα

Μετασχηµατισµοί 2 & 3

Μετασχηµατισµοί 2 & 3 Μετασχηµατισµοί & 3 Περιγράφονται σαν σύνεση βασικών: µετατόπιση αλλαγή κλίµακαςπεριστροφή στρέβλωση Χωρίζονται σε γεωµετρικούς (εδώ) και αξόνων (αντίστροφοι) Θέσεις αντικειµένων και φωτεινών πηγών Θέση

Διαβάστε περισσότερα

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,

Διαβάστε περισσότερα

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή Oι οπτικές επιδράσεις, που μπορεί να προκαλέσει μια εικόνα στους χρήστες, αποτελούν ένα από τα σπουδαιότερα αποτελέσματα των λειτουργιών γραφικών με Η/Υ. Τον όρο της οπτικοποίησης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU

Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x+ y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y

Διαβάστε περισσότερα

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 2 ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΠΙΜΕΛΕΙΑ ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΔΙΑΝΥΣΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Διάνυσμα λέγεται ένα προσανατολισμένο ευθύγραμμο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία

Εισαγωγή στη θεωρία μετασχηματισμών. Τα ρομπότ στην βιομηχανία Τεχνολογικό Eκπαιδευτικό Ίδρυμα Kρήτης Διατμηματικό Μεταπτυχιακό Πρόγραμμα "Προηγμένα συστήματα παραγωγής, αυτοματισμού και ρομποτικής" Βιομηχανική Ρομποτική «Κινηματική στερεών σωμάτων» Τα ρομπότ στην

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Μηχανική Στερεού Σώματος. Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Μηχανική Στερεού Σώματος. Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος Ροπή Δυνάμεων & Ισορροπία Στερεού Σώματος Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Εισαγωγή Στην Α Λυκείου είχαμε μελετήσει τη δύναμη προκειμένου

Διαβάστε περισσότερα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα

Κεφάλαιο 7. Τρισδιάστατα Μοντέλα Κεφάλαιο 7. 7.1 ομές εδομένων για Γραφικά Υπολογιστών. Οι δομές δεδομένων αποτελούν αντικείμενο της επιστήμης υπολογιστών. Κατά συνέπεια πρέπει να γνωρίζουμε πώς οργανώνονται τα γεωμετρικά δεδομένα, προκειμένου

Διαβάστε περισσότερα

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης Προβολές Προβολές Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε Δ συσκευές. Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3Δ Μαθηματικά Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης

Διαβάστε περισσότερα