2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ"

Transcript

1 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα να έχει εγκατασταθεί μαζί με το πρόγραμμα και το πακέτο Forecasting ή σε πιο παλιές εκδόσεις του προγράμματος το πακέτο Trends. Στις σημειώσεις αυτές παρουσιάζονται οι βασικές λειτουργίες του SPSS 17 που αφορούν την ανάλυση χρονοσειρών με τη μεθοδολογία των Box και Jenkins, χρησιμοποιώντας ως παράδειγμα μια χρονοσειρά 100 παρατηρήσεων που καλύπτουν τη χρονική περίοδο Εκτελώντας το SPSS 17 προκύπτει ένα κενό data file, στο οποίο εισάγονται τα δεδομένα της χρονοσειράς. Στη συνέχεια, μπορεί να επιλεχθεί να δημιουργηθεί μια καινούρια μεταβλητή που να περιέχει την ημερομηνία που αντιστοιχεί η κάθε παρατήρηση της χρονοσειράς. Για να πραγματοποιηθεί αυτό επιλέγεται Data/Define Dates και καθορίζεται το χρονικό διάστημα αναφοράς της κάθε παρατήρησης της χρονοσειράς. Στην περίπτωσή της χρονοσειράς που εξετάζεται επιλέγεται το έτος, δηλαδή years, αφού οι παρατηρήσεις της είναι σε ετήσια βάση, στο First case is εισάγεται το έτος που αντιστοιχεί στην πρώτη παρατήρηση (1906) και πατιέται OΚ. 1

2 Πατώντας το κουμπί Variable View μπορούν να ονομαστούν οι μεταβλητές και να καθοριστεί ο αριθμός των δεκαδικών ψηφίων που θα περιλαμβάνει κάθε παρατήρηση. Χρησιμοποιείται το όνομα SeriesA για τη χρονοσειρά του παραδείγματος. Πατώντας το κουμπί Data View γίνεται επιστροφή στην προηγούμενη οθόνη. Για να αποθηκευτεί το data file που εργαζόμαστε επιλέγουμε File/Save as και διαλέγουμε ένα όνομα για το αρχείο μας, ενώ αν θέλουμε να ανοίξουμε ένα παλιότερο data file επιλέγουμε File/Open/Data και στη συνέχεια το όνομα του αρχείου. Στο παράδειγμα που εξετάζεται θα αποθηκευτεί το αρχείο με το όνομα SeriesA. 2

3 2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πολλές φορές χρειάζεται να εκτιμηθεί κάποιο υπόδειγμα με διαφορετικό αριθμό παρατηρήσεων, π.χ. με μια λιγότερη παρατήρηση. Για παράδειγμα έστω ότι επιθυμούμε στην ανάλυσή μας να μη συμπεριλαμβάνεται το έτος 1906, δηλαδή η παρατήρηση της χρονοσειράς που αναφέρεται στο πρώτο έτος. Στην περίπτωση αυτή επιλέγουμε Data/Select Cases. Στο πλαίσιο διαλόγου που ανοίγει επιλέγουμε Select Based on time or case range και πατάμε το κουμπί Range. Στη συνέχεια, πληκτρολογούμε το πρώτο έτος που θέλουμε να περιλαμβάνει το δείγμα μας, δηλαδή το 1907, και το τελευταίο, δηλαδή το 2005 και πατάμε Continue και Ok. Στον Data Editor του SPSS διαγράφεται ο αριθμός του δείγματος που αντιστοιχεί στην πρώτη παρατήρηση και το SPSS στη μετέπειτα ανάλυση θα αγνοεί το πρώτο έτος. Αν θέλουμε να ξαναχρησιμοποιήσουμε όλο το δείγμα επαναλαμβάνουμε τη προηγούμενη διαδικασία επιλέγοντας All Cases. 3

4 3. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΜΙΑΣ ΧΡΟΝΟΣΕΙΡΑΣ Μία χρήσιμη δυνατότητα του SPSS είναι η κατασκευή μετασχηματισμένων χρονοσειρών από τις αρχικές τιμές μιας χρονοσειράς. Τέτοιοι μετασχηματισμοί μπορεί να είναι η εφαρμογή διαφορών στην αρχική χρονοσειρά, οι χρονικές υστερήσεις, η εφαρμογή κάποιου κινητού μέσου κ.τ.λ. Για παράδειγμα, για να υπολογιστούν οι πρώτες διαφορές της χρονοσειράς SeriesA επιλέγουμε Transform/Create Time Series και στο πλαίσιο διαλόγου που προκύπτει επιλέγουμε στο Function την επιλογή Difference και στο Order πληκτρολογούμε τον αριθμό 1. Στη συνέχεια, επιλέγουμε την μεταβλητή SeriesA και την εισάγουμε στο πλαίσιο New Variable(s). Πατώντας το κουμπί ΟΚ δημιουργείται στον Data Editor η καινούρια μεταβλητή SeriesA_1 που αποτελείται από τις πρώτες διαφορές της χρονοσειράς SeriesA. 4

5 4. ΚΑΤΑΣΚΕΥΗ ΤΟΥ ΔΙΑΓΡΑΜΜΑΤΟΣ ΜΙΑΣ ΧΡΟΝΟΣΕΙΡΑΣ Για να κατασκευάσουμε το διάγραμμα μιας χρονοσειράς επιλέγουμε Analyze/Forecasting/Sequence Charts και μετακινούμε στο Variables τη μεταβλητή τις παρατηρήσεις της οποίας επιθυμούμε να απεικονίσουμε, δηλαδή τη μεταβλητή SeriesA, και στο Time Axis Labels τη μεταβλητή YEAR που συμβολίζει τη χρονική περίοδο. Το SPSS επιπλέον μας παρέχει τη δυνατότητα να σχεδιάσουμε τη χρονοσειρά έχοντας εφαρμόσει λογαριθμικό μετασχηματισμό στα δεδομένα ή μετασχηματισμό σε πρώτες διαφορές, διαλέγοντας τις αντίστοιχες επιλογές. Επίσης, αν θέλουμε να σχεδιάσουμε περισσότερες από μια χρονοσειρές μπορούμε να επιλέξουμε αν θα σχεδιαστούν όλες μαζί ή κάθε μία χωριστά. Αν θέλουμε στο διάγραμμα να περιλαμβάνεται και ο μέσος της χρονοσειράς μπορούμε να πατήσουμε το κουμπί Format και να διαλέξουμε Reference line at mean of series και Continue. Πατώντας ΟΚ στο SPSS Statistics Viewer προκύπτει το διάγραμμα της χρονοσειράς από το οποίο διαπιστώνεται ότι η εξεταζόμενη χρονοσειρά είναι μη στάσιμη διότι οι τιμές της δεν κινούνται γύρω από το μέσο όρο της. Επαναλαμβάνοντας την προηγούμενη διαδικασία εφαρμόζοντας μετασχηματισμό σε πρώτες διαφορές για τις τιμές της χρονοσειράς διαπιστώνεται ότι η χρονοσειρά σε πρώτες διαφορές γίνεται στάσιμη. 5

6 5. ΕΚΤΙΜΗΣΗ ΤΩΝ ΑΥΤΟΣΥΣΧΕΤΙΣΕΩΝ ΚΑΙ ΜΕΡΙΚΩΝ ΑΥΤΟΣΥΣΧΕΤΙΣΕΩΝ Για να υπολογίσουμε τις αυτοσυσχετίσεις και μερικές αυτοσυσχετίσεις της χρονοσειράς επιλέγουμε Analyze/Forecasting/Autocorrelations και μετακινούμε στο Variables τη μεταβλητή SeriesA που περιέχει τις τιμές της χρονοσειράς. Στο Display αφήνουμε ενεργοποιημένα τα Autocorrelations και Partial autocorrelations. Αν θέλουμε μπορούμε να υπολογίσουμε τις αυτοσυσχετίσεις και μερικές αυτοσυσχετίσεις της χρονοσειράς έχοντας εφαρμόσει λογαριθμικό μετασχηματισμό στις παρατηρήσεις ή έχοντας εφαρμόσει διαφορές. Πατώντας το κουμπί Options μπορούμε να διαλέξουμε τον αριθμό των αυτοσυσχετίσεων και μερικών αυτοσυσχετίσεων που θέλουμε να υπολογιστούν. Συνήθως επιλέγουμε τον αριθμό 20 και επιστρέφουμε στην προηγουμένη οθόνη πατώντας Continue. Επιλέγοντας ΟΚ στο SPSS Statistics Viewer προκύπτουν τα διάγραμματα αυτοσυσχετίσεων (ACF) και μερικών αυτoσυσχετίσεων (PACF) της χρονοσειράς στα οποία εκτός από τους συντελεστές αυτοσυσχέτισης απεικονίζεται και ένα 95% διάστημα εμπιστοσύνης που μας βοηθάει στην επιλογή των σημαντικών αυτοσυσχετίσεων. Όσες αυτοσυσχετίσεις βρίσκονται εκτός των ορίων αυτού του διαστήματος θεωρούνται σημαντικές. Επιπρόσθετα, εμφανίζονται οι τιμές των δειγματικών αυτοσυσχετίσεων και μερικών αυτoσυσχετίσεων της χρονοσειράς. Στον πίνακα των αυτoσυσχετίσεων το SPSS δίνει τις τιμές της στατιστικής Q των Box και Ljung με τα αντίστοιχα P-Values για τον έλεγχο της μηδενικής υπόθεση ότι η χρονοσειρά είναι λευκός θόρυβος. Παρατηρούμε ότι οι αυτοσυσχετίσεις της χρονοσειράς φθίνουν με αργό ρυθμό και δεν συγκλίνουν στο μηδέν οπότε μπορεί να θεωρηθεί μη στάσιμη. Από τις τιμές της στατιστικής Q συμπεραίνεται ότι οι τιμές της χρονοσειράς δεν αποτελούν λευκό θόρυβο, δηλαδή συσχετίζονται μεταξύ τους. 6

7 Autocorrelations Box-Ljung Statistic Lag Autocorrelation Std. Error a Value df Sig. b 1,896,099 82,790 1,000 2,868, ,224 2,000 3,852, ,632 3,000 4,817, ,557 4,000 5,781, ,996 5,000 6,743, ,820 6,000 7,703, ,000 7,000 8,646, ,338 8,000 9,613, ,509 9,000 10,583, ,012 10,000 11,546, ,192 11,000 12,529, ,573 12,000 13,499, ,727 13,000 14,494, ,681 14,000 15,464, ,516 15,000 16,458, ,942 16,000 17,447, ,482 17,000 18,424, ,808 18,000 19,409, ,913 19,000 20,398, ,061 20,000 a. The underlying process assumed is independence (white noise). b. Based on the asymptotic chi-square approximation. 7

8 Partial Autocorrelations Series:SeriesA Lag Partial Autocorrelation Std. Error 1,896,100 2,329,100 3,202, ,001, ,051, ,073, ,063, ,146,100 9,013,100 10,052,100 11,032,100 12,113,100 13,008,100 14,133, ,070,100 16,041, ,018, ,071, ,050,100 20,005,100 8

9 Στη συνέχεια υπολογίζουμε τις αυτοσυσχετίσεις και μερικές αυτοσυσχετίσεις της χρονοσειράς σε πρώτες διαφορές. Παρατηρούμε ότι οι αυτοσυσχετίσεις των παρατηρήσεων της χρονοσειράς σε πρώτες διαφορές φθίνουν γρήγορα και μηδενίζονται οπότε μπορούμε να θεωρήσουμε ότι η χρονοσειρά σε πρώτες διαφορές γίνεται στάσιμη. Επειδή υπάρχουν μόνο μια μη μηδενική αυτοσυσχέτιση και δύο μη μηδενικές μερικές αυτοσυσχετίσεις μπορεί να θεωρηθεί ότι η χρονειρά ταυτοποιείται ως μια διαδικασία κινητού μέσου πρώτης τάξης, δηλαδή ARIMA(0, 1, 1). 9

10 6. ΕΚΤΙΜΗΣΗ ARIMA(p, d, q) ΥΠΟΔΕΙΓΜΑΤΩΝ Για να εκτιμηθεί ένα ARIMA(p, d, q) επιλέγουμε Analyze/Forecasting/Create Models και ανοίγουμε το παράθυρο του Time Series Modeler. Έστω ότι θέλουμε να εκτιμήσουμε ένα υπόδειγμα ARIMA(0, 1, 1) για τη χρονοσειρά του παραδείγματός μας. Επιλέγουμε τη μεταβλητή SeriesA που περιέχει τις τιμές της χρονοσειράς και τη μετακινούμε στο πλαίσιο dependent Variable. Στην κυλιόμενη μπάρα Method επιλέγουμε ARIMA και πατάμε το κουμπί Criteria για να ανοίξει το παράθυρο Time Series Modeler: ARIMA Criteria. Στο πλαίσιο του ARIMA Orders Nonseasonal πληκτρολογούμε p = 0, d = 1 και q = 1. Στις επιλογές Transformation υπάρχει η δυνατότητα εκτίμησης του υποδείγματος μετασχηματίζοντας τις τιμές της χρονοσειράς με λογαρίθμους ή με τετραγωνικές ρίζες. Στην περίπτωση που εξετάζεται αφήνουμε την επιλογή None. Η επιλογή include constant in model αναφέρεται στο μέσο όρο της χρονοσειράς. Ειδικότερα, εάν η χρονοσειρά έχει μη μηδενικό μέσο όρο κατά τη διαδικασία της εκτίμησης, η εκτίμηση του υποδείγματος γίνεται σε αποκλίσεις από τον μέσο όρο οπότε θα πρέπει να επιλέγεται το include constant in model. Στην χρονοσειρά που εκτιμάμε εφαρμόζουμε μετασχηματισμό σε πρώτες διαφορές, δηλαδή ο μέσος όρος της χρονοσειράς θα είναι μηδέν όποτε δεν πρέπει να επιλεγεί το include constant in model. Αφού εισαχθούν οι προηγούμενες επιλογές πατάμε Continue και επιστρέφουμε στο παράθυρο του Time Series Modeler. 10

11 Στη συνέχεια πατάμε το κουμπί Statistics και μεταφερόμαστε στο παράθυρο Time Series Modeler:Statistics. Στις επιλογές Fit Measures υπάρχουν διαθέσιμα κάποια στατιστικά μέτρα που χρησιμεύουν στην αξιολόγηση της ερμηνευτικής ικανότητας του υποδείγματος που θα εκτιμηθεί και στην επιλογή του καλύτερου υποδείγματος όταν εκτιμώνται διαφορετικά υποδείγματα. Τα πιο αξιόπιστα από αυτά, για την ανάλυση χρονοσειρών, είναι τα μέτρα που ανήκουν στην κατηγορία των πληροφοριακών κριτηρίων όπως το AIC και το BIC τα οποία προσφέρονται σε παλιότερες εκδόσεις του SPSS. Μεταξύ πολλών εκτιμηθέντων υποδειγμάτων καλύτερο θεωρείται αυτό που έχει τη μικρότερη τιμή στα δύο προηγούμενα κριτήρια. Στο SPSS 17 υπάρχει μια τροποποιημένη εκδοχή του κριτηρίου BIC που ονομάζεται Normalized BIC την οποία και επιλέγουμε. Στις επιλογές Statistics for Comparing Models δεν επιλέγουμε τίποτα ενώ από τις επιλογές Statistics for Individuals Models επιλέγουμε Parameter estimates. Οι επιλογές Residual autocorrelation_function και Residual partial autocorrelation_function υπολογίζουν τις αυτοσυσχετίσεις και μερικές αυτοσυσχετίσεις των σφαλμάτων από το εκτιμηθέν υπόδειγμα. Οι αυτοσυσχετίσεις αυτές που μπορούν να υπολογιστούν και με άλλο τρόπο θα εξεταστούν αναλυτικά σε επόμενη ενότητα και για το λόγο αυτό προς το παρόν δεν θα επιλεχθεί ο υπολογισμός τους. 11

12 Πατώντας το κουμπί plots μπορεί να επιλεχθεί η κατασκευή κάποιων διαγραμμάτων Αυτό που ενδιαφέρει εδώ είναι η κατασκευή ενός διαγράμματος που να απεικονίζει ταυτόχρονα τις πραγματικές τιμές της χρονοσειράς μαζί με τις εκτιμημένες τιμές της και τα κάτω και άνω όρια ενός διαστήματος εμπιστοσύνης εντός του οποίου βρίσκονται οι εκτιμήσεις. Το διάγραμμα αυτό προκύπτει διαλέγοντας από τις επιλογές του Plots for Individuals Models το Series και από τις επιλογές του Each Plot Displays τα Observed values, Fit values και Confidence intervals for fit values. Εάν επιλεχθούν και οι επιλογές Residual autocorrelation_function και Residual partial autocorrelation_function (δεν θα γίνει προς το παρόν) θα κατασκευαστούν και τα διαγράμματα των αυτοσυσχετίσεων και μερικών αυτοσυσχετίσεων των σφαλμάτων από το εκτιμηθέν υπόδειγμα. Αφού πατηθεί το κουμπί Save στο πλαίσιο Variables του Save Variables επιλέγονται τα Predicted Values, Lower Confidence Limits, Upper Confidence Limits και Noise Residuals για να δημιουργηθούν στο data file τέσσερεις νέες μεταβλητές που θα περιλαμβάνουν τις εκτιμημένες τιμές, το κάτω όριο του διαστήματος εμπιστοσύνης των εκτιμήσεων, το άνω όριο του διαστήματος εμπιστοσύνης των εκτιμήσεων και τα σφάλματα που θα προκύψουν από την εκτίμηση του υποδείγματος. 12

13 Πατώντας OK στο SPSS Statistics Viewer προκύπτουν τα αποτελέσματα από την εκτίμηση του υποδείγματος. Πιο συγκεκριμένα: Model Description Model ID SeriesA Model_1 ARIMA(0,1,1) Model Type Στο Model Description περιγράφεται ο τύπος του υποδείγματος που εκτιμήθηκε, δηλαδή ARIMA(0, 1, 1). Model Statistics Model Number of Model Fit statistics Ljung-Box Q(18) Predictors Normalized BIC Statistics DF Sig. Number of Outliers SeriesA-Model_1 0 -,064 6,345 17,991 0 Στο Model Statistics περιλαμβάνονται η τιμή του πληροφοριακού κριτηρίου Normalized BIC και η τιμή της στατιστικής Q των Box και Ljung για 18 χρονικές υστερήσεις με το P-Value 13

14 για τον έλεγχο της μηδενικής υπόθεση ότι η χρονοσειρά των σφαλμάτων είναι λευκός θόρυβος. ARIMA Model Parameters Estimate SE t Sig. SeriesA-Model_1 SeriesA No Transformation Difference 1 MA Lag 1,455,091 5,012,000 Στο ARIMA Model Parameters περιλαμβάνονται οι τιμές των παραμέτρων του εκτιμηθέντος υποδείγματος, δηλαδή στην περίπτωση που εξετάζεται η τιμή του όρου του κινητού μέσου πρώτης τάξης μαζί με το τυπικό σφάλμα της εκτίμησης, την τιμή της t στατιστικής για τον έλεγχο της στατιστικής του σημαντικότητας και το P-Value του ελέγχου. Στο προηγούμενο διάγραμμα απεικονίζονται οι τιμές της χρονοσειράς μαζί με τις εκτιμήσεις τους και τα κάτω και άνω όρια του διαστήματος εμπιστοσύνης των εκτιμήσεων. Επιπρόσθετα, στο data file έχουν δημιουργηθεί τέσσερεις νέες μεταβλητές που περιλαμβάνουν τις εκτιμημένες τιμές, το κάτω όριο και το άνω όριο του διαστήματος εμπιστοσύνης των εκτιμήσεων και τα σφάλματα από την εκτίμηση του υποδείγματος. 14

15 15

16 7. ΕΛΕΓΧΟΣ ΤΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ Για να είναι το υπόδειγμα ικανοποιητικό πρέπει: Οι αυτοσυσχετίσεις και μερικές αυτοσυσχετίσεις της χρονοσειράς των σφαλμάτων να μην διαφέρουν σημαντικά από το 0. Μία ή δύο συσχετίσεις υψηλής τάξης μπορεί να υπερβαίνουν το 95% διάστημα εμπιστοσύνης αλλά αν η πρώτη ή η δεύτερη συσχέτιση είναι πολύ μεγάλη τότε η χρονοσειρά δεν είναι ταυτοποιημένη σωστά. Τα σφάλματα πρέπει να είναι λευκός θόρυβος. Ένα τέστ για αυτόν τον έλεγχο γίνεται με τη στατιστική Q των Box και Ljung. Εξετάζεται η τιμή της Q για αριθμό χρονικών υστερήσεων περίπου ίσο με το ένα τέταρτο του δείγματος (αλλά όχι περισσότερο από 50). Ο υπολογισμός των αυτοσυσχετίσεων και μερικών αυτοσυσχετίσεων των σφαλμάτων, καθώς και των τιμών της στατιστικής Q γίνεται όπως δείχτηκε στην ενότητα 5, δηλαδή επιλέγεται Analyze/Forecasting/Autocorrelations και στο Variables μετακινείται η μεταβλητή NResidual_SeriesA_Model_1 που περιέχει τις τιμές των σφαλμάτων. Από τα διαγράμματα των αυτοσυσχετίσεων και μερικών αυτοσυσχετίσεων διαπιστώνεται ότι δεν υπάρχουν συσχετίσεις που να υπερβαίνουν τα όρια των διαστημάτων εμπιστοσύνης. Επίσης, η υψηλή τιμή του p-value για τον έλεγχο με τη στατιστική Q των Box και Ljung οδηγεί στο συμπέρασμα ότι τα σφάλματα έχουν συμπεριφορά λευκού θορύβου. 16

17 Autocorrelations Series:Noise residual from SeriesA-Model_1 Box-Ljung Statistic Lag Autocorrelation Std. Error a Value df Sig. b 1,018,099,035 1, ,099,098 1,042 2,594 3,067,098 1,515 3,679 4,081,097 2,204 4,698 5,007,097 2,209 5, ,030,096 2,308 6,889 7,007,096 2,313 7, ,062,095 2,730 8, ,080,095 3,444 9, ,019,094 3,483 10, ,067,094 3,999 11,970 12,024,093 4,062 12, ,100,093 5,231 13,970 14,041,092 5,432 14, ,050,092 5,728 15,984 16,036,091 5,882 16,989 17,020,091 5,929 17, ,058,090 6,345 18, ,048,089 6,632 19,996 20,099,089 7,864 20,993 a. The underlying process assumed is independence (white noise). b. Based on the asymptotic chi-square approximation. Επιπρόσθετα, μια άλλη τεχνική που χρησιμοποιείται για τον έλεγχο της σωστής ταυτοποίησης της χρονοσειράς είναι η εκτίμηση ενός διευρυμένου υποδείγματος είτε από την πλευρά του αυτοπαλίνδρομου μέρους είτε από την πλευρά του μέρους των κινητών μέσων όρων. Για να είναι το εκτιμηθέν υπόδειγμα ικανοποιητικό θα πρέπει στα διευρυμένα υποδείγματα οι συντελεστές να είναι στατιστικά μη σημαντικοί. Στην περίπτωση της χρονοσειράς που εξετάζεται εκτιμήθηκε ένα υπόδειγμα ARIMA(0, 1, 1) οπότε ως διευρυμένα υποδείγματα θα πρέπει να εκτιμηθούν το ARIMA(1, 1, 1) και το ARIMA(0, 1, 2). Εκτιμώντας τα υποδείγματα αυτό με τη διαδικασία που περιγράφηκε στην ενότητα 6 στο SPSS Statistics Viewer προκύπτουν οι παρακάτω πίνακες εκτιμήσεων: 17

18 ARIMA Model Parameters Estimate SE t Sig. SeriesA-Model_1 SeriesA No Transformation AR Lag 1,031,225,136,892 Difference 1 MA Lag 1,475,199 2,394,019 ARIMA Model Parameters Estimate SE t Sig. SeriesA-Model_1 SeriesA No Transformation Difference 1 MA Lag 1,435,102 4,259,000 Lag 2,029,101,281,779 Από τα προηγούμενα αποτελέσματα διαπιστώνεται ότι στα διευρυμένα υποδείγματα οι πρόσθετοι όροι δεν είναι στατιστικά σημαντικοί. Κατά συνέπεια, η χρονοσειρά SeriesA που αναλύθηκε έχει ταυτοποιηθεί σωστά ως ARIMA(0, 1, 1) διαδικασία. 18

19 8. ΠΡΟΒΛΕΨΕΙΣ Για να διενεργηθούν προβλέψεις για τις μελλοντικές τιμές της χρονοσειράς εκτιμάται κανονικά το υπόδειγμα όπως δείχτηκε στην ενότητα 6 αφού όμως προηγουμένως πατηθεί το κουμπί Options και στο πλαίσιο Forecast Period επιλεχθεί First case after end of estimation period through a specified date και εισαχθεί μέχρι πια χρονική περίοδο το SPSS θα υπολογίσει τις προβλέψεις. Ας υποτεθεί ότι χρειάζονται προβλέψεις μέχρι το έτος 2008, οπότε στο πλαίσιο πληκτρολογείται το Εάν πατηθεί το κουμπί plots μπορεί να επιλεχθεί στο διάγραμμα με τις πραγματικές τιμές της χρονοσειράς, τις εκτιμήσεις και τα διαστήματα εμπιστοσύνης που έχει αναφερθεί να περιληφθούν και οι προβλέψεις. 19

20 Πατώντας OΚ προκύπτουν στο SPSS Statistics Viewer τα γνωστά αποτελέσματα με τη διαφορά ότι στο διάγραμμα περιλαμβάνονται και οι προβλέψεις ενώ στο data file θα δημιουργηθούν οι μεταβλητές που όμως θα περιλαμβάνουν και τις προβλέψεις μέχρι το

21 Όπως διαπιστώνεται, οι τιμές των προβλέψεων για τα έτη 2006, 2007 και 2008 είναι ίδιες, δηλαδή η τιμή 3,91. Αυτό οφείλεται στο γεγονός πως με ένα υπόδειγμα ARIMA(0, 1, 1) μπορούν να υπολογιστούν προβλέψεις μόνοι για μια μελλοντική περίοδο. 21

22 9. Η ΧΡΟΝΟΣΕΙΡΑ SeriesA ΕΤΟΣ ΤΙΜΗ ΕΤΟΣ ΤΙΜΗ ΕΤΟΣ ΤΙΜΗ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,422 22

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Περιεχόμενα 1. Συσχέτιση μεταξύ δύο ποσοτικών

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Στατιστική ΙΙΙ(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η)

Στατιστική ΙΙΙ(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η) Στατιστική ΙΙΙ-(ΣΤΑΟ 230) Χρονολογικές Σειρες-Κινητοι Μέσοι, Αφελείς Μέθοδοι και Αποσύνθεση (εκδ. 2η) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική

Διαβάστε περισσότερα

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

1991 US Social Survey.sav

1991 US Social Survey.sav Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΡΙΤΟ ΣΥΝΑΡΤΗΣΗ ΑΥΤΟΣΥΣΧΕΤΙΣΗΣ-ΕΛΕΓΧΟΣ ΣΤΑΣΙΜΟΤΗΤΑΣ Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

Άσκηση 2. i β. 1 ου έτους (Υ i )

Άσκηση 2. i β. 1 ου έτους (Υ i ) Άσκηση Ο επόμενος πίνακας δίνει τους βαθμούς φοιτητών (Χ i ) στις εισαγωγικές εξετάσεις ενός κολεγίου και τους αντίστοιχους βαθμούς τους (Υ i ) στο τέλος της πρώτης χρονιάς φοίτησης στο συγκεκριμένο κολέγιο.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές)

Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Στατιστική ΙΙΙ-Εφαρμογές Χρονολογικές Σειρές(Μέθοδοι Εξομάλυνσης ΙΙΙ-Εφαρμογές) Γεώργιος Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης Στατιστική ΙΙΙ(ΣΤΑΟ 230) Περιγραφή

Διαβάστε περισσότερα

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα: ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού

Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού Προσοµοίωση Εξέτασης στο µάθηµα του Γεωργικού Πειραµατισµού ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας Viola adorata Σκηνή Πρώτη Ερωτήσεις Σωστού-Λάθους (µέρος Ι). Ο µέσος όρος

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

Μοντέλα Πολλαπλής Παλινδρόμησης

Μοντέλα Πολλαπλής Παλινδρόμησης Μοντέλα Πολλαπλής Παλινδρόμησης Πέτρος Ρούσσος Πρόγραμμα Ψυχολογίας, ΦΠΨ, ΕΚΠΑ ΕΙΣΑΓΩΓΙΚΑ 1 Ορολογία Προβλεπτικές μεταβλητές ή παράγοντες (predictors) Μεταβλητή κριτήριο (criterion) Απλή και πολλαπλή παλινδρόμηση

Διαβάστε περισσότερα

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται

Το στατιστικό κριτήριο που μας επιτρέπει να. μιας ή πολλών άλλων γνωστών μεταβλητών. Η σχέση ανάμεσα στις μεταβλητές που μελετώνται Κεφάλαιο 10 Η Ανάλυση Παλινδρόμησης Η Ανάλυση Παλινδρόμησης Το στατιστικό κριτήριο που μας επιτρέπει να προβλέψουμε τις τιμές μιας μεταβλητής από τις τιμές μιας ή πολλών άλλων γνωστών μεταβλητών Η σχέση

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής

Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Κεφάλαιο 3: Ανάλυση μιας μεταβλητής Γενικά Στο Κεφάλαιο αυτό θα παρουσιάσουμε κάποιες μεθόδους της Περιγραφικής Στατιστικής και της Στατιστικής Συμπερασματολογίας που αφορούν στην ανάλυση μιας μεταβλητής.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Πολλαπλή Παλινδρόμηση Δρ. Βασίλης Π. Αγγελίδης Ανάλυση Δεδομένων (Εργαστήριο) Διαφάνεια

Διαβάστε περισσότερα

Λυμένες Ασκήσεις για το μάθημα:

Λυμένες Ασκήσεις για το μάθημα: Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΕΚΤΟ

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... v

Περιεχόμενα. Πρόλογος... v Περιεχόμενα Πρόλογος... v 1 Χρήση της έκδοσης 10 του SPSS για Windows και καταχώριση δεδομένων... 1 2 Περιγραφή μεταβλητών: πίνακες και γραφήματα... 19 3 Περιγραφή μεταβλητών αριθμητικά: μέσοι όροι, διακύμανση,

Διαβάστε περισσότερα

κωδικοποίηση κτλ) Εισαγωγή δεδομένων με μορφή SPSS Εισαγωγή δεδομένων σε μορφή EXCEL Εισαγωγή δεδομένων σε άλλες μορφές

κωδικοποίηση κτλ) Εισαγωγή δεδομένων με μορφή SPSS Εισαγωγή δεδομένων σε μορφή EXCEL Εισαγωγή δεδομένων σε άλλες μορφές Στάθης Κλωνάρης 1. Εισαγωγή 2. Εισαγωγή Δεδομένων Εισαγωγή δεδομένων με μορφή SPSS Εισαγωγή δεδομένων σε μορφή EXCEL Εισαγωγή δεδομένων σε άλλες μορφές 2. Διαχείριση μεταβλητών (Τύπος Ετικέτα, κωδικοποίηση

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 2 ο. ΗχρήσητουπακέτουEviews (Using Eviews econometric package)

ΜΑΘΗΜΑ 2 ο. ΗχρήσητουπακέτουEviews (Using Eviews econometric package) ΜΑΘΗΜΑ 2 ο ΗχρήσητουπακέτουEviews (Using Eviews econometric package) Για να καλέσετε το πρόγραμμα πρέπει να εργαστείτε ως εξής: 1. Κάντε δύο κλικ στο εικονίδιο του Eviews 2. Από την εντολή File πάω στο

Διαβάστε περισσότερα

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά 1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση Χρονολογικών Σειρών. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv

Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,

Διαβάστε περισσότερα

Βήματα για την επίλυση ενός προβλήματος

Βήματα για την επίλυση ενός προβλήματος ΜΑΘΗΜΑ 2ο Βήματα για την επίλυση ενός προβλήματος 1. Κατανόηση του προβλήματος με τη σχετική επιστήμη (όπως οικονομία, διοίκηση, γενικές επιστήμες) π.χ το πρόβλημα της κατανάλωσης κάποιας περιοχής σε σχέση

Διαβάστε περισσότερα

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ

3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ 3. ΣΕΙΡΙΑΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΣΧΕΤΙΣΗΣ Πρόβλημα: Ένας ραδιοφωνικός σταθμός ενδιαφέρεται να κάνει μια ανάλυση για τους πελάτες του που διαφημίζονται σ αυτόν για να εξετάσει την ποσοστιαία μεταβολή των πωλήσεων

Διαβάστε περισσότερα

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ

ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΚΕΦΑΛΑΙΟ 13 ΕΚΤΙΜΗΤΙΚΗ: ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ Στις προηγούμενες ενότητες ασχοληθήκαμε με μεθόδους που οδηγούν σε εκτιμήτριες των τιμών μιας ή και περισσοτέρων αγνώστων παραμέτρων. Αυτό έγινε με την κατασκευή

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος ότι η παράμετρος θέσης ενός πληθυσμού είναι ίση με δοθείσα γνωστή τιμή Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,

ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics

Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics Εισαγωγή στην ανάλυση μεταβλητών με το IBM SPSS Statistics Στόχοι του κεφαλαίου Εξοικείωση με το περιβάλλον του SPSS Εξοικείωση με τις διαδικασίες περιγραφικής ανάλυσης μιας μεταβλητής Εξοικείωση με τη

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

Lampiran 1 Output SPSS MODEL I

Lampiran 1 Output SPSS MODEL I 67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables

Διαβάστε περισσότερα

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση!

Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! Μην ξεχάσετε να προσθέσετε μόνοι σας τα Session του Minitab! Δηλαδή την ημερομηνία και ώρα που κάνατε κάθε άσκηση! ΘΕΜΑ ο [Μονάδες 20] Ερώτημα i (4 μονάδες). Για να κάνουμε τους υπολογισμούς που χρειάζονται

Διαβάστε περισσότερα

SPSS Statistical Package for the Social Sciences

SPSS Statistical Package for the Social Sciences SPSS Statistical Package for the Social Sciences Ξεκινώντας την εφαρμογή Εισαγωγή εδομένων Ορισμός Μεταβλητών Εισαγωγή περίπτωσης και μεταβλητής ιαγραφή περιπτώσεων ή και μεταβλητών ΣΤΑΤΙΣΤΙΚΗ Αθανάσιος

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION)

ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) 4. ΜΕΘΟΔΟΣ ΤΗΣ ΒΗΜΑΤΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ (STEPWISE REGRESSION) Η μέθοδος της βηματικής παλινδρόμησης (stepwise regression) είναι μιά άλλη μέθοδος επιλογής ενός "καλού" υποσυνόλου ανεξαρτήτων μεταβλητών.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΚΕΦΑΛΑΙΟ ΙΙΙ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΕΝΟΤΗΤΕΣ 1. ΓΕΝΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ 3. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΗΣ ΠΡΟΟΔΕΥΤΙΚΗΣ ΠΡΟΣΘΗΚΗΣ

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία) ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., -) (Επιµέλεια: Ελευθεράκη Αναστασία) Άσκηση (Εργαστήριο #) Στις εξετάσεις Φεβρουαρίου του µαθήµατος

Διαβάστε περισσότερα

Λογισμικά για Στατιστική Ανάλυση. Minitab, R (ελεύθερο λογισμικό), Sas, S-Plus, Stata, StatGraphics, Mathematica (εξειδικευμένο λογισμικό για

Λογισμικά για Στατιστική Ανάλυση. Minitab, R (ελεύθερο λογισμικό), Sas, S-Plus, Stata, StatGraphics, Mathematica (εξειδικευμένο λογισμικό για ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 1ο Τι είναι το SPSS; Statistical Package for the Social Sciences Λογισμικό για διαχείριση και στατιστική ανάλυση δεδομένων σε γραφικό περιβάλλον http://en.wikipedia.org/wiki/spss

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή.

Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Data Analytics Και Ευφυή Συστήματα Πρόβλεψης Δεδομένων Σε Χρονοσειρά. Εφαρμογή Στον Εναρμονισμένο Δείκτη Τιμών Καταναλωτή. Τόγιας Παναγιώτης ΤΕΙ Δυτικής Ελλάδας ptogias@outlook.com Μαργαρίτης Σωτήρης ΤΕΙ

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

Ανάλυση Χρονοσειρών. Κεφάλαιο Ανάλυση Χρονοσειρών

Ανάλυση Χρονοσειρών. Κεφάλαιο Ανάλυση Χρονοσειρών Κεφάλαιο 22 Ανάλυση Χρονοσειρών 22.1 Ανάλυση Χρονοσειρών Με τον όρο Χρονοσειρά εννοούµε µια σειρά από παρατηρήσεις που παίρνονται σε ορισµένες χρονικές στιγµές ή περιόδους που ισαπέχουν µεταξύ τους. Υπάρχουν

Διαβάστε περισσότερα

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας

Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Εισαγωγή στο SPSS ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Στόχος του μαθήματος Τα τέσσερα παράθυρα του SPSS Η διαχείριση των αρχείων δεδομένων Βασικά στοιχεία ανάλυσης

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 1 η : Βασικές

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 7 η : Ανάλυση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ-ΠΕΜΠΤΟ ΘΕΩΡΙΑΣ- ΠΟΛΛΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Σηµειώσεις: Θωµόπουλος Γιώργος Ρογκάκος Γιώργος Καθηγητής: Κουνετάς

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

2.2.1. Ανοίξτε την εικόνα Hel_MDSGEO και δημιουργήστε δύο έγχρωμα σύνθετα ένα σε πραγματικό χρώμα (True color) και ένα σε ψευδοέχρωμο υπέρυθρο (CIR)

2.2.1. Ανοίξτε την εικόνα Hel_MDSGEO και δημιουργήστε δύο έγχρωμα σύνθετα ένα σε πραγματικό χρώμα (True color) και ένα σε ψευδοέχρωμο υπέρυθρο (CIR) ΕΡΓΑΣΤΗΡΙΟ 2 ο : Φασματικές υπογραφές 2.1. Επανάληψη από τα προηγούμενα 2.2.1. Ανοίξτε την εικόνα Hel_MDSGEO και δημιουργήστε δύο έγχρωμα σύνθετα ένα σε πραγματικό χρώμα (True color) και ένα σε ψευδοέχρωμο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake

ΚΕΦΑΛΑΙΟ 5 ο. 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES. Daily calorie intake ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 5 ο 5.1 Εντολή EXPLORE 5.2 Εντολή CROSSTABS 5.3 Εντολή RAΤΙΟ STΑTISTIC 5.4 Εντολή OLAP CUBES 5000 Daily calorie

Διαβάστε περισσότερα

Μετασχηματισμός Δεδομένων

Μετασχηματισμός Δεδομένων ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 2ο Μετασχηματισμός Δεδομένων a. από τα Data demo.sav επιλέγουμε τη στήλη Income b. δημιουργούμε νέο Data Set μόνο με αυτήν τη στήλη c. Click Transform d. Compute Variable e. Επιλέγω

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων

Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Τίτλος Μαθήματος: Στατιστική Ανάλυση Δεδομένων Ενότητα: Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με ανεξάρτητα δείγματα Διδάσκων: Επίκ. Καθ. Απόστολος Μπατσίδης Τμήμα: Μαθηματικών ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ

Διαβάστε περισσότερα

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών

Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τίτλος Εργασίας: Η χρήση της μεθοδολογίας Box Jenkins στην ανάλυση χρονοσειρών Φοιτητής: Μαρκόπουλος

Διαβάστε περισσότερα

3η Ενότητα Προβλέψεις

3η Ενότητα Προβλέψεις ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μονάδα Προβλέψεων & Στρατηγικής Forecasting & Strategy Unit Τεχνικές Προβλέψεων 3η Ενότητα Προβλέψεις (Μέρος 4 ο ) http://www.fsu.gr

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis)

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΧΡΟΝΟΛΟΓΙΚΕΣ ΣΕΙΡΕΣ (Time-series Analysis) Δρ Ιωάννης Δημόπουλος Καθηγητής Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας Τι είναι η χρονολογική σειρά Χρονολογική σειρά ή Χρονοσειρά

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για

2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για 2. ΕΠΙΛΟΓΗ ΜΟΝΤΕΛΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΟΥ ΑΠΟΚΛΕΙΣΜΟΥ ΜΕΤΑΒΛΗΤΩΝ (Backward Elimination Procedure) Στην στατιστική βιβλιογραφία υπάρχουν πολλές μέθοδοι για τον καθορισμό του καλύτερου υποσυνόλου από ένα σύνολο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης. Έλεγχος κανονικότητας των δεδομένων. Πέτρος Ρούσσος

Διαστήματα Εμπιστοσύνης. Έλεγχος κανονικότητας των δεδομένων. Πέτρος Ρούσσος Διαστήματα Εμπιστοσύνης Ανάλυση Ισχύος Έλεγχος κανονικότητας των δεδομένων Πέτρος Ρούσσος Διαστήματα εμπιστοσύνης Το APA Publication Manual αναφέρει ότι τα Διαστήματα Εμπιστοσύνης (ΔΕ Confidence Intervals

Διαβάστε περισσότερα

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 24 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Όπως ακριβώς συνέβη και στο κριτήριο t, τα δεδοµένα µας θα πρέπει να έχουν οµαδοποιηθεί χρησιµοποιώντας µια αντίστοιχη

Διαβάστε περισσότερα

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

Μετασχηματισμός Δεδομένων

Μετασχηματισμός Δεδομένων ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 2ο Μετασχηματισμός Δεδομένων a. από τα Data demo.sav επιλέγουμε τη στήλη Income b. δημιουργούμε νέο Data Set μόνο με αυτήν τη στήλη c. Click Transform d. Compute Variable e. Επιλέγω

Διαβάστε περισσότερα

Εισαγωγή στο SPSS. Για την πρώτη σας προσπάθεια να εξοικειωθείτε με το SPSS, σκεφτείτε το παρακάτω πείραμα.

Εισαγωγή στο SPSS. Για την πρώτη σας προσπάθεια να εξοικειωθείτε με το SPSS, σκεφτείτε το παρακάτω πείραμα. Εισαγωγή στο SPSS Παράδειγμα εισαγωγής δεδομένων Για την πρώτη σας προσπάθεια να εξοικειωθείτε με το SPSS, σκεφτείτε το παρακάτω πείραμα. Ένας ψυχολογος ενδιαφέρεται για την επίδραση της διατροφής στη

Διαβάστε περισσότερα

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση

Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Κεφάλαιο 16 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση Copyright 2009 Cengage Learning 16.1 Ανάλυση Παλινδρόμησης Σκοπός του προβλήματος είναι η ανάλυση της σχέσης μεταξύ συνεχών μεταβλητών. Η ανάλυση παλινδρόμησης

Διαβάστε περισσότερα

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel 11.1. Πολλαπλά φύλλα εργασίας Στο προηγούμενο κεφάλαιο δημιουργήσαμε ένα φύλλο εργασίας με τον προϋπολογισμό δαπανών του προσωπικού που θα συμμετάσχει

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει

Διαβάστε περισσότερα

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

ΠΡΟΒΛΕΨΗ ΘΕΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΚΙΝΗΣΗΣ

ΠΡΟΒΛΕΨΗ ΘΕΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΚΙΝΗΣΗΣ Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Ε Ι Ρ Α Ι Ω Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΒΛΕΨΗ ΘΕΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΚΙΝΗΣΗΣ Αριστείδης Θ. Μπούρδας

Διαβάστε περισσότερα

Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA)

Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου Όρου (ARIMA) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχ. κ Μηx. Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων & Συστημάτων Αποφάσεων Μονάδα Προβλέψεων & Στρατηγικής Αυτοπαλινδρομικά Μοντέλα Κινητού Μέσου

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα