f (x) g (x) f (x) g (x) + f (x) g (x) f (x) g (x) Solved Examples Example 2: Prove that the determinant sinθ x 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "f (x) g (x) f (x) g (x) + f (x) g (x) f (x) g (x) Solved Examples Example 2: Prove that the determinant sinθ x 1"

Transcript

1 Mthemtis 7. f (x) g (x) (g) If (x) f (x) g (x) then f (x) g f (x) (x) g (x) (x) + or f (x) g (x) f (x) g (x) f (x) g (x) f (x) g (x) + f (x) g (x) f (x) g (x) (h) If f(x) g(x) h(x) (x) α β γ then f(x)dx g(x)dx h(x)dx (x)dx α β γ Solved Exmples JEE Min/Bords Exmple : Prove tht R.H.S. pqr( + + ). (ii) From eq. (i) nd (ii), we get p q r q r p pqr. Use p + q + r 0. r p q Sol: By using the expnsion formul of determinnts we n prove this. p q r L.H.S. q r p r p q r p q p q r p q + r p q r q r p p( qr p ) q(q pr ) + r(pq r ) pqr p q + pqr r pqr( + + ) (p + q + r ) p+ q+ r 0 (given) (p + q + r) 0 p + q + r pqr 0 p + q + r pqr L.H.S. pqr( + + ) (pqr) L.H.S. pqr( + + ). (i) R.H.S. pqr + pqr[( ) ( ) + ( )] pqr[ + + ] L.H.S. R.H.S. Exmple : Prove tht the determinnt x sinθ osθ sinθ x osθ x is independent of θ. Sol: Simply y expnding the given determinnt we n prove it. x sinθ osθ We hve, sinθ x osθ x x sinθ sinθ x x sinθ + osθ x osθ x osθ x( x ) sin θ( xsinθ os θ ) + os θ( sinθ+ xos θ) x x + xsin θ+ sinθ osθ sinθ osθ+ xos θ x x + x(sin θ+ os θ ) x x+ x Thus, the determinnt is independent of θ. x+ x x Exmple : Solve the eqution x x+ x 0, 0. x x x+ Sol: We n expnd the ove determinnt y pplying the invrine nd slr multiple properties, nd hene we n esily solve this prolem.

2 7. Determinnts We hve, x+ x x x x+ x 0 x x x+ Here, Opertion: C C + C + C x + x x x x x+ x+ x 0 (x+ ) x+ x 0 x+ x x+ x x+ Operting R R R, x x We get (x + ) (x + ) 0 0 x + 0, [ 0] Hene Proved. R R R (x + ) 0 x Exmple 4: Solve, using Crmer s rule x y + 4z 5; x + y + z ; x + y z Sol: By defining D, D, D, D nd y using Crmer s Rule we will get required result. 4 D D 5 D 5 4 D, D By Crmer s Rule, x, D 5 5 D y ; D 5 5 D z D 5 5 Exmple 5: Solve the following system of equtions y Crmer s Rule x y+ z 9; x+ y+ z 6; x y+ z Sol: By defining, x, y, z nd y using Crmer s Rule we will get the required result. ( + ) + ( ) + ( ), 9 x 6 9( + ) + (6 ) + ( 6 ) 9 y 6 (6 ) 9( ) + ( 6) 4 9 z 6 ( + 6) + ( 6) + 9( ) 6 By Crmer s Rule x y z x, y, z Exmple 6: Show tht ( + + ) + + Sol: By using invrine nd slr multiple property we n expnd given determinnt nd n prove it. ( + + ) (+ + ) + + ( + + ) + + [C C + C + C ] (+ + ) (+ + ) [y R R R nd R R R ] ( + + )[{( + + ) 0}] ( + + )( + + ) ( + + ) Exmple 7: Using determinnts, show tht the points (, 7), (5, 5) nd (, ) re olliner.

3 Mthemtis 7. Sol: If these points re olliner then the re of tringle mde y joining these points will e zero. The re of the tringle formed y the given points Operte: R R R; R R R ( R nd R re identil) Hene, the given points re olliner. Exmple 8: If A nd B re two mtries suh tht AB B nd BA A, then A + B. Sol: By using the multiplition property of mtries we n solve given prolem. A + B AA + BB A(BA) + B(AB) [Given AB B nd BA A] (AB)A + (BA)B [Mtrix multiplition is ssoitively]ba + AB [Given AB B nd BA A] [Given AB B nd BA A] Exmple 9: Find the vlue of A+B Sol: By pplying the invrine property we n find the vlue of the given determinnt [Applying R4 R4 R, R R R, R R R] [Applying 0 R4 R4 R, R R R ] JEE Advned/Bords Exmple : Without expnding, evlute the determinnt sinα osα sin( α+δ) sinβ osβ sin( β+δ) sinγ os γ sin( γ+δ) Sol: By using the formul sin(a+ B) sin A os B + os A sin B nd invrine property of determinnts we n expnd the given determinnt. sinα osα sin( α+δ) Let sinβ osβ sin( β+δ) sinγ os γ sin( γ+δ) sinα osα sinαosδ+ osαsinδ sinβ osβ sinβosδ+ osβsinδ sinγ os γ sinγosδ+ os γsinδ sinα osα 0 sinβ osβ 0 sinγ os γ 0 [Applying C C osδ. C sin δ. C ] 0 [ C onsists of ll zeroes] Exmple : By using properties of determinnts prove tht x x x x ( x ) x x Here in this prolem y using invrine nd slr multiple properties we will expnd the given determinnt nd we will prove it. Sol: L.H.S. x x x x x x [Applying C C + C + C] x x ( + x + x ) x x x x ( + x + x ) 0 x x x 0 x x x + x+ x x x + x+ x x + x+ x x

4 7.4 Determinnts [Applying R R R nd R R R ] ( + x + x )(){( x)( x ) (x x)(x x )} ( + x + x )( x) { + x + x } {( x)( + x + x )} ( x ) R.H.S. Exmple : Show tht x ( + + ) is one root of the eqution: eqution ompletely. x+ x+ 0 x+ nd solve the Sol: We n expnd given determinnt using the invrine nd slr multiple properties nd y solving we will find out required result. By C C + C + C, we get x+ + + x+ + + x+ 0 x+ + + x+ (x+ + + ) x+ 0 x+ (x+ + + )0 x x+ R R R ; R R R On expnding y first olumn, we get (x )[(x + )(x + ) ( )( )] 0 (x )[x ( ) ( + )] 0 (x )(x ] 0 (x )(x ) 0 Either x x ( + + ) or x x ± + + Exmple 4: If the re of tringle is 5 sq. units with verties (, 6), (5, 4) nd (k, 4), then find k. Sol: As we know tht the re of the tringle d e f where (, ) (, d) (e, f) re the verties of tringle. Therefore y sustituting the vlue of verties we will get required result. Let the verties of tringle e A(, 6), B(5, 4) nd C(k, 4). Sine the re of the tringle ABC is 5 sq. units, we hve, ± 5 k ± 5 k 0 0 [Applying R R R nd R R R ] 0 k 0 ±5 [Expnding long C ] {0 0(k )} ± 5 0 0k + 0 ± 70 0k k + or k Exmple 5: Solve the following system of equtions y using determinnts: x+ y+ z, x + y + z k ; x+ y+ z k Sol: Here in this prolem first define D, D, D nd D. then y using Crmer s rule we n solve it. We hve, D 0 0 [Applying C C C nd 0 0 ( )( ) + + ( )( ) [Expnding long R ] ( )( )( + ) C C C ] ( )( )( ) (i)

5 Mthemtis 7.5 D k ( )( k)(k ) k [Repling y k in (i)] D k (k )( )( k) k [Repling y k in (i)] nd D k ( )( k)(k ) k [Repling y k in (i)] D ( )( k)(k ) ( k)(k ) x, D ( )( )( ) ( )( ) D (k )( )( k) (k )( k) y D ( )( )( ) ( )( ) D ( )( k)(k ) (k )( k) z D ( )( )( ) ( )( ) Exmple 6: Show tht ( + ) + ( ) ( ) i i i j j i i < i j Sol: By putting α, β, then α + β u, v, then u + v. Using the invrine property expnd the given determinnt, nd then ompring it to the R.H.S. of the given prolem we n prove it. Let Now R.H.S. i i i j j i i < i j + ( + ) + ( ) ( ) + ( ) + ( )( ) + ( )( + ) + ( )( ) + ( ) αu βv ( α+β )(u + v) + ( ) αu βv βu α v.... (i) +α α α Now L.H.S. β +β β [R R R, R R R ] α β u v + + [ C C C,C C C] 0 α β u + v v + + [( + + ) (u + v )( β )] [ C C + C] + [(v ) (u + v )] + ( +β ) uβ vβ+β+ u +v +α ( v + u) + ( + ) + β+ u + v +α uβ vβ αv uα + ( +β ) + ( ) + + ( β ) + αu βv uβ vα + ( ) αu βv uβ vα RHS [From (i)] Exmple 7: Find vlues of for whih the equtions x + y ; ( + )x + ( + 4)y + 6 ( + ) x + ( + 4) y ( + 6) re onsistent nd hene solve the eqution. Sol: Here in this prolem first define given equtions s nd solve it s 0 y using the invrine method. The eqution will e onsistent, if ( + ) ( + 4) ( + 6) Applying C C C, we get ( + ) ( + 4) 4( + 5) Solving, we get or 0, 0 (i) If 0, the system of equtions eomes x + y x + 4y 6 x, y. (ii)

6 7.6 Determinnts If 0, then system of equtions eomes x + y x 8x 6y 4 6x + 9y 4, 4 y. (iii) Hene the solutions re given y (ii) nd (iii). Exmple 8: If ( r, r ), r,, e the verties of tringle, prove tht ( ) + ( ) ( ) + ( ) 0 (i) ( ) + ( ) nd hene show tht the ltitudes of tringle re onurrent. Sol: Using the invrine method we n expnd the given determinnt nd using the equtions of ltitude we n prove it ( ) + ( ) ( ) + ( ) 0 ( ) + ( ) [Applying R R + R + R ] ( ) + ( ) ( ) + ( ) F B(, ) A(, ) D Eqution of ltitude AD is: y (x ) E C(, ) or x( ) + y( ) ( ) + ( ) (ii) Similrly eqution of ltitudes BE nd CF re x( ) + y( ) ( ) + ( ). (iii) x( ) + y( ) ( ) + ( ). (iv) Altitudes (ii), (iii), (iv) re onurrent, sine the determinnt given y L.H.S. of (i) is zero. Exmple 9: Let λ nd α e rel. Find the set of ll vlues of λ nd α for whih the system of liner equtions λ x + (sin α )y + (os α )z 0 x + (os α )y + (sin α )z 0 x + (sin α)y (os α )z 0 hs non-trivil solution. If λ, find ll vlues of α. Sol: Here in this prolem first define the given equtions s nd s we know tht for non-trivil solution 0. For non-trivil solution, ondition is 0. or λ sinα osα osα sinα 0 sinα osα λ [ os α sin α] sin α[ osα+ sin α] + os α[sinα+ os α ] 0 or λ sinα+ osα α R ; λ If λ, then sinα+ osα π π os α os 4 4 π π π π α nπ± : n I α nπ± + : n I Exmple 0: For fixed positive integer n, if n! (n + )! (n + )! (n + )! (n +!) (n + )! (n + )! (n + )! (n + 4)! then show tht (n!) 4 is divisile y n. Sol: By using the slr multiple property of determinnts we n tke (n!),(n+) nd (n + ) ommon nd using the invrine property we n solve the given prolem. n + (n + )(n + ) (n!) n + (n + )(n + ) (n + )(n + )(n + ) (n + )(n + ) (n + )(n + )(n + ) (n + 4)(n + )(n + )(n + ) Tking (n+) nd (n + ) (n + ) ommon from C nd C respetively, we get (n!) (n + )(n + ) n+ n+ n+ (n + )(n + ) (n + )(n + ) (n + 4)(n + ) [Apply C C C nd C C C then

7 Mthemtis 7.7 (n!) (n + ) (n + ) 0 0 n+ (n + )(n + ) (n + ) 4n + 0 (n!) (n + ) (n + )[4n + 0 4(n + )] (n!) (n + ) (n + ) (n!) (n + n + )(n + 4) (n!) 4 n 8n 0n, + + n(n + 4n + 5), whih is divisile y n. (n!) (n + 8n + 0n + 4) JEE Min/Bords Exerise Q. Find x, if Q. It mtrix A Q. Given x 4 8 x , find [A]. 0, find (i) M (ii) C. Q.4 Are of tringle with verties (k, 0), (, ) nd (0, ) is 5 sq. units. Find the vlue(s) of k. Q. Find the djoint of mtrix A Q. Find the inverse of mtrix. 5 4, if possile Q. Without expnding, find the vlue of x 0 Q.4 If 4 is singulr mtrix, find x. 0 Q.5 Find the re of the tringle whose verties re (, ) (4, ) nd ( 5, 4). Q.5 Find the re of tringle, whose verties re (0, ) (, 4), (, 6). Q.6 Given determinnt Find the vlue of C + C + C.. Q.6 Find the vlue of x, if re of tringle is 5 squre ms with verties (x, 4), (, 6) nd (5, 4). Q.7 Show tht the following determinnt vnishes: Q.7 Find the vlue of p, suh tht the mtrix is singulr. Q.8 Given I. Find I. Also find I. 4 4 p Q.8 Using properties of determinnts, prove tht : Q.9 Find the vlue of x, suh tht the points (0,), (, x), (, ) re olliner. Q.0 For two given squre mtries A nd B of the sme order, suh tht A 0 nd B 0, find AB. Q.9 If points (, 0), (0, 5) nd (x, y) re olliner, then x y show tht +. 5 Q.0 If for mtrix A, A find 5A, where mtrix A is of order.

8 7.8 Determinnts Q. Given A C + C., suh tht A 0. Find Q. Without expnding prove tht, the vlue of determinnt + + is zero. + Q. A is non-singulr mtrix of order nd A 4. Find dj.a. Q.4 Is it possile to find the inverse of mtrix 5? Given resons. 0 Q.5 Given squre mtrix A of order, suh tht A, find the vlue of A.dj. A. Q.6 Compute tht A A. 9 Q.7 Let A 5 A for the mtrix Verify tht (i) (dj A) - (ii) (A ) A. nd show 5 Q.8 Using mtrix method, exmine the system of equtions: x + 5y 7, 6x + 5y for onsisteny. Q.9 Find the inverse of mtrix A show tht A ( + + )I A. Q.0 If A show tht tnx, tnx osx sinx AA. sinx osx + nd 0 Q. If A 5 0, prove tht A A 6A + I. 0 Q. If A nd B, verify tht (AB) B A. (-8) Using properties of determinnt, prove tht Q. ( + + ) ( + + ). Q.4 Q.5 y+ z x y z+ x y x (x + y + z) (x z). x+ y z z (++). + + ( + ) Q.6 ( + ) ( ) ( ) ( ) (+ +) Q.7 Q.8 ( + ) + ( + + ). + (++) ( + + ). + x + y x + y x + y x + y 0 ( )(x +xy+y ) Q.9 Write the minors nd oftors of the elements of seond row of the following determinnt: Q.40 Find the qudrti funtion defined y the eqution f(x) x + x +, if f(0) 6() nd f( ) 6, using determinnts. Q.4 Exmine whether the system of equtions: x y 5, 4x y 0 is onsistent or inonsistent. Q.4 Verify, whether the system of equtions: x y z, y z, x 5y is onsistent or inonsistent.

9 Mthemtis 7.9 Without expnding the determinnts, show tht Q.4. Q.5 Show tht x 6x Hene find A. A 4 stisfies the eqution Q.44 Q.45 0 p q p r q p 0 q r 0 r p r q 0 Q.46 Solve for x, x 0 x 4. 0 Q.5 Find mtrix A if, Q.54 Given (AB). Q.55 For the mtrix 4 A A nd B 4. Compute 4 A 6A + 9A 4I O, hene find A, verify tht A. Q.47 If, verify tht A 4A I O 0 0 Exerise 0 0 nd O nd hene find 0 0 Q.48 Evlute : / / /. A. Q.49 Show tht { ( + + )} is root of the following eqution: x+ x+ 0. x+ Q.50 Using properties of determinnts, prove tht : x+ 4 x x x x+ 4 x 6(x+ 4). x x x+ 4 Q.5 Using properties of determinnts, prove tht: Single Corret Choie Type Q. If,, re ll different from zero nd + + 0, then the vlue of is: (A) (B) (C) (D) Q. If,, re ll different nd then (A) ( + + ) + + (B) ( + + ) ( + + ) (C) ( + + ) + + (D) None of these 4 4 0, 4 Q. If (sin x + sin w) (sin y + sin z)p, then N N x y ; (N N N,N,N,N4 N) z w 4

10 7.0 Determinnts (A) Hs mximum vlue. (B) Hs minimum vlue. (C) In independent of N,N,N,N 4 (D) None of these n n Q.4 If ( + x + x ) 0 + x + x nx then n n n+ n 6 n n+ is n 4 n 7 n+ 7 (A) (B) (C) 0 (D) Q.5 The solute vlue of the determinnt + + is (A) 6 (B) 8 (C) 8 (D) None of these Q.6 D, D D then (A) D 0, if ++>0 (B) (C) D D D (D) D D D D D Q.7, where,, re distint positive rels, then is lwys less thn (A) 4 (B) 79 (C) 7 (D) 8 Q.8 The vlue of for whih the system of equtions, ( + ) x + ( + ) y ( + ), logx xyz logx y logx z logy xyz logy z nd x + y re onsistent is log xyz log y z z (A) (B) (C) 0 (D) None, Q.9 The following system of equtions x 7y + 5z ; x + y + 5z 7 nd x + y + 5z 5 re (A) Consistent with trivil solution (B) Consistent with unique non-trivil solution (C) Consistent with infinite solution (D) Inonsistent with no solution Q.0 The system of equtions (sin θ )x + z 0, (os θ )x + (sin θ )y 0, (os θ )y + z hs (A) Non unique solution (B) A unique solution whih is funtion of nd θ (C) A unique solution whih is independent of nd θ (D) A unique solution whih is independent of θ only Q. The eqution ( + x) ( x) ( + x ) x + x 5x + x + x x (+ x) x+ x+ ( x) x x 0 x x x (A) Hs no rel solution (B) Hs 4 rel solutions (C) Hs two rel nd two non-rel solutions (D) Hs infinite numer of solutions, rel or non-rel Q. The system of eqution : xos θ+ y sinθ sinθ 0 ; xsinθ+ y sin θ osθ; xsinθ yosθ 0, for ll vlues of θ, n (A) Hve unique nontrivil solution (B) Not hve solution (C) Hve infinite solutions (D) Hve trivil solution Q. If x, y, z re not ll simultneously equl to zero, stisfying the system of equtions (sin θ)x y + z 0; (os θ )x + 4y + z 0; x + 7y + 7z 0, then the numer of prinipl vlues of θ is (A) (B) 4 (C) 5 (D) 6

11 Mthemtis 7. Q.4 For non-zero, rel, nd + + α + then the vlue of α is (A) 4 (B) 0 (C) (D) 4 Q.5 Numer of vlue of for whih the system of 5 equtions, x + ( )y 4 + ; x + ( )y possess no solution is (A) 0 (B) (C) (D) Infinite Previous Yers Questions Q. The determinnt xp + y x y yp + z y z 0 0 xp+ y yp+ z (A) x, y, z re in AP (C) x, y, z re in HP (B) x, y, z re in GP (D) xy, yz, zx re in AP (997) x x+ Q. If f(x) x x(x ) (x + )x, x(x ) x(x )(x ) (x + )x(x ) then f(00) is equl to (999) (A) 0 (B) (C) 00 (D) 00 Q. If the system of equtions x ky z 0, kx y z 0, x + y z 0 hs non-zero solution, then possile vlues of k re (000) (A), (B), (C) 0, (D), Q.4 The numer of distint rel roots of (00) sinx osx osx π π osx sinx osx 0 in the intervl x is 4 4 osx osx sinx (A) 0 (B) (C) (D) Q.5 If the system of equtions x + y 0, z + y 0 nd x + z 0 hs infinite solutions, then the vlue of is (00) (A) (B) (C) 0 (D) No rel vlues Q.6 The numer of vlues of k for whih the system of equtions (k + )x + 8y 4k, kx+ (k + )y k hs infinite solutions. Assertion Resoning Type (A) Both ssertion nd reson re true nd reson is the orret explntion of Assertion. (B) Both ssertion nd reson re true nd reson is not the orret explntion of ssertion. (C) Assertion is true ut reson is flse (D) Assertion is flse ut reson is true. Q.7 Consider the system of equtions x y + z, x y + 4z nd x + y z k Sttement-I: The system of eqution hs no solution for k. nd Sttement-II: The determinnt k 0, for 4 k 0. (008) Q.8 Given, x y + z, y z + x, z x + y, where x, y, z re not ll zero, prove tht (978) Q.9 If α e repeted root of qudrti eqution f(x) 0 nd A(x), B(x) nd C(x) e polynomils of degree, 4 nd 5 respetively, then show tht A(x) B(x) C(x) A( α) B( α) C( α) A( α) B( α) C( α) is divisile y f(x), where prime denotes the derivtives. (984) Q.0 If mtrix A, where,, re rel T positive numer, nd AA I, then find the vlue of + +. (00) Q. The numer of vlues ofk, for whih the system of equtions: ( k + ) x + 8y 4k kx + ( k + ) k Hs no solution, is: (0) (A) Infinite (B) (C) (D) n n Q. If αβ, 0, nd f( n ) α +β

12 7. Determinnts + ( ) + ( ) ( ) ( ) ( ) ( ) ( ) ( ) f f ( ) ( )( ) + g + f + f K α β α β + f + g + f 4 then K is equl to: (04) (A) αβ (B) α β (C) (D) - Q. The set of ll vlues of λ for whih the system of liner equtions: x x + x λx x x + x λx x + x λx Hs non trivil solution. (05) (A) Is n empty set, (B) Is singleton (C) Contins two elements (D) Contins more thn two elements Q.4 The system of liner equtions (06) x+λy z 0 λx y z 0 x+ y λ z 0 hs non-trivil solution for: (A) Infinitely mny vlues of λ (B) Extly one vlue of λ (C) Extly two vlues of λ (D) Extly three vlues of λ JEE Advned/Bords Exerise Q. Solve the following using Crmer s rule nd stte whether onsistent or not. () x + y + z x + y + z 6 x + y 0 () 7x 7y + 5z x + y + 5z 7 x + y + z 5 () x+ y+ z 6 0 x + y z 0 x + y z + 0 Q.5 Given x y + z; y z + x; z x + y where x, y, z re not ll zero, prove tht x y Q.6 Given ; ; y z z z x x y where x, y, z re not ll zero, prove tht Q.7 If sinq osq nd x, y, z stisfy the equtions xosp y sinp + z osq + xsinp + y osp + z sinq x os(p + q) y sin(p + q) + z Then find the vlue of x + y + z. Q. For wht vlue of K do the following system of equtions possess non-trivil (i.e. not ll zero) solution over the set of rtionl Q? x + Ky + z 0, x + Ky z 0, x + y 4z 0. For tht vlue of K, find ll the solutions of the system. Q. The system of equtions α x+ y+ z α x+α y+ z α ; x+ y+α z α hs no solution. Find α. Q.4 If the equtions (y + z) x, (z + x) y, (x + y) z hve non-trivil solutions, then find the vlue of Q.8 Investigte for wht vlues of λµ, the simultneous equtions x + y + z 6; x+ y + z 0 nd x + y +λ z µ hve; () A unique solution () An infinite numer of solutions () No solution Q.9 For wht vlues of p, the equtions: x + y + z ; x + y + 4z p nd x + 4y + 0z p hve solution? Solve them ompletely in eh se. Q.0 Solve the equtions : Kx + y z ; 4x + Ky z ; 6x + 6y + Kz onsidering speilly the se

13 Mthemtis 7. when K. Q. () Let,,, d re distint numers to e hosen from the set {,,, 4, 5}. If the lest possile positive x + y solution for x to the system of eqution x + dy n e expressed in the form p where p nd q re q reltively prime, then find the vlue of (p + q). () Find the sum of ll positive integrl vlues of for whih every solution to the system of equtions x + y nd x + 4y 6 stisfy the inequlities x >, y > 0. Q. If the following system of equtions ( t)x + y + z 0, x + ( t)y + z 0 nd x + y + ( t)z 0 hs non-trivil solutions for different vlues of t, then show tht we n express produt of these vlues of t in the form of determinnt. Q. Show tht the system of equtionsx y + 4z, x + y z nd 6x + 5y + λ z hs tlest one solution for ny rel numer λ. Find the set of solutions of λ 5. Q.4 Solve the system of equtions: z + y + x + 0 z + y + x + 0 z + y + x + 0 Q.5 () Consider the system of equtions αx y+ z α x α y+ z x y+α z If L, M nd N denotes the numer of integrl vlues of α in intervl [ 0, 0] for whih the system of the equtions hs unique solution, no solution nd infinite solutions respetively, then find the vlue of (L M + N). () If the system of equtions is x + y z 0 x + y + kz 0 4x + y + z 0 hve set of non-zero integrl solutions then, find the smllest positive vlue of z. () Given, {0,,,, 4,, 9, 0}. Consider the system of equtions x+ y+ z 4 x + y + z 6 x + y + z Let L: denotes numer of ordered pirs (, ) so tht the system of equtions hs unique solution, M: denotes numer of ordered pirs (, ) so tht the system of equtions hs no solution nd N: denotes numer of ordered pirs (, ) so tht the system of equtions hs infinite solutions. Find (L + M N). Q.6 () Prove tht the vlue of the determinnt i 4i 5 i i is rel. + 4i 4 5i 9 () On whih one of the prmeter out of, p, d or x vlue of the determinnt does not depend. x + x x z + z z os(p d)x ospx os(p + d)x sin(p d)x sinpx sin(p + d)x () If y + y y 0 nd x, y, z re ll different then, prove tht xyz. Q.7 Prove tht () () ( ) x y z [(x y)(y z)(z x)(x + y + z)] x y z Q.8 () Let vlue of f(x) (given x > ). x f(x) Find the minimum 0 x () If ,, R, then find the vlue of the determinnt

14 7.4 Determinnts ( + + ) + ( + + ) + + ( + + ) () x x x 4 x 4 x 9 x 6 0 x 8 x 7 x 64 Q.9 If D nd D then prove tht D D Q.0 Prove tht + + ( + + ) Q. Let sinx sin(x + h) sin(x + h) f(x) sin(x + h) sinx sin(x + h). sin(x + h) sin(x + h) sinx Q.5 If + + 0, solve for x : x x 0 x Q.6 Let,, re the solutions of the ui x 5x + x 0, then find the vlue of the determinnt Q.7 Show tht, nd find the other ftor. Q.8 Prove tht +λ λ +λ is divisile y λ f(x) If Lim h 0 h find k N. hs the vlue eqution to k(sinx + sin x) ( + ) ( + ) ( + ) 4 ( ) ( ) ( ) Q. Prove tht 4 ( β+γ α δ) ( β+γ α δ) 4 ( γ+α+β δ) ( γ+α β δ) 4 ( α+β γ δ) ( α+β γ δ) 64( α β)( α γ)( α δ)( β γ)( β δ)( γ δ) Q. If, nd re the roots of the ui x x + 0 then find the vlue of the determinnt. ( + ) ( + ) ( + ) Q.4 Solve for x () x + x + x + 4 x + x + 4 4x x + 5 5x + 8 0x + 7 Q.9 In ABC, determine ondition under whih A B C os ot ot B C C A A B tn + tn tn + tn tn + tn 0 Exerise Single Corret Choie Type Q. Let m e positive integer & D r m r m r C m m+ sin (m ) sin (m) sin (m + ) then the vlue of (A) 0 m r 0 D (B) m (C) r is given y m (D) (0 t m), m m sin ( )

15 Mthemtis 7.5 Q. If α,β nd γ re rel numers, then os( β α) os( γ α) D os( α β) os( β γ) os( γ β ) os( α γ) (A) (B) osαosβos γ (C) osα+ osβ+ os γ (D) Zero Q. If, nd re non-zero rel numers, then + D + 0 (A) + (C) + + (B) (D) Zero mx mx p mx + p Q.4 If f (x) n n+ p n p then yf(x) represents mx + n mx + n + p mx + n p (A) A stright line prllel to x-xis (B) A stright line prllel to y-xis (C) Prol (D) A stright line with negtive slope x (x ) x Q.5 If D(x) x x (x + ) x (x + ) (x + ) then the oeffiient of x in D(x) is (A) 5 (B) (C) 6 (D) 0 Q.6 The numer of integrl solutions of D 8, where y+ z z y D z z+ x x is y x x+ y (A) (B) 8 (C) 6 (D) 4 + sin x os x 4sinx Q.7 Let f(x) sin x + os x 4sinx, sin x os x + 4sinx,, then the mximum vlue of f(x) is equl to (A) (B) 4 (C) 6 (D) 8 Q.8 If 4 px + qx + rx + sx + t x + x x x + x+ x x then t is equl to x x + 4 x (A) (B) 0 (C) (D) None Q.9 If D (A) (C) + +, then D is equl to (B) + + ( + + ) (D) None of these Q.0 If α+β+γ π, then the vlue of sin( α+β+γ) sinβ os γ sinβ 0 tnα os( α+β) tnα 0 (A) 0 (B) (C) (D).sinβ. os γ.tnα Q. If the entries of determinnt re zero or one then the vlue of the determinnt (A) Cnnot e (B) Cnnot e (C) Cn e is (D) Is essentilly zero Q. In third order determinnt, eh element of the first olumn onsists of sum of two terms, eh element of the seond olumn onsists of sum of three terms nd eh element of the third olumn onsists of sum of four terms. Then it n e deomposed into n determinnts, where n hs the vlue (A) (B) 9 (C) 6 (D) 4 Q. If the system of equtions x + y + z 4, x + py + z, µ x + 4 y + z hs n infinite numer of solutions, then (A) p, µ (B) p, µ 4 (C) p µ (D) None of these

16 7.6 Determinnts Q.4 Numer of triplets of, nd for whih the system of equtions, x y nd ( + )x + y 0 + hs infinitely mny solutions nd x, y is one of the solutions, is (A) Extly one (C) Extly three (B) Extly two (D) Infinitely mny Q.5 If the system of equtions x + y + z 0, x + y + z 0 & x + y + z 0 (,, ) hs nontrivl solution, then the vlue of + + is (A) (B) 0 (C) (D) None of these Q.6 The determinnt os( θ+φ) sin( θ+φ) osφ sinθ osθ sinφ osθ sinθ osφ (A) 0 (B) Independent of θ (C) Independent of φ (D) Independent of θ nd φ oth Q.7 The vlues θ, λ for whih the following equtions xsinθ yos θ+ ( λ+ )z 0 ; xosθ+ y sinθ λ z 0 ; λ x + ( λ+ )y + zosθ 0 re onsistent with infinite solution, re (A) θ n π, λ,λ R {0} (B) θ n π, λ is ny rtionl numer + (C) θ (n + ) π, λ R, n I π (D) θ (n + ), λ R, n I Q.8 If the system of equtions, x y nd x + ( )y + possess unique solution x, y then (A) ; (B), (C) 0, 0 Q.9 Let is (D) None of these n+ n+ n+ 4 Cn Cn+ Cn+ n+ n+ 4 n+ 5 n+ n+ n+ n+ 4 n+ 5 n+ 6 Cn+ Cn+ Cn+ 6 D C C C nd n N then the vlue of D is equl to (A) (B) 0 (C) (D) (n + ) (n + ) (n + 4) (n + 5) (n + 6) Q.0 The set of equtions λx y + (os θ )z 0 ; x + y + z 0 ; (os θ )x + y + z 0, 0 θ< π, hs nontrivil solution(s) (A) For no vlue of λ nd θ (B) For ll vlues of λ nd θ (C) For ll vlues of λ nd only two vlues of θ (D) For only one vlue of λ nd ll vlues of θ Multiple Corret Choie Type Q. The determinnt os(x y) os(y z) os(z x) os(x + y) os(y + z) os(z + x) sin(x + y) sin(y + z) sin(z + x) (A) sin(x y)sin(y z)sin(z x) (B) sin(x y)sin(y z)sin(z x) (C) os(x y)os(y z)os(z x) (D) os(x y)os(y z)os(z x) π π Q. The vlue of θ lying etween nd nd 4 π 0 A nd stisfying the eqution + sin A os A sin4θ sin A + os A sin4θ re sin A os A + sin4θ π π π (A) A, θ (B) A θ π π (C) A 9 θ (D) A π π θ Q. If x x 0 (A) x (B) x (C) Q.4 The determinnt is equl to zero, if (A),, re in AP (B),, re in GP (C) α is root of the eqution (D) (x α ) is ftor of x (D) x α+ α+ α+ α+ 0 x + x + x + x + 0

17 Mthemtis 7.7 Q.5 The set of equtions x y + z, x y + z 4, x y +α z hs (A) Unique solution only for α 0 (B) Unique solution for α 8 (C) Infinite numer of solution of α 8 (D) No solution for α 8 Q.6 Whih of the following determinnt(s) vnish(es)? (A) (C) ( + ) ( + ) ( + ) (B) (D) log xyz log y log z x x x log xyz log z y log xyz log y Q.7 If the system of eqution x y nd x y + 4 possess n infinite numer of solutions then the possile vlues of nd re (A), (B), (C), (D), z z Q.8 If p, q, r, s re in A.P, nd p + sinx q + sinx p r + sinx f(x) q + sinx r + sinx + sinx suh tht r + sinx s + sinx s q + sinx 0 f(x)dx 4 n e, then the ommon differene of the A.P. (A) (B) ½ (C) (D) None of these Q.9 If the system of equtions x+ y 0, ( + K)x + ( + K)y 8 0 nd x ( + K) y + ( + K) re onsistent then the vlue of K is (A) (B) /5 (C) 5/ (D) (x + y) z z z (y + z) Q.0 If D x x x y(y + z) x + y + z y(x + y) xz x z xz y then (A) D is independent of x (B) D is independent of y (C) D is independent of z (D) D is dependent of x, y, z Previous Yers Questions Q. The prmeter, on whih the vlue of the determinnt os(p d)x ospx os(p + d)x sin(p d)x sinpx sin(p + d)x does not depend upon, is (997) (A) (B) p (C) d (D) x Q. Let λ nd α e rel. Find the set of ll vlues of λ for whih the system of liner equtions λ x + (sin α )y + (os α )z 0 x + (os α )y + (sin α )z 0 nd x + (sin α)y (os α )z 0 hs non-trivil solution. For λ, find ll vlue of α. (99) Q. Let,, e rel numers with + +. Show tht the eqution x y x + y x + x + y x + y y + 0 x + y + x y + represents stright line. Q.4 For wht vlue of k does the following system of equtions possess non-trivil solution over the set of rtionls x + y z 0; x y + z 0 nd x 5y + 4z k. Find ll the solution. (979) Q.5 For wht vlue of m does the system of equtions x + my m nd x 5y 0 hs solution stisfying the onditions x > 0, y > 0. (979) Q.6 Prove tht for ll vlues of θ sinθ osθ sinθ π π 4π sin θ+ os θ+ sin θ+ 0 π π 4π sin θ os θ sin θ (000)

18 7.8 Determinnts Q.7 The totl numer of wys in whih 5 lls of different olours n e distriuted mong 5 persons so tht eh person gets t lest one ll is (0) (A) 75 (B) 50 (C) 0 (D) 4 Q.9 The totl numer of distint x R for whih x x + x x 4x + 8x 0 is (06) x 9x 7x Q.8 Whih of the following vlues of α stisfy the eqution ( +α ) ( + α ) ( + α) ( ) ( ) ( ) ( +α ) ( + α ) ( + α) +α + α + α 648 α? (A) 4 (B) 9 (C) 9 (D) 4 (05) MASTERJEE Essentil Questions JEE Min/Bords Exerise Q.5 Q.9 Q.8 Q.48 Q.5 Q.54 Q.55 Exerise Q. Q.6 Q. Previous Yers Questions Q. Q.6 Q.7 Q.0 JEE Advned/Bords Exerise Q. Q. Q.8 Q. Q.5 Q. Exerise Q. Q. Q.4 Q.0 Q.5 Q.0 Previous Yers Questions Q. Q.5 Q.7 Q.0

19 Mthemtis 7.9 Answer Key JEE Min/Bords Exerise Single Corret Choie Type Q. x ± Q. Q. (i) (ii) 6 Q.4 7, Q.5 5 sq. units Q.6 0 Q.7 96 Q.8 ; 9 Q.9 5 Q Q. Q. Not possile Q. 0 Q.4 x Q Q.6 - Q.0 75 Q. 0 Q. 6 Q.4 No sq. units Q.5 78 Q.6 + Q.9 A Q.8 Inonsistent 9 5 Q.9 M 9, M, M, C 9, C, C Q.40 f(x) x + x + 6 Q.4 Consistent Q.4 Inonsistent Q.46 7 x or Q.47 A 4 Q.48 0 Q.5 4 A 7 Q Q Q Exerise Single Corret Choie Type Q. D Q. A Q. A Q.4 C Q.5 A Q.6 C Q.7 C Q.8 A Q.9 B Q.0 B Q. D Q. B Q. C Q.4 D Q.5 C

20 7.40 Determinnts Previous Yers Questions Q. B Q. A Q. D Q.4 C Q.5 A Q.6 Q.7 A Q.0 4 Q. B Q. C Q. C Q.4 D JEE Advned/Bords Exerise Q. () x, y, z ; onsistent () x, y, z ; onsistent () Inonsistent 5 Q. K,x:y:z :: Q. Q.4 Q.7 Q.8 () λ () λ, µ 0 () λ, µ 0 Q.9 x + K, y K, z K, when p ; x K, y K, z K when p ; where K R Q.0 If K x y z, (K + 6) K + 6(K ) (K + K + 5), If K, then λ x λ,y nd z 0 where λ R Q. () 9 () 4 Q. Q. If λ 5, then 4 9 x ;y nd z 0; If λ 5 then 7 7 Q.4 x ( + + ), y + +, z 4 5K K 9 x ;y nd z K where K R. 7 7 Q.5 () () 5 () 9 Q.6 () p Q.8 () 4 () 65 Q. Q. 08 Q.4 () x or x ; () x 4 Q.5 X 0 or x ± ( + + ) Q.6 80 Q.7 λ ( + + +λ ) Q.9 Tringle ABC is isoseles. Exerise Single Corret Choie Type Q. A Q. D Q. A Q.4 A Q.5 A Q.6 D Q.7 C Q.8 C Q.9 A Q.0 A Q. C Q. D Q. D Q.4 B Q.5 C Q.6 B Q.7 D Q.8 A Q.9 A Q.0 A

21 Mthemtis 7.4 Multiple Corret Choie Type Q. A,D Q. A, B, C, D Q. A, D Q.4 B, D Q.5 B, D Q.6 A, B, C, D Q.7 A, B, C, D Q.8 A, C Q.9 A, C Q.0 A, B, C Previous Yers Questions Q. B Q. Zero Q.4 k 0, the given system hs infinitely mny solutions 5 Q.5 m < or m > 0 Q.7 B Q.8 B C Q.9 Solutions JEE Min/Bords Exerise k + 0 k + 0 or k 0 7 k or k Sol : 4 8 x x 4 Sol 5: Verties of tringle (0, ) (, 4) (, 6) 8 8 ( 4) x 8 x x ± 8 ± 0 Are 4 (6) 8 [ ] Sol : A 0, A [] (0) Sq. Unit Sol : , Sol 6: D (i) M 4 0 C ( ) + (ii) C ( ) + 0 ( ) Sol 4: Are of tringle, [(k, 0), (, ), (0, )] 5 unit C + C + C + + ( ) + [ ] + [ ] [ ] 0 It n e diretly sid s it is property k 0 0 [ 0] + k( ) 5 Sol 7: 4 4 P A (ssume)

22 7.4 Determinnts A 4 4 P P 4(4) (96 + P) 0 So 0 x[ 8] + {() ( )()}] 8x P 96 8x 5 x Sol 8: I, I 0 I I 9 0 0, Sol 5: Verties (, ) (4, ) nd ( 5, 4) Are [ [ 4] + [ 5 4]] [ 9] 9 sq. unit Sol 9: (0, ), (, x) nd (, ) points re olliner 0 So x 0 [ x] + [ ] 0 x x 5 x 5 Sol 0: A 0, B 0 AB A B 0( 0) 400 Sol : A 5 4 C 4, C 5, C, C dja C C C C T 4 5 Sol : A 6 8 A 8 [] [ 6] So, A does not exist 8 Sol : 4 6 (8) Two olumns re sme, so determinnt is 0 x 0 Sol 4: 4 is singulr 0 Sol 6: Verties (x, y) (, 6), (5, 4) x 4 Are 6 [ x[ 6 4] + 4[5 ]] x x x 0 0 Sol 7: () Two olumn re sme so Determinnts is 0 Sol8: (++) ( + + ) C C + C C C C 0 Sol 9: (, 0), (0, 5) nd (x, y) re olliner x y 0

23 Mthemtis 7.4 [ 5x] + [5 y] 0 5x + 0 y 0 5x + y 0 x + y - 5 Sol 0: A, A s order 5A (5) A 5 75 Sol : A, A 0 A C + C (long first row) A R R,R R Sol : ( )( ) 0 0 Sine the olumns re linerly dependent, hene the vlue of determinnt is zero. Sol : A 4 Order of A dja A ( 4) 6 5 Sol 4: 0 It is not squre mtrix, so inverse not exist Sol 5: A, A s order A. dja A A 78 Sol 6: A 5, A 9 A C, C 5, C, C A dja A Sol 7: A ( 4 5) A C 5 4 C + 0 C 5, C + 0 C 5 4 C C 5, C C 4 A [4] [] + [ 5] AdjA 4, 5 A dja A 4 5 A 4, 5 A For dja, C A 4 C C + 0, C 5 + 6, C C C, C C, C , C , 6 So A 6 9 A A 65 5

24 7.44 Determinnts Sol 8: x + 5y 7, 6x + 5y 5 D D 0. So system is inonsistent tnx os x sinxosx A A tnx sinxosx os x os x sin x sinxosx sinxosx sinxosx + sinxosx sin x + os x Sol 9: A ( + ) / osx sinx sinx osx R.H.S. A + + ( + ) / dja dja ( + ) / A A ( + + )I A ( + ) / ( + ) ( + ) / A R.H.L. L.H.S. tnx Sol 0: A, tnx tnx A tnx A + tn x os x tnx dja tnx sinx dja A os x osx A sinx osx os x sinxosx sinxosx os x 0 Sol : A 5 0, 0 Assume A xi 0 A xi 0 x 0 So 5 x x ( x) [x + 4x] [5] 0 x x + 4x + x + 6 8x 5 x 6x + x x 6x + x x (A xi) 0 A 6A + I A Sol : A AB For A C + 4 6, C + 4 6, C 4, C 4 6, C 4, C + 4 6,.. (i)

25 Mthemtis 7.45 C 4, C 4 6, C A (6) + (6) + () dja A 6 6 A For B C +, C +, C 5, C 6 +, C 4 5, C 6 9, C, C, C B [] + [] + [ 5] 0 djb B 5 B 5 9 B A AB 5, 5 AB 6( ) + 5( 9) + 5(8) C 5 C 9 C C C 5 7 C C C , C So (AB) B A Sol : (++) ( + + ) C C + C + C (++) + + R R R, R R R 0 (++) 0 (++)[( ) ( ) ( ) ( )] (++) ( + + ) y+ z x y Sol 4: z+ x z x (x + y + z) (x z) x+ y y z R R + R + R (x+ y+ z) x+ y+ z x+ y+ z z+ x z x x+ y y z (x+y+z) z+ x z x x+ y y z

26 7.46 Determinnts C C C C (x+y+z) (x+y+z) z+ x z x z x x+ y y z y z 0 0 z x x z y z (x + y + z) (x z) (x z) R R + R ( )( ) + + ( + ) + + (+ + ) + ( + ) ( )( ) + ( + ) Sol 5: ( + + ) C C + C, C C + C ( + ) + ( + ) + [ ( + )] + (+) [ ( +) + (+) ] ( + ) [ ( + ) ] [ (+) ( ] + ( + )[ + + ] This on simplifition omes out to e equl to ( + + ) C C + C C ( )( )( ) z z ( )( )( ) z z ( )( ) ( ) ( + + )( ) ( )( )( )( + + )(++) Sol 6: ( + ) ( + ) ( + ) ( ) ( ) ( ) Sol 7: R R R, R R R ( ) ( + ) ( + ) ( + ) ( + ) ( )[ + + ] ( )( ) ( ) ( )[ ] ( )( + ) ( + ) ( + ) + + ( ) ( ) (+ + ) + ( + ) ( + ) ( + + )

27 Mthemtis Using, C C C nd C C -C in (i), (ii), (iii) [ + + ] + [ + + ] + [ + + ] ( + + ) ( + + ) Sol 8: x + y x + y x + y x + y 0 R R xr yr 0 x + y x + y 0 0 (x + yx + yx + y ) 0 (x + xy + y ) ( ) 0 ( ) (x + xy + y ) Sol 9: M M M C 9, C, C Sol 40: f(x) x + x +, f(0) 6 f(), f( ) D 8 0 D [+]+[ ] 0 5 D 5 D 0 D [9 4] + [4 99] D 4 7 6[ 8] D C 0 6 C 6 D 0 x Eqution x +x+ + x +6 Sol 4: x y 5 4x y 0 D D x 0, D 0 y So system hs infinite solution (onsistent).

28 7.48 Determinnts Sol 4: x y z y z x 5y R.H.S. D [ 5] [ ] [ 6] D x 5 0 C C nd then C C 0 p q p r Sol 45: q p 0 q r r p r q 0 (p q) q p q r r p 0 + (p r) q p 0 r p r q [ + 4] 5[ + ] So system is inonsistent. Sol 4: L.H.S. C C ( ) Sol 44: L.H.S. C C R.H.S. +(p q (q r) (r p) (p q) (q r) (r p)0 Sol 46: x 0 x 4 0 x [8] + [x ] 4x + x 7 0 (x ) (4x + 7) 0 (x )(4x + 7) 0 x or 7 4 Sol 47: A, A 4A I 0 Assume A xi 0 x 0 x ( x)( x) x x x 4 0 x 4x 0 A xi 0 A 4A I 0 Hene proved. A [A 4A I] 0 A 4I A 0 A 4I 4 A

29 Mthemtis 7.49 Sol 48: () / / / 0 () / / / 0 + ( + + ) 0 + ( + + ) [( )( + ) ( )( + )] x+ Sol 49: x+ 0 x+ Hve to show tht x ( + + ) R R + R + R Sol 5: A 4 Assume A xi 0 0 x x+ + + x+ + + x+ + + x+ x+ (x+++) x+ x+ 0 x x ( + + ) Sol 50 : x+ 4 x x+ 4 x x x x+ 4 C C C,C C C 4 0 x 0 4 x 4 4 x+ 4 ( 4x x) + 6x 48x+64 0 x x ( x) (4 x) x 4x x x 6x nd A xi 0 So, A stisfied this eqution A 6A + 7 I 0 A [A 6A + 7I] 0 A 6I + 7A 0 7A (A 6I) A 0 (A 6I) A A Sol 5: + + C C + C (++) + + R R R, R R R Sol 5: 4 A 0 6 Assume BAC D B Adj B B 4

30 7.50 Determinnts B BAC B D AC B D AC C djc, C 0 ACC B DC A A Sol 54: A, B (AB) B A C 6, C, C 4, C 8, C 5 4, C 0, C, C 8 5 7, C 5 A 5( ) + 4() A dja A B A Sol 55: A, Assume (A XI) 0 x x 0 x ( x) [( x) [ + x] + [ + x] 0 ( x)[4 + x 4x ] + x + x 0 6 x + x 8x x + 4x + x 0 x + 6x 9x x 6x + 9x 4 0 A xi 0, so this eqution stisfied A A 6A + 9A 4I 0 A [A 6A + 9A 4I] A 0 0 A 6A + 9I 4A 0 A A 5 6 5, A A 6A + 9I A A A

31 Mthemtis 7.5 Exerise Single Corret Choie Type + Sol : (D) ` 0 + R R + R + R C, C Sol : (A) R R R, R R R [( ) ( ) ( ) ( ) [( ) ( ) ( ) ( ) ( ) ( )[( + ) ( + + ) ( + ) ( + + ) ( ) ( ) [ + + ( + + )] [ ] + + ( ) ( + + ) ( ) [ + ( + )] ( ) ( + + ) [ + + ] [ + + ] Sol : (A) (sin x + sin w) (sin y + sin z) p D x z N N y N N4 w (x, y, w, z) N N4 x w z N N4 y If x y 7 w x z N N y N N4 w ( ) N+ N4 ( ) For mx vlue N + N 4 n. N + N m + n,m N Vlue ( )n ( ) n ( ) m+ ( ) Min vlue Dependent of N, N, N, N 4 N+ N

32 7.5 Determinnts Sol 4: (C) (+ x + x ) n 0 + x + x + + n x n n n n+ n 6 n n+ n 4 n 7 n+ 7 ( + x + x ) n (x + x + ) n n n+ 0 n n r n + r O r n So determinte C C C 0 n n 0 n 6 n 0 n 4 n 7 Sol 5: (A) ( ) 0 n n n n 6 n n n 4 n 7 n C C C C [ + ( )] [ 4 ] 6 Sol 6: (C) D D D, D (given) in D C C C, C C C nd ssume T + + T T + + T T T T [ ()] T [ ( + + )] D C C + C + C D D T T T T R R R, R R R D T D T [( + ) ( + ) ( + ) ( + )] D ( T) ( T) [T + ( + + )] D T [ ( + + )] D D D Sol 7: (C) L.H. S. ( ) ( ) ( ) in L.H.S. C C C, C C C

33 Mthemtis ( ) ( ) ( ) ( )[ + + ] ( ) ( ) ( ) ( + + ) + + ( ) ( ) ( ) + + A.M. G.M + + () / ; ()/ is lwys less thn /7 7 Sol 8: (A) ( + ) x + ( + ) y ( + ) (4 + )x + ( + )y ( + ) x + y Here for two vrile thus eqution So D D x D y0 for onsistent D ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) [ ] ( + ) ( + ) ( ) (i) D x ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( ) ( + ) ( + ) (5 + ) (ii) D y ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) [ ] ( + ) ( + ) ( 4 8) 4 ( + ) ( + ) ( + ) D D x D y 0 (ommon solution in ll) Sol 9: (B) x 7y + 5z, x + y + 5z 7 x + y + 5z 5 D [5 5] 7 [0 5] + 5 [9 ] So system is onsistent with unique non trivil solution. Sol 0: (B) (sin θ)x (os θ)x + sin θ y 0 (os θ)y + z 0 D sinθ 0 osθ sinθ 0 0 osθ D sin θ (sin θ.) + (os θ) (sin θ + os θ) Constnt C 0, D x 0 sinθ 0 osθ So system hs unique solution whih is funtion of nd θ Sol : (D) ( + x) ( x) ( + x ) x + x 5x x + x x (+ x) x+ x+ + ( x) x x 0 x x x In nd determinte R + R + R (+ x) x+ x+ ( x) x x - B x + ( + x) + ( + x ) ( 5x) x + x + x x + x

34 7.54 Determinnts R R A ( + x) (x + ) x + ( x) x x B (+ x ) 5x x Now ll rows of A is equl to olumns of B B A A A 0 (lwys) For every vlued of x A + B is zero Therefore infinite solutions Sol : (B) x os θ + y sin θ sin θ 0 x sin θ + y sin θ os θ (ii) x sin θ y os θ 0 (iii) for (i) & (ii) os θ sinθ D sinθ sin θ 4 sin θ os θ 4 sin θ os θ 0 (sin θ sin θ os θ) D x sinθ osθ sinθ sin θ 4 sin θ + 4 sin θ os θ 4 sin θ(sin θ + os θ) 4 sin x for onsistent D x 0 4 sin θ 0 θ n π, n I D y sin θ sin θ sinθ sinθ 4 os θ 4 sin θ os θ (i) 4 os θ [sin θ + os θ) 4 os θ D y 0 θ (n + )π/, n I Sin θ nd os θ oth re not zero for sme θ, so for every vlue of θ system hs not solution Sol : (C) (sin θ)x y + z 0 (os θ)x + 4y + z 0 x + 7y + 7z 0 ( So D x D y D z 0 D sin θ osθ x, y, z re not ll simultneously equl to zero so for solution (not-trivil), D 0 sin θ [8 ] [6 7os q] + [7 osθ 8] 0 7 sin θ os θ + 7 osθ sin θ + 4 os θ 4 Sin θ + os θ Sin θ + os θ sin θ 4 sin θ + [ sin q] sin θ 4 sin θ + 4 sin θ ssume sin θ x 4x + 4x x 0 x[4x + 4x ] 0 x[4x + 6x x ] 0 x 0 or x (x + ) (x + ) 0 (x + ) (x ) 0 x / or / x 0, ½, / ut sin θ sin θ / sin θ {0, ½}, x 0, π/6, 5π/6, π, π etween [0, p] No. of priniple vlue 5 Sol 4: (D) ( + )( + ) α

35 Mthemtis ( )( + ) α 4 Sol 5: (C) x + ( )y 4 + x + ( )y 5 D ( ) + ( ) + For D 0 ( ) +,, 0 4+ D x 5 (4 + ) ( ) + ( ) ( 5 ) t 0 D x 0 4+ So D y So t 0, system hs infinite solution At, +, D 0, nd D x, D y 0 No solution, no. of vlues Previous Yers Questions Sol : (B) Given xp + y x y yp + z y z 0 0 xp+ y yp+ z Applying C C (pc+ C ) 0 x y 0 y z 0 (xp + yp + yp + z) xp + y yp + z (xp + yp + z)(xz y ) 0 Either xp + yp + z 0 or x, y, z re in GP. y xz Sol : (A) Given x x+ f(x) x x(x ) (x + )x x(x ) x(x )(x ) (x + )x(x ) Applying C C (C + C ) x 0 x x(x ) 0 0 x(x ) x(x )(x ) 0 f(x) 0 f(00) 0 Sol : (D) Sine, the given system hs non-zero solution. k k 0 Applying C C C, C C + C + k k + k (k + ) (k + ) 0 (k + )( k ) 0 k ± Note: There is golden rule in determinnt tht n one s (n ) zero s or n(onstnt) (n ) zero s for ll onstnt should e in single row or single olumn. Sol 4: (C) Given sinx osx osx osx sinx osx 0 osx osx sinx Applying C C + C + C sinx + osx osx osx sinx + osx sinx osx sinx + osx osx sinx

36 7.56 Determinnts osx osx (osx + sinx) sinx osx 0 osx sinx Applying R C R,R C R osx osx (osx + sinx) 0 sinx osx sinx osx (osx + sinx)(sinx osx) 0 osx + sinx 0 or sinx osx 0 osx sinx or sinx osx π π ot x gives no solution in x nd sin 4 4 x os x tn x x π 4 Sol 5: (A) Given equtions x + y 0, z + y 0 nd x + z 0 hs infinite solutions or Sol 6: () For infinitely mny solution, we must hve k + 8 4k k k + k k Sol 7: (A) The given system of eqution n e expressed s x 4y z k Applying R R R, R R + R x ~ 0 y 0 z k x ~ 0 y 0 0 0z k R R R When k, the given system of eqution hs no solution. Sttement I is true. Clerly, Sttement II is lso true s it is rerrngement of rows nd olumns of 4 Sol 8: Given systems of eqution n e rewritten s x + y + z 0 x y + z 0 nd x + y z 0 Aove system of equtions re homogeneous eqution. Sine, x, y nd z re not ll zero, so it hs non-trivil solution. Therefore, the oeffiient of determinnt must e zero 0 ( ) ( ) + ( + ) Sol 9: Sine α is repeted root of f(x) 0. f(x) (x α ), onstnt ( 0) A(x) B(x) C(x) Let φ (x) A( α) B( α) C( α) A( α) B( α) C( α) [To show φ (x) is divisile y (x α ), it is suffiient to show tht φα ( ) nd φ ( α ) 0]. A( α) B( α) C( α) φα ( ) A( α) B( α) C( α) 0 A( α) B( α) C( α) [ R nd R re identil] A (x) B (x) C (x) Agin, φ (x) A( α) B( α) C( α) A( α) B( α) C( α) A( α) B( α) C( α) φ ( α ) A( α) B( α) C( α) 0 A( α) B( α) C( α) [ R nd R re identil] Thus, α is repeted root of φ (x) 0 Hene, φ (x) is divisile y f(x).

37 Mthemtis 7.57 Sol 0: (4) Given A, T nd AA (i) Now, T AA nd (ii) We know, + + ( + + )( + + ) + + ( + + )( 0) + [from eqution (i) nd (ii)] + + ( + + ) + (iii) Now, ( + + ) ( + + ) (iv) From eqution (iii), Sol : (B) k + 8 k + 4k + 8k k k+ k 4k + ( k )( k ) 4k 8 4k + k 4k + 8 k k + 4k k ( k k ) 4k k + ( )( ) k + 4k k + k 4k k k k + k ( k ) As given no solution & 0 0 k Sol : (C) + + +α+β +α +β +α+β +α +β +α +β +α +β +α +β +α +β α α α α α β β β ( α) ( α β) ( β ) K 4 α α β β Sol : (C) ( λ) x x + x 0 x ( +λ ) x + x 0 x + x λ x 0 Non-trivil solution 0 λ λ 0 λ ( ){ } { } ( ) ( ) λ λ+λ 4 +. λ+ + 4 λ 0 6λ+ λ 8 λ λ + 4λ 4λ+ 4+ λ 0 λ λ 5λ+ 0 x λ + λ λ λ+ 0 ( ) ( ) ( ) ( λ )( λ + λ ) 0 λ λ + λ λ λ 0 ( λ )( λ+ )( λ ) 0 λ,, Sol 4: (D) x+λy z 0 λx y z 0 x+ y λ z 0 For non-trivil solution 0 λ λ 0 λ { } ( ) λ( λ ) 0 λ+ λ λ + λ+ 0 λ 0, ±

38 7.58 Determinnts JEE Advned/Bords Exerise Sol : () x + y + z 6 x + y z x + y z D D x D y C C C [+ + ] C C + C [6 ] + ( + ) [ ] + 6[ + 4] + [ 6 ] D z 6 [ ] + [ + 6] + 6[ ] x Dx, y Dy 6, z Dz 9 D D D Here, it is onsistent () x + y + z x + y + z 6 x + y 0 D 0 [6 ] + [0] 5 Dz 0 y D 5 D y 6 [ 6] 5, 0 0 D y 5 y D 5 D z 6 [6 ] + 6[0] 5m, 0 Dz 5 Z D 5 () 7x 7y + 5z x + y + 5z 7 x + y + 5z D 5 R R R ; R R R [ 0 + 0] D x 7 5 R R R ; R R R [4 + 0] D 0 ut Dx 0, so, system is inonsistent Sol : x + ky + z 0 x + ky z 0 x + y 4z 0 Eqution hs non-trivil solution. So, D D x D y D z 0 k D k 4 (i) (ii) (iii) D x [6 ] 0, [ 4k + 6] + k[ 4 + ] + [9 k] 4k k + 7 6k k 0

39 Mthemtis 7.59 K, ssuming x t From eqution (ii) (i) x 5z 0 z x t, (x t) 5 5 In (iii) t + y 4z 0 z 4z t t 8t 0t y 4 t t y t 5 t t (x, y, z) t,, 5 5 t R Sol : x + y + z α x + y + z α x + y + z α D α α α D [ ] + [ ] + [ ] α + α α + α +, At α + 0 So (α ) is ftor of α + Now, α + n e witten s + α α + (α ) + α(α ) (α ) (α ) ( + α ) D (α ) ( + α ) D (α ) ( + α α ) (α ) D (α )[α(α + ) (α + )] D (α ) (α + ) (α ) For D 0, α or For α, D x , so onsistent So on D y nd D t 0 \α α Sol 4: (y + z) x x y z 0 (z + x) y x y + z 0 (x + y) z x + y z , so D x D y D z 0 So for non-trivil solution, D 0 D C C C ; C C C + 0 D 0 ( + ) or from eqution x y+ z y x+ z z x+ y + x + y + z ; + x + y + z y+ z x+ z ; + x + y + z x+ y + + x + y + y + z + z + x x+ y+ z (x + y + z) (x + y + z) Sol 5: x y + z x y z 0 y z + x x y + z 0 z x + y x + y z D x D y D z 0, But system hs solution. So D 0 D [ ] + [ ) [ +]

40 7.60 Determinnts x Sol 6: x y + z 0 y z y x + y z 0 z x z x y z 0 x y 0 0, so D x D y D z 0, 0 For solution D 0 D [ ] [ + ] + [ ] + ( ) Sol 7: sinq osq Xosp ysinp + z osq +... (i) xsinp + yosp + z sinq... (ii) xos(p + q) ysin(p + q) + z... (iii) os(a + B) osa osb sinasinb sin(p + q) sinposq + osp sinq eqution (i) + eqution (ii) x (sin p+os p) + y (os p+sin p) xy ospsinp + xospz yzsinp + xysinposp + xzsinp + z + yzosp z + sinq + osq x + y + z + xyosp yzsinp + xzsinp + z + yzosp + sinq + osq From eqution (iii) nd (i) x + y + z + z ( + osq z) + q( sinq z) z (sinq osq) x +y +z + z( + osq sinq z) + (osq sinq) For eqution (iii) z( + osq sinq z) + osq sinq \x + y + z Sol 8: x + y + z 6 x + y + z 0 x + y + lz µ () A unique solution, D 0 D λ [λ 6] + [ λ + ] + 0 λ 6 + λ λ 0 λ () Infinite solution So D 0, Dx Dy Dz 0 D 0 λ 6 6 D x 0 0 µ λ µ 6[0] + [µ 0] + [0 µ] (µ 0)5 0 µ 0 () No solution D 0, D x 0 λ, µ 0 Sol 9: x + y + z x + y + 4z p x + 4y + 0z p D D [0 6] + [4 0] + [4 ] So for solution, D x D y D z 0 D x p 4 p 4 0 [0 6] + [4p 0p] + [4p p ] p 0p + 4p p 0 p 6p p p + 0 p p p + 0

41 Mthemtis 7.6 (p ) (p ) 0 p or For p x + y + z x + y + 4z x + 4y + 0z Assume tht x k Eqution (ii) ii(i) x + z z x z k (k ) So y z x k y k k + k k k (x,y,z) k,, At p... (i) (ii) (iii) x + y + z () x + y + 4z () x + 4y + 0z 4 () Assume x k Eqution () () x + z 0 x z k z k y x z k k k k Sol 0: Kx + y z 4x + Ky z 6x + 6y + Kz K D 4 K t K (given) 6 6 K x + y z (i) 4x + 4y z 6x + 6y + z Assume x l Eqution (iii), (ii) (iii).(ii) 7z 0 z 0 y + z x λ (x, y, z) (λ, λ, λ) If K K D 4 K 6 6 K K[K + 6] + [ 6 4K] [4 K] K + 6K 8K K K + K 60 (K + K 0) At K (8 + () 0) 0 So (K ) is ftor k + k 0 K + K + 5 k D (K ) (K + K + 5) D x K 6 K K [ K] [ 6K] K K 4 + K K + 8K 4 [K + 4K ] [K + 6K K ] [K(K+6) (K + 6)] (K ) (K + 6) Similrly, D y (K ) (K + ) nd D z 6(K ) if K, x y z (K+ 6) K+ 6(K ) (K + K+ 5) Sol : (),,, d re distint no.,,, d {,,, 4, 5} x + y x + dy (ii) (iii)

42 7.6 Determinnts D D x x d d (i) d d, Dx d D d for lest possile +ve vlue of x d (lest nturl numer) (d, ) (, ) or (5, ) d should e mximum for lest x (, ) (, ) (d ) ( ), {7, 4, 5} Mx. (5) 5 x If, (5, ), d 5,, {,, 4} Mx. 5 5(4) () 8 x 8 p q (min.) p + q () x + y nd x + 4y 6 x >, y > 0 D D x D y 4 4, , D x x > 0, D > 6( ) > ( )( + ) 6 ( ) >, + < 6, y D y ( ) D 6( ) So is nd ve 6 Sol : ( t)x + y + z 0 x + ( t)y + z 0 x + y + ( t)z 0 Hs non-trivil solution, So D 0 D t t t 0 Assume D 0 t + 0 t + 0 t + d 0 0 So t t t d 0 0 At t 0, D d 0 So d 0 And 0 is oeffiient of t ( )( )( ) t t t d 0 d 0 Sol : x y + 4z X + y z 6x + 5y + lz, D λ (λ + 5) [ 8 λ) + 4[5 ] 6λ λ 8 7λ + 5 7(λ + 5) D 7(λ + 5) D x 4 5 λ [λ + 5] + [ λ 9] + 4[ 0 + 6] 6λ + 45 λ 9 6 4λ + 0 4(λ + 5); Dx 4( λ+ 5) 4 x D 7( λ+ 5) 7 D y 4 6 λ

43 Mthemtis 7.6 [ λ 9] + [ 8 l] + 4[ + ] 6λ 7 54 λ + 6 9λ 45 (λ + 5) D x y D z D y 9( λ+ 5) D 7( λ+ 5) [ 6 + 0] + [ + ] + [5 ] + 9 0, D z z D 0 So x, y, z is not dependent on λ (if λ 5) At λ 5 x y + 4z x + y z 6x + 5y 5z Assume z k, (iii) (ii)(i) 7y z 9 y k 9 7 So, x z y z k 4 (k 9) z 5k k k 9 (x, y, z),,k 7 7 Sol 4: z + y + x + 0 z + y + x + 0 z + y + x + 0 Now, D x D x D, y Dy D, z ( ) ( ) ( ) Dz D (i) (ii) (iii) ( + + ) ( ) ( ) ( ); \x ( + + ) D y ( + + ) ( )( ) ( ) \y [ + + ] D z ( ) ( ) ( ) \ z Sol 5: () x y + z α x y + z x y + z D [ + ] [ ] + [ +] + α + ( + α ) ( α + ) At α D ( + ) 0 So (α ) is ftor α α+ + α α So D (α ) ( + α ) (α )( + α α ) (α )[α(α + ) (α + )] (α ) (α ) (α + ) α [ 0, 0] So, α hs n integrl vlue α D x α α So x, D x (α ) (α + )

44 7.64 Determinnts α α (), {0,,,., 0} D y 0, x + y + z 4 α x + y + z 6 D z α α α 0 () Unique solution, So D 0 α, Numer of vlues for α in [ 0, 0] 9 L () Numer solution is not possile for every vlue of α, system hs tlest one solution. So M 0 () Infinite solution D 0 α, N L M + N 9 + () x + y z 0 x + y + kz 0 4x + y + z 0 Hs non-trivil solution So, D 0 k 4 [ k] + [4k ] [ 8] 0 4 k + k k 0 k 0 x + y z 0 x + 7y 0 4x + y + z 0 (iii) (ii) (i) 5y + 0 z 5y x y x y, (i) (ii) (iii) z 5 y, y y x, y, z re integer, so t for x nd z to e integer x n y y n (lso n integer) So t n, 7y, z 5 (minimum +ve vlue) x + y + z D ( 6) + ( ) + (4 ) D x 6 4( 6) + ( 6) + ( ) D y [ ] D z [4 ] (i) Unique solution so D 0 0 {,,., 0}, {0,,., 0} L 0 0 (ii) Numer solution D 0, 0 D x 0 6, nd D y 0 M ( ) 9 (iii) Infinite solution D0 0, D x D y D z 0

45 Mthemtis 7.65 But D x nd D z n t e zero t sme times, so no possile ommon solution N 0 L + M N Sol 6: i 4i 5 i i + 4i 4 5i 9 () Assume z 5 + i, z + 4i z 4 + 5i (z ) z z z 8 z z z 9 7[7 z z ]+z [z z 9 z ]+ z [ z z 8z ] [sin x (p+d p) + [sinx (p d p d)] + [sin x (p p + d)] sin x d + sin ( d) + sin dx It dose not depend upon p () xyz x + x x y + y y z + z z x x y y z z + x x x y y y z z z x x y y z z (xyz + ) (x y) (y z) (z x) 0 (given) x, y, z re ll different So (xyz + ) 0 xyz + x x y y z z 7[7 4] + (5 + i) + 4i ( 4 + 5i ) 9 4i Sol 7: () ( ) + 4i 7 () + (5 + i) ( 5 i )(4 5i) 8 + 4i i + i i + 4i 7 + (5 + i) i 5i i Coeffiient of i () 70 60i + + 4i os(p d)x ospx os(p + d)x sin(p d)x sinpx sin(p + d)x [os px sin (p+d)x os(p+d)x sin px] 69i R R R, R R R ( ) ( + ) 4( ) ( ) [( + ) 4 ( )] ( ) [( ) ( + ) 4( )] ( ) [ + 4] ( ) 0 0 () x y z x y x y z x z y z z 0 0 (x z) (y z) x + y + xz y + z + yz z ( ) ( + + ) (x z) (y z) (y + z + yz x z xz) + [os(p+d)x sin (p d)x ws(p d)x sin (p + d)x] + [os (p d)x sin px os px sin (p d)x] (x z) (y z) [ z (y x) + (y x ) (x y) (y z) (z x) (x + y + z)

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],* Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Some definite integrals connected with Gauss s sums

Some definite integrals connected with Gauss s sums Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these 1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Solved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w.

Solved Examples. JEE Main/Boards. Similarly, Example 1: If x y 2x 3x + y 3z + 4w = 5 25, find x, y, z, w. 6.6 Matrices Solved Examples JEE Main/Boards Example : If x y x + z x + y z + 4w 5 5 5, find x, y, z, w. Sol. We know that in equal matrices the corresponding elements are equal. Therefore, by equating

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

MATRICES

MATRICES MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation Qudrti Equtios d Iequtios Polyomil Algeri epressio otiig my terms of the form, eig o-egtive iteger is lled polyomil ie, f ( + + + + + +, where is vrile,,,, re ostts d Emple : + 7 + 5 +, + + 5 () Rel polyomil

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Name: Math Homework Set # VI. April 2, 2010

Name: Math Homework Set # VI. April 2, 2010 Name: Math 4567. Homework Set # VI April 2, 21 Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem 2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1), Chapter

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

TRIGONOMETRIC FUNCTIONS

TRIGONOMETRIC FUNCTIONS Chapter TRIGONOMETRIC FUNCTIONS. Overview.. The word trigonometry is derived from the Greek words trigon and metron which means measuring the sides of a triangle. An angle is the amount of rotation of

Διαβάστε περισσότερα