6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ"

Transcript

1

2

3 Περιεχόμενα Πρόλογος... 7 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση... 9 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση ανέμου Συνεχής τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό ανεμοπίεση Συνεχής τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση ανέμου ιμελές υποστύλωμα από διατομές διαμορφωμένες εν ψυχρώ Τραπεζοειδές χαλυβδόφυλλο επικάλυψης Σύνθετη δοκός με εγκάρσιες και διαμήκεις ενισχύσεις στον κορμό οκός κιβωτιοειδούς διατομής με εγκάρσιες και διαμήκεις ενισχύσεις... 9 οκός κιβωτιοειδούς διατομής με εγκάρσιες και διαμήκεις ενισχύσεις Μη ενισχυμένος κορμός υπό εγκάρσιες δυνάμεις οκός με πολλαπλά πολυγωνικά ανοίγματα στον κορμό της οκός με πολλαπλά κυκλικά ανοίγματα στον κορμό της οκός με μεμονωμένα ανοίγματα ορθογωνικής μορφής στον κορμό της Mεταλλικό σιλό εξαμενή υγρών... 6 Μεταλλική καπνοδόχος Αρθρωτή έδραση υποστυλώματος Έδραση υποστυλώματος μέσω ελασμάτων ενίσχυσης οκός κυλίσεως γερανογέφυρας Έλεγχος κόπωσης συγκολλήσεων σε φορέα γέφυρας Συμπεριφορά δοκού σε στρέψη... 3 Σχεδιασμός δοκού έναντι πυρκαγιάς Σχεδιασμός εφελκυόμενης ράβδου έναντι πυρκαγιάς με χρησιμοποίηση των παραμετρικών εξισώσεων θερμοκρασίας-χρόνου

4 6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Σχεδιασμός θλιβόμενου στοιχείου έναντι πυρκαγιάς Σχεδιασμός δοκού υπό θλίψη και κάμψη έναντι πυρκαγιάς Έλεγχος κόπωσης κόμβου μορφής Κ από κοίλες διατομές Αντισεισμικός έλεγχος εξαώροφου πλαισιωτού κτιρίου Αντισεισμικός έλεγχος εξαώρoφου κτιρίου με συνδέσμους δυσκαμψίας... 7 Παράρτημα... 5 Βιβλιογραφία... 79

5 Πρόλογος Οι κατασκευές από χάλυβα δεν περιορίζονται, ως γνωστόν, μόνο στα οικοδομικά έργα. Γέφυρες, σιλό, πύργοι, καπνοδόχοι, γερανοί, δοκοί κυλίσεως γερανογεφυρών αποτελούν μερικές από τις πλέον διαδεδομένες εφαρμογές έργων από χάλυβα. Νέα δομικά στοιχεία, όπως λεπτότοιχα εν ψυχρώ έλασης, βρίσκουν όλο και μεγαλύτερη εφαρμογή στην πράξη. Για την αντιμετώπιση των προβλημάτων μελέτης των ειδικών έργων και δομικών στοιχείων, έχει εκδοθεί μια μεγάλη σειρά κειμένων-μερών και Παραρτημάτων, με τα οποία συμπληρώνεται το βασικό Μέρος. του Ευρωκώδικα 3. Τα κείμενα αυτά, σε συνδυασμό με αντίστοιχα Μέρη του Ευρωκώδικα περί των δράσεων επί των κατασκευών και τον Ευρωπαϊκό αντισεισμικό κανονισμό, Ευρωκώδικα 8, επιτρέπουν την επεξεργασία όλων σχεδόν των θεμάτων που ανακύπτουν κατά το σχεδιασμό των έργων από χάλυβα. Ο παρών τόμος περιέχει εικοσιοκτώ παραδείγματα, προερχόμενα από προηγούμενη έκδοση (ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ, Παραδείγματα εφαρμογής του Ευρωκώδικα 3, ΤΟΜΟΣ ΙΙ), τα οποία καλύπτουν ειδικά θέματα εφαρμογής έργων από χάλυβα που απαντώνται συχνά στην πράξη. Η αναμόρφωση των παραδειγμάτων αυτών βασίζεται στα τελικά κείμενα ΕΝ των Ευρωπαϊκών κανονισμών, στα σχήματα, παραγράφους, εξισώσεις και πίνακες των οποίων γίνεται αναφορά στο δεξιά περιθώριο κάθε σελίδας. Στόχος είναι η διευκόλυνση των μηχανικών στην εφαρμογή των νέων κανονισμών, οι οποίοι συχνά είναι εκτενείς και σε διαφορετικό πνεύμα συγκριτικά με παλαιότερους. Τα παραδείγματα έχουν επιλεγεί έτσι ώστε να είναι κατά το δυνατόν αντιπροσωπευτικά των κατασκευών της πράξης. Αυτό όμως δε συμβαίνει σε όλες τις περιπτώσεις, δεδομένου ότι στόχος είναι η καλύτερη κατανόηση των διατάξεων των νέων κανονισμών και όχι η βέλτιστη κατασκευαστική διαμόρφωση. Είναι φυσικό, ότι η έκταση των παραδειγμάτων δεν επιτρέπει την κάλυψη του συνόλου των α- παιτουμένων σε κάθε περίπτωση ελέγχων. Σε θέματα που δεν καλύπτονται άμεσα από τους κανονισμούς, δόθηκαν λύσεις και ερμηνεία κατά την κρίση των συγγραφέων. 7

6 8 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Το βιβλίο απευθύνεται στο μελετητή μηχανικό και το σπουδαστή που ενδιαφέρεται να εμβαθύνει στις σιδηρές κατασκευές. Είναι δε αυτονόητο, ότι δεν υποκαθιστά σε καμία περίπτωση τα κείμενα των κανονισμών, τα οποία παράλληλα θα πρέπει να συμβουλεύεται ο χρήστης. Ωστόσο, για την αυτοτέλεια του βιβλίου, έχει περιληφθεί στο τέλος του μία σειρά πινάκων και σχημάτων από τους εφαρμοζόμενους στα παραδείγματα κανονισμούς. Αθήνα, Σεπτέμβριος 03 Οι συγγραφείς

7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση Αμφιέρειστη τεγίδα διατομής C80Χ,5 ψυχρής ελάσεως, ανοίγματος,5 m, καταπονείται από ανεμοπίεση σχεδιασμού w Ed = 0,75 kn/m (Σχ.. α,β). Η τεγίδα στηρίζει επικάλυψη από τραπεζοειδές χαλυβδόφυλλο (Σχ.. δ), το οποίο παρεμποδίζει την πλευρική της μετάθεση και δεσμεύει μερικώς τις στροφές των διατομών. Ζητείται ο έλεγχος της τεγίδας: α) Όταν η αξονική δύναμη N Ed είναι ίση με 0 β) Όταν η αξονική δύναμη N Ed είναι ίση με 0 kn Χάλυβας S z 0 W Ed = 0,75 kn/m 5 r = 5,6 r =,73 r = y S z y y 0 N Ed,50 m N Ed 0,73,39 3, I eff = 8, cm /m, t nom=mm (α) (β) (γ) (δ) Σχήμα. α) ιατομή τεγίδας, β) στατικό σύστημα, φόρτιση, γ) λεπτομέρεια γωνίας, δ) διατομή χαλυβδόφυλλου επικάλυψης 9

8 0 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ιατομή τεγίδας Από Πίνακες λαμβάνονται: Α = 5,0 cm I y = 5,6 cm W y = 8,0 cm 3 i y = 7,09 cm t zinc = 0,0 mm t cor = t nom t zinc =,5 0,0 =,6 mm 3..(3) εξ. (3.3a) 0,5 mm < t cor =,6 mm < 5 mm 3.. () Επομένως εφαρμόζεται το Mέρος.3 του Ευρωκώδικα 3. Η διατομή της τεγίδας μπορεί να θεωρηθεί ότι αποτελείται από επίπεδα ελάσματα με αιχμηρές γωνίες, επειδή ισχύει: r < 5. t mm < 5.,6 = 7,3 mm και 5. (3) r < 0,0. b p mm < 0,0. 60,76 = 6,076 mm r < 0,0. t. E/f y mm < 0,0.,6. 000/3,5 = = 5,9 mm Και επομένως η αντοχή της διατομής δε χρειάζεται να προσδιορισθεί από πειράματα Γεωμετρικές συνθήκες: 5. (6) b/t = (65,6)/,6 = 3,5 < 60 Πιν. 5. c/t = (0,6/)/,6 = 3, < 50 h = 80,6 = 78,5 mm φ = 90 h/t = 78,5/,6 = < 500. sin90 = 500 Οι ακραίες νευρώσεις μπορούν να θεωρηθούν ενεργές, επειδή: c 0,6/ 0, < = = 0,30 < 0,6 b 65,6 Η ισοδύναμη διατομή της τεγίδας και η θέση του κέντρου διάτμησης φαίνεται στο Σχ.. εξ. (5.a)

9 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση 63,5 9,3 78,5 M M : κέντρο διάτμησης 9,7 Σχήμα. Ισοδύναμη διατομή τεγίδας από επίπεδα ελάσματα Ιδιότητες χάλυβα Βασική τιμή του ορίου διαρροής: f yb = 3,5 kn/cm Πίν. 3.a Εφελκυστική αντοχή: Αριθμός κάμψεων 90 ο : n = k = 7 (εξέλαση εν ψυχρώ) Μέση τιμή ορίου διαρροής: fyα f yb (fu f yb ) k n A g f = 36,0 kn/cm t = + = u 0,6 = 3,5 + (36 3,5) 7 = 5,0 kn/cm 5,0 Συνεπώς: ,5 f yα = 5,0 kn/cm < = 9,75 kn/cm εξ. (3.)

10 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ 3 Ενεργός διατομή για περίπτωση αξονικής θλιπτικής δύναμης 3. Πέλμα ψ = κ σ = Bήμα b = b0 ε = λ ρ = b 6,35 = 0,765 8, t ε k 8, 0,6 > 0,673 p = λ 0,055 (3 + ψ) σ 0,765 0,055 (3 + ) p = = = 0, 93 λp 0,765 Πίν ΕΝ () εξ. (.) όπου 3 + ψ = 3 + = > 0 b = ρ b = 0,93 6,35 5,9cm Πίν.. eff p = 5,9 be = be = 0,5 beff = =,96 cm 3. Ενίσχυση bp,c 9,3 = = 0,30 < 0,35 kσ = 0,5 b 63,5 p εξ. (5.3b) ΕΝ b,93 λp = 0,658 8, t ε k = σ 8, 0,6 0,5 = 0,658 0,055 (3 + ) ρ = =, 0 > 0,658 c eff = ρ b p,c = 9,3=,93 cm A t (b c d ) 0,6 (,96,93 0) 0,7cm εξ. (.) εξ. (5.3a) s = e + eff + eff = + + = εξ. (5.a)

11 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση 3 Θέση κέντρου βάρους : e,93 0,6 = 0,7 b = 0,38 cm Σχήμα 5.7,96 0,6 e a = = 0,896 cm b = 6,35 0,896 = 5,5 mm 0,7 Στον υπολογισμό του I s έχουν αμεληθεί απλοποιητικά οι όροι στους οποίους περιλαμβάνεται το t 3. ( ) = + + = = 0,6 cm 3, 93, 93 Is 0,6,96 0,38,93 0,38 Δυσκαμψία ελατηρίου (k f = συμμετρική διατομή υπό θλίψη) 3 Ε t K = = ( 3 ν) b h w + b + 0,5b b h w k f 3, 0 0,6 = 3 ( 0,3 ) 5,5 7,85 + 5,5 + 0,5 5,5 7,85 = 0,087 kn/cm εξ. (5.0b) σ cr,s K Ε Ι S = = AS 0,087, 0 0, 6 = = 0,7 7,55 kn / m εξ. (5.5) λ f yb 3,5 = = 0,93 εξ. (5.d) σ 7,55 d = d cr,s χ =, 7 0,73 λ =, 7 0,73 0,93 = 0,80 εξ. (5.b) d λ = λ χ = 0,93 0,80 = 0,87 χ = 0,87 p,red p d d λ = λ χ = 0,93 0,87 = 0,86 χ = 0,86 p,red p d d Και μετά από ορισμένους κύκλους επαναλήψεων προκύπτει τελικά: εξ. (5.6)

12 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ λ = λ p χ = 0,93 0,856 = 0,85 χ 0,85 p, red d d = Α s,red = χ. d Α s = 0,85. 0,7 = 0,609 cm εξ. (5.7) t red = χ. d t = 0,85. 0,6 = 0, cm () 3.3 Κορμός ΕΝ ψ = κ σ = Πίν.. 7,85 λ p = =,5.() 8, 0,6,5 0,055 (3 + ) ρ = = 0, 7,5 εξ. (.) b eff = 0,7 7,85 = 7, cm Πίν.. 7, be = be = = 3,7 cm Η ενεργός διατομή για θλίψη φαίνεται στο Σχ..3β. Α eff =. (3,7 +,96). 0,6 +. (,96 +,93). 0, = Α eff = 3, cm N c,rd A eff 3, = f yb = 3,5 = 73,3 kn εξ. (6.) γ,0 M0 9,6 9,6 37,,6,0 9,3 37,,6,0 Σχήμα.3 Ενεργός διατομή για θλιπτική δύναμη

13 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση 5 Ενεργός διατομή για περίπτωση καμπτικής ροπής Μ y. Πέλμα b e = b e =,96 cm όπως στην παρ Ενίσχυση Α s = 0,7 cm I s = 0,6 cm όπως στην παρ. 3.. k f = 0 πέλμα υπό εφελκυσμό 3 Ε t K = = ( 3 ν) b h w + b + 0,5b b h w k f 3, 0 0,6 = 3 ( 0,3 ) 5,5 7,85 + 5,5 + 0,5 5,5 7,85 0 = 0,059 kn/cm εξ. (5.0b) K Ε Ι 0,059, 0 0,6 σ = λ S cr, s = = 3, kn/m εξ. (5.5) A S 0,7 f yb 3,5 = = 0,85 εξ. (5.d) σ 3, d = cr,s χ d =,7 0,73 λ d =,7 0,73 0,85 = 0,85 εξ. (5.b) λp,red = λp χ d = 0,85 0,85 = 0, 787 χ d = 0,90 εξ. (5.6) και μετά από επαναληπτική διαδικασία: λ p, red = λ ρ χ = 0,85 0,899 = 0,80 χ = 0,889 d t red = 0,889. 0,6 = 0,3 cm () Η ενεργός διατομή της τεγίδας με μειωμένο θλιβόμενο πέλμα και πλήρη κορμό φαίνεται στο Σχ..β. Στοιχεία ενεργού διατομής του Σχ..β: Α = 0,6. (,93 + 6,35 + 7,85 +,96) + 0,3. (,96 +,93) Α =,88 cm d

14 6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Απόσταση κέντρου βάρους από το άνω πέλμα: b c = z = s 0,6 [7,85 / + 6,35 7,85 +,93 (7,85,9 / )] = +,88 0,3,93 / = + = 9,8 cm,88 b c = 9,8 cm b t = 7,85 9,8 =8,67 cm ΕΝ Κορμός σ b t 8,67 ψ = = = = 0,9 Πιν.. σ b 9,8 < ψ < 0 k = 7,8 6,9 c σ = 7,8 6,9 ψ + 9,78 ψ ( 0,9) + 9,78 ( 0,9) =, 6 7,85 λ p = = 0,908.() 8, 0,6,6 = 0,908 0,055 (3 0,9) ρ = = 0, 96 0,908 b eff = 0,96 9,8 = 8,85 cm ψ < 0 be = 0, 8,85 = 3,5 cm b = 0, 6 8,85 = 5,3 cm e Η τελική ενεργός διατομή για κάμψη περί τον ισχυρό άξονα φαίνεται στο Σχ..γ. εξ. (. Πίν.. Γεωμετρικά και αδρανειακά μεγέθη ενεργού διατομής Εμβαδόν: Α = 0,3 (,96 +,93) + 0,6 (,96 + 3,5 + 5,3 + 8,67 + 6,35 +,93) =,83 cm

15 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση 7,93 3,5 zs = 0,3 + 0,6 +,83 3,98 + 0,6 3,98 (7,85 ) + 6,35 7,85 +,93 +,93 (7,85 ) = 9,3 cm 9,6 9,6 b c =9,8 b t =86,7,30,6 9,3 9,3 9,3 y 35,0 53, 86, 9,6 9,6,30 y,6 9,3 9,3 63,5 63,5 (α) (β) Σχήμα. α) διατομή με ενεργό θλιβόμενο πέλμα και πλήρη κορμό, β) τελική ενεργός διατομή για κάμψη περί τον ισχυρό άξονα Ροπή αδρανείας: 3 3,93 3,93 ( ) 3 3,5 3,5 ( ) ( ) 3,93,93 I = 0,3 +,93 9,3 +,96 9,3 + = + 0,6,96 9, ,5 9, 3 + = + + 3,93 7,85 9, 3 + 3, 93 = + 6,35 ( 7,85 9, 3) + +, 93 = +,93 ( 7,85 9, 3) = 0, 06 cm

16 8 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Ροπές αντίστασης: Άνω πέλμα W eff,ο = Kάτω πέλμα W eff,u = 0,06 9,3 0,06 8,6 = 6,0 cm 3 = 7,85 cm 3 5 Εγκάρσια κάμψη ελεύθερου πέλματος Σύνδεση τεγίδας-φύλλου στο κάτω μέρος του φύλλου. Οι βίδες απέχουν μεταξύ τους: e =. b R =. 75 = 550 mm C 00 = 3, knm/m και b T,max = 0 mm Πίν. 0.3 ba b a = 65mm < 5 mm k ba = = = 0, (5) πάχος χαλυβδόφυλλου t nom =mm k t, t nom = = 0,75, b R = 75mm > 85 mm kbr = = = 0,673 b 75 A = 0,75 kn/m < kn/m k A = + (A,0) 0,095 = 0,976 b T = 5 mm > b T,max = 0 mm k R b T,max bt = =0,86 bt C D,A = 3, 0,3,37 0,673 0,976 0,86 =,0 knm/m εξ. (0.7) Τα φύλλα εδράζονται σε περισσότερες τεγίδες, των οποίων η απόσταση εν προκειμένω λαμβάνεται ίση με s =,5 m Τα χαλυβδόφυλλα έχουν συνέχεια πάνω από τις τεγίδες, k Ε Ι eff, 0 0,08 k =, CD,C = = = 7,0 knm/m εξ. (0.6) s 50 και C = =,0 knm/m εξ. (0.) / C + / C /,0 + / 7,0 D = D,A D,C

17 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση 9 Για πίεση, η επικάλυψη έρχεται σε επαφή με τον κορμό της τεγίδας (Σχ..5β), οπότε: 63,5 b mod = a = = 3,75 mm 0..5.() ( ν)h (hd + b mod) h = + = 3 K E t CD ( 0,3 ) 8 (8 + 3,75) 8 = + = 3, 0 0,6,0 K = 0,00 kn/cm 706 cm / kn εξ. (0.3) Διατομή ελεύθερου πέλματος (Σχ..5γ) (πέλμα + /5κορμού): 0...() 7,85 A fz = 0,6 ( + 6,35 +,93) =,73cm 5 6,35 ys = 0,6,93 6,35 =,7 cm,73 + I fz 6,35 = 0,6 +,93 (6,35,7) 3 6,35 + 6,35 (,7) + 7,85 +,7 = 8,87 cm 5 W W fz fz = 8,87/,7 = 3, cm = 8,87 /(6,35,7) =,5 cm 3 3 i fz = 8,87/,73 =,6 cm Δεν υπάρχουν ελκυστήρες σύνδεσης μεταξύ των τεγίδων L a =,5 m k La 0,00 50 = = = 3,<0 π Ε Ι π, 0 8,87 R fz εξ. (0.6) 0...(6) e,97 kh0 0 k h = = = 0,65 h 8 Σχ. 0.3 q h,ed = k. h q Ed = 0,65. 0,75 = 0, kn/m εξ. (0.)

18 0 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ επικάλυψη τεγίδα εφ. α k h q 7, Fd 78,5/5 α θλ. 63,5 9,3 (α) (β) (γ) Σχήμα.5 α) Σύνδεση τεγίδας επικάλυψης, β) παραμόρφωση τεγίδας για ανεμοπίεση, γ) διατομή ελεύθερου πέλματος q L, ,05 R 0,05 3, kr = = = 0,8 +,03 R +,03 3, h,ed a M 0,fz,Ed = = 0, = 0,3 knm Μ fz,ed = k R. M 0,fz,Ed = 0,8. 0,3 = 0,068 knm = = 6,8 kncm Πίν. 0. Πίν. 0.ί εξ. (0.5) 6 Έλεγχος τεγίδας για Ν Ed = 0 Mέγιστη δρώσα ροπή M,5 = 0,75 8 y, Ed =,90 knm Άνω πέλμα (δεσμευμένο) My,Ed 90 f y 3,5 σmax,εd = = = 7,3 kn/cm < = = Weff,y 6,0 γμ,0 = 3,5 kn/cm Κάτω πέλμα (ελεύθερο) Δυσμενέστερο το σημείο (Σχ..5β), όπoυ αναπτύσσονται εφελκυστικές τάσεις τόσο λόγω Μ y, όσο και λόγω Μ fz (βλ. Παρατήρηση στο τέλος του Παραδείγματος): εξ. (0.3a)

19 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση M M 90 6,8 = + = = = σmax,εd y,ed fz,ed Weff,y Wfz 7,85 3, 6,8,0 = 8,9 kn/cm (εφελκυστική) Έλεγχος : σ = 8,9 kn/cm < 3,5 kn/cm εξ. (0.3b) 7 Έλεγχος τεγίδας για ταυτόχρονη αξονική δύναμη Ν Ed = 0 kn Λόγω Ν Ed υπάρχουν θλιπτικές τάσεις σε όλη τη διατομή, ίσες με: Ν 0 Ed σ Ν = = = A eff 3, 6,kN/cm 7. Έλεγχος διατομής Διατομή στο μέσο της τεγίδας: Ανω πέλμα (δεσμευμένο) M N = + = + = y,ed Ed σmax,εd 7,3 6, Weff,y Aeff,35 = 3,7 kn/cm < = 3,5 kn/cm, 0 Κάτω πέλμα (ελεύθερο) Σημείο M N M = + + = + = y,ed Ed fz,ed σmax,εd 6,8 6,,0 Weff,y Aeff Wfz =,5 kn/cm (εφελκυσμός) < 3,5kN/cm Σημείο M y,ed N M Ed fz,se σmax,εd = + + = W A W eff,y eff fz 6,8 = 6,8 + 6, + =,36 kn/cm < 3,5 kn/cm,5 εξ. (0.3a) εξ. (0.3b) εξ. (0.3b)

20 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ 7. Έλεγχος λυγισμού ελεύθερου πέλματος Είναι: 0 < R = 3, < (3) Για αριθμό ελκυστήρων 0, είναι: Πίν. 0.a n = 0,, n =,7, n 3 =,, n = 0,78 l λ n3 n fz = n L a (+ n R ) = = + =, 0,78 0,,5 (,7 3, ),3 m Ε f,0 0 3,5 = π = π = y 93,9 εξ. (0.9) λ fz l fz / i = λ fz = 3/,6 93,9 = 0,6 Για τον υπολογισμό του χ LT γίνεται χρήση του EN 993--, χρησιμοποιώντας την καμπύλη λυγισμού b (α LT = 0,3; λ LT,0 = 0, ; β = 0,75) για τη λυγηρότητα λ LT =λ fz. Με αυτόν τον τρόπο προκύπτει: λ LT,0 = 0, LT ( ) Φ = +α λ λ +βλ = 0,5 LT LT LT,0 LT 0,5 0,3 0,6 0, 0,75 0,6 0,68 ( ) = + + = χ LT = = Φ + Φ βλlt LT LT = = 0,9 0,68 + 0,68 0,75 0,6 Ο έλεγχος θα γίνει στο στήριγμα, όπου το ελεύθερο πέλμα θλίβεται λόγω Ν (Μ y = 0, Μ fz,ed = 0) με τάση σ Ν =6, kn/cm. Στο μέσο της τεγίδας, το ελεύθερο πέλμα εφελκύεται με τάση σ = 6,8 + 6, = 0, kn/cm εξ. (0.8) 0...()

21 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση 3 Εξίσωση ελέγχου (στο στήριγμα): M y,ed N M Ed fz,ed + + = χ LT Weff,y A eff Wfz 0,9 3,5 = 7, kn/cm < = 3,5 kn/cm,0 ( 0 + 6,) + 0 = εξ. (0.3) 6, , 0, 6,8,5 m Σχήμα.6 Τάσεις στο ελεύθερο πέλμα κατά μήκος της τεγίδας σε kn/cm 8 Έλεγχος σε τέμνουσα Ο έλεγχος αφορά και τις δύο περιπτώσεις Ν Εd = 0 και Ν Εd = 0 kν.,5 V Ed = 0,75 =,69 kn s f 7,85 3,5 t E 0,6, 0 w yb λw = 0,36 = 0,36 =, >,0 Για κορμό χωρίς ενίσχυση στη στήριξη, η οριακή τάση σε διατμητικό λυγισμό είναι: f 3,5 f = λ εξ. (6.0a) yb bv = 0,67 = 0,67 7,8kN/cm Πίν. 6. w, h f 7,85 7,8 = = = εξ. (6.8) w bv VRd t 0,6 0,35 kn ο sinφ γμ0 sin90,0 Έλεγχος: V b,rd = 0,35 kn >,69 kn = V Εd

22 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ 9 Έλεγχος σε συγκεντρωμένη δύναμη Έλεγχος σε συγκεντρωμένη δύναμη δεν απαιτείται, επειδή η στήριξη της τεγίδας γίνεται μέσω ειδικού παρεμβλήματος (3) 0 Έλεγχος τεγίδας σε λειτουργικότητα Εφόσον η ανεμοπίεση w = 0,75kN/m είναι φορτίο σχεδιασμού το φορτίο λειτουργικότητας ισούται με: 0,75kN/m/,5 = 0,5kN/m Για τον προσδιορισμό της ροπής αδρανείας απαιτείται να ληφθεί υπόψη η επιρροή των στρογγυλευμένων άκρων. 5.(3) Ονομαστικά πλάτη επίπεδων στοιχείων bp, ώστε να ληφθούν υπόψη κάμψεις: b = 65 mm bp = 65,6.,39 = 60,76 mm c = 0 mm bp,c = 0,6/,39 = 7,88 mm h = 80 bp = 80,6,39 = 75,76 mm Συντελεστής δ προς απομείωση των αδρανειακών χαρακτηριστικών της διατομής του Σχ.. από επίπεδα ελάσματα ώστε να ληφθεί υπόψη η επιρροή των στρογγυλευμένων άκρων. δ = 0,0 Σχ. 5.(β) Για τους ελέγχους λειτουργικότητας μπορούν να χρησιμοποιηθούν οι ιδιότητες της της ενεργού διατομής. Για τη ροπή αδρανείας ισχύει επομένως Ι=0,06 cm. Εναλλακτικά θα μπορούσε να ληθφεί υπόψη αυξημένη ροπή αδρανείας με γραμμική παρεμβολή μεταξύ πλήρους και ενεργού διατομής. Διόρθωση ροπής αδρανείας λόγω στρογγυλευμένων άκρων: I = I sh ( δ) = 0,06 ( 0,0) = 0,85 cm Mέγιστο βέλος στο μέσον της τεγίδας εξ. (5.d) 7.() 7.(3) εξ. (5.b)

23 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση 5 5 q L 5 0,5,5 δ y = = = 0,57cm E I ,9 0 L 50 0,55cm < = =,8cm ,57 cm <,8cm 7. () Εθν. Πρ. ΕΝ ()Β φ 90 n j r j j 0, = δ 0,3 90 0,3 90 m b 6,076 +, ,576 i= p,i = = = = 0,00 Παρατήρηση: Ο Ευρωκώδικας 3, Μέρος.3, παράγραφος 0...(5), προβλέπει ότι η ροπή Μ fz,εd θα πρέπει να λαμβάνεται ίση με μηδέν εάν το πέλμα εφελκύεται. Αυτό όμως κατά την άποψη των συγγραφέων δεν είναι ορθό, επειδή η ροπή Μ fz,εd προσδιορίζεται κατά τέτοιον τρόπο, ώστε οι προκαλούμενες από αυτήν τάσεις να είναι κατά προσέγγιση ίσες με τις τάσεις λόγω στρέβλωσης της διατομής. Δεδομένου ότι η διατομή υπόκειται σε στρέβλωση ανεξαρτήτως του προσήμου των τάσεων του ελεύθερου πέλματος, η επιρροή της ροπής Μ fz,sd κατά τον προσδιορισμό των τάσεων της διατομής, εξ. (0.3a) και (0.3b), θα πρέπει πάντα να λαμβάνεται υπόψη. Φυσικά, αν το ελεύθερο πέλμα εφελκύεται, δεν απαιτείται έλεγχος λυγισμού του, σύμφωνα με την παρ.0...

24

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Σχεδιασμός Μεταλλικών Κατασκευών

Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες: Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

Ευστάθεια μελών μεταλλικών κατασκευών

Ευστάθεια μελών μεταλλικών κατασκευών Ευστάθεια μελών μεταλλικών κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 009 Περιεχόμενα παρουσίασης Εισαγωγή Μορφές

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού ΚΕΦΑΛΑΙΟ 3 Συμπεριφορά και αντοχή διατομών... 81

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού ΚΕΦΑΛΑΙΟ 3 Συμπεριφορά και αντοχή διατομών... 81 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 11 1.1 Γενικά...11 1.2 Χαλύβδινες διατομές ψυχρής έλασης...15 ΚΕΦΑΛΑΙΟ 2 Αρχές σχεδιασμού... 45 2.1 Οριακές καταστάσεις και έλεγχοι μη υπέρβασής τους...45 2.2 Προσδιορισμός

Διαβάστε περισσότερα

1 Εισαγωγή Γενικά Συμβολισμοί Επεξηγήσεις Ισχύοντες κανονισμοί και προδιαγραφές 35

1 Εισαγωγή Γενικά Συμβολισμοί Επεξηγήσεις Ισχύοντες κανονισμοί και προδιαγραφές 35 Περιεχόμενα 1 Εισαγωγή 11 1.1 Γενικά... 11 1. Συμβολισμοί Επεξηγήσεις... 1 Μόρφωση συμμίκτων γεφυρών 17.1 Γενικά... 17. Ολόσωμες και κιβωτιοειδείς δοκοί... 19..1 Πυκνά διατεταγμένες σιδηροδοκοί διατομής

Διαβάστε περισσότερα

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο:

Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Ονοματεπώνυμο: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 6-6-009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο Δίνεται ο ξυλότυπος

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005) RUET sotware Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, E1993-1-1:005) Πίνακες με όλες τις πρότυπες χαλύβδινες διατομές, διαστάσεις και ιδιότητες, κατάταξη, αντοχές, αντοχή σε καμπτικό και στρεπτοκαμπτικό

Διαβάστε περισσότερα

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7

Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7 Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια Κεφάλαιο 7 Διαφάνειες παρουσίασης εκπαιδευτικών σεμιναρίων Γεώργιος Πενέλης, ομότιμος καθηγητής Α.Π.Θ. Ανδρέας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Μόρφωση χωρικών κατασκευών από χάλυβα

Μόρφωση χωρικών κατασκευών από χάλυβα Εθνικό Μετσόβιο Πολυτεχνείο Χάρης Ι. Γαντές Επίκουρος Καθηγητής Μόρφωση χωρικών κατασκευών από χάλυβα Επιστημονική Ημερίδα στα Πλαίσια της 4ης Διεθνούς Ειδικής Έκθεσης για τις Κατασκευές Αθήνα, 16 Μαίου

Διαβάστε περισσότερα

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73

XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Δομή - Βασικές Αρχές Ιούνιος 2009 Περιεχόμενα παρουσίασης Μέρη Ευρωκώδικα 3 Βασικές έννοιες o o o o o o o o Μηχανική συμπεριφορά δομικού χάλυβα Ποιότητες δομικού χάλυβα Σύγκριση χάλυβα με άλλα δομικά υλικά

Διαβάστε περισσότερα

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος

f cd = θλιπτική αντοχή σχεδιασμού σκυροδέματος f ck = χαρακτηριστική θλιπτική αντοχή σκυροδέματος v ΣΥΜΒΟΛΑ Λατινικά A b A g A e A f = εμβαδόν ράβδου οπλισμού = συνολικό εμβαδόν διατομής = εμβαδόν περισφιγμένου σκυροδέματος στη διατομή = εμβαδόν διατομής συνθέτων υλικών A f,tot = συνολικό εμβαδόν συνθέτων

Διαβάστε περισσότερα

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ

ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ Ημερίδα: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΚΤΙΡΙΩΝ & ΓΕΩΤΕΧΝΙΚΩΝ ΕΡΓΩΝ Σ.Π.Μ.Ε. ΗΡΑΚΛΕΙΟ 14.11.2008 ΑΓΚΥΡΩΣΕΙΣ ΟΠΛΙΣΜΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π.

Διαβάστε περισσότερα

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?

Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί? Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση:

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143 9.2 ΔΙΣΚΟΙ 9.2.1 Μέθοδοι ανάλυσης Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ελαστική ανάλυση πλαστική ανάλυση

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2010.354

Νέα έκδοση προγράμματος STeel CONnections 2010.354 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

Χ. ΖΕΡΗΣ Απρίλιος

Χ. ΖΕΡΗΣ Απρίλιος Χ. ΖΕΡΗΣ Απρίλιος 2016 1 Κατά την παραλαβή φορτίων στα υποστυλώματα υπάρχουν πρόσθετες παραμορφώσεις: Μονολιθικότητα Κατασκευαστικές εκκεντρότητες (ανοχές) Στατικές ροπές λόγω κατακορύφων Ηθελημένα έκκεντρα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2013.099

Νέα έκδοση προγράμματος STeel CONnections 2013.099 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2013.099 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ

ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύµµικτες πλάκες ονοµάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούντα από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεµα. Η σύµµικτη µέθοδος κατασκευής πλακών

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Υλικά

Βασικές Αρχές Σχεδιασμού Υλικά Βασικές Αρχές Σχεδιασμού Υλικά Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Το Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων ΕΝ 10080 Χάλυβας οπλισμού Νοέμ. 2013 Χ. Ζέρης 2 ΕΚΩΣ, ΕΝ1992:

Διαβάστε περισσότερα

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ

Διαβάστε περισσότερα

3.1 ΓΕΝΙΚΑ 3.2 ΑΜΦΙΕΡΕΙΣΤΕΣ ΔΟΚΟΙ

3.1 ΓΕΝΙΚΑ 3.2 ΑΜΦΙΕΡΕΙΣΤΕΣ ΔΟΚΟΙ 43 ΚΕΦΑΛΑΙΟ 3 ΣΥΜΜΙΚΤΕΣ ΔΟΚΟΙ ΚΑΙ ΠΛΑΚΕΣ 3.1 ΓΕΝΙΚΑ Το παρόν κεφάλαιο περιγράφει τους ελέγχους σύμμικτων δοκών και πλακών. Οι έλεγχοι των δοκών αφορούν τόσο τη μεταλλική δοκό στη φάση κατασκευής όσο και

Διαβάστε περισσότερα

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 1Μοντέλο πεπερασμένων στοιχείων (FEM) Κόμβοι κατασκευής Κόμβος x [m] y[m] 1 0.000 0.000 2 0.000 4.600 3 8.400 4.600 4 8.400 0.000 Στηρίξεις κατασκευής Κόμβος

Διαβάστε περισσότερα

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΕΡΓΟ : ΡΥΘΜΙΣΗ ΒΑΣΕΙ Ν.4178/2013 ΚΑΤΑΣΚΕΥΗΣ ΜΕΤΑΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ ΘΕΣΗ : Λεωφόρος Χαλανδρίου και οδός Παλαιών Λατομείων, στα Μελίσσια του Δήμου Πεντέλης ΤΕΥΧΟΣ ΣΤΑΤΙΚΗΣ ΜΕΛΕΤΗΣ ΕΠΑΡΚΕΙΑΣ METAΛΛΙΚΟΥ ΠΑΤΑΡΙΟΥ

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE09-S07 μαθήματος:

Διαβάστε περισσότερα

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και

Διαβάστε περισσότερα

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος

Μικρή επανάληψη Χ. Ζέρης Δεκέμβριος Μικρή επανάληψη 2 Βασικές παράμετροι : Γεωμετρία Εντατικά μεγέθη στο ΚΒ Καταστατικές σχέσεις υλικού Μετατόπιση του σημείου εφαρμογής των εξωτερικών δράσεων: Γενική περίπτωση Μας διευκολύνει στην αντιμετώπιση

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

Σχεδιασμός κόμβων μεταλλικών κατασκευών

Σχεδιασμός κόμβων μεταλλικών κατασκευών Σύμφωνα με το Μέρος 1.8 του Ευρωκώδικα 3 (ΕΝ1993) Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 2009 Περιεχόμενα παρουσίασης Εισαγωγή

Διαβάστε περισσότερα

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1)

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Υπολογισμός συνδέσεως διαγωνίου Σύνδεση διαγωνίου Δ 100.1 (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Έργο Υπολογισμός συνδέσεως διαγωνίου COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss

Διαβάστε περισσότερα

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET Παραμετρική ανάλυση κοχλιωτών συνδέσεων με μετωπική πλάκα χρησιμοποιώντας πεπερασμένα στοιχεία Χριστόφορος Δημόπουλος, Πολιτικός Μηχανικός, Υποψήφιος Διδάκτωρ ΕΜΠ Περίληψη Η εν λόγω εργασία παρουσιάζει

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος...19 ΜΕΡΟΣ Ι ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ... 21

Περιεχόμενα. Πρόλογος...19 ΜΕΡΟΣ Ι ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ... 21 Περιεχόμενα Πρόλογος...19 ΜΕΡΟΣ Ι ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ... 21 Κεφάλαιο 1 Βασικές αρχές σχεδιασμού... 23 1.1 Γενικά Δράσεις επί των κατασκευών...23 1.1.1 Μόνιμες δράσεις...26 1.1.2 Επιβαλλόμενες (μεταβλητές)

Διαβάστε περισσότερα

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.

προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά. ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

DELTABEAM ΣΥΜΜΙΚΤΗ ΔΟΚΟΣ

DELTABEAM ΣΥΜΜΙΚΤΗ ΔΟΚΟΣ DELTABEAM ΣΥΜΜΙΚΤΗ ΔΟΚΟΣ Πιστοποιητικά ποιότητας Φινλανδία: VTT-RTH-03040-07, Γερμανία: Z-26.2-49, Ηνωμένο Βασίλειο: BBA 05/4204, Ρωσσία: РОСС FI.СЛ19.Н00323, Τσεχία: 204/C5/2006/060-025293, Σλοβακία:

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

ΣΤΑΤΙΚΕΣ ΜΕΛΕΤΕΣ ΚΤΙΡΙΩΝ Εκδ. 4.xx ΕΓΧΕΙΡΙΔΙΟ ΤΕΚΜΗΡΙΩΣΗΣ & ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΥΜΜΕΙΚΤΑ ΚΤΗΡΙΑ. ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ

ΣΤΑΤΙΚΕΣ ΜΕΛΕΤΕΣ ΚΤΙΡΙΩΝ Εκδ. 4.xx ΕΓΧΕΙΡΙΔΙΟ ΤΕΚΜΗΡΙΩΣΗΣ & ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΥΜΜΕΙΚΤΑ ΚΤΗΡΙΑ. ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ ΣΤΑΤΙΚΕΣ ΜΕΛΕΤΕΣ ΚΤΙΡΙΩΝ Εκδ. 4.xx ΕΓΧΕΙΡΙΔΙΟ ΤΕΚΜΗΡΙΩΣΗΣ & ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΥΜΜΕΙΚΤΑ ΚΤΗΡΙΑ ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ www.tol.com.gr Μάιος 2016 1 ΤΕΧΝΙΚΟΣ ΟΙΚΟΣ ΛΟΓΙΣΜΙΚΟΥ Καρτερού 60, 71201 Ηράκλειο -

Διαβάστε περισσότερα

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]

Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ] Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1

Διαβάστε περισσότερα

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260 ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 60 Έργο Υπολογισμός συνδέσεων τέμνουσας COPYRIGHT 1999-013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss - Σελίδα /8 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΔΙΑΤΜΗΣΗ 1. Γενικά Όλοι γνωρίζουμε ότι σε μια διατομή ενός καταπονούμενου φορέα

Διαβάστε περισσότερα

Thin Gauge Sections. Λεπτότοιχες Διατομές

Thin Gauge Sections. Λεπτότοιχες Διατομές Thin Gauge Sections Λεπτότοιχες Διατομές. Περιεχόμενα Λεπτότοιχες Διατομές ΔΙΑΤΟΜΕΣ CV 3 ΔΙΑΤΟΜΕΣ ZV 5 ΔΙΑΤΟΜΕΣ ΣV 8 TΕΧΝΙΚΕΣ ΛΕΠΤΟΜΕΡΕΙΕΣ 9 ΦΩΤΟΓΡΑΦΙΕΣ ΕΡΓΩΝ 10 Λεπτότοιχες Διατομές Διατομές CV ΓΩΝΙΑ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΕΠΕΜΒΑΣΕΩΝ ΣΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΙΣΤΟΡΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΙ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΤΟΥΣ - Ι

ΤΕΧΝΟΛΟΓΙΑ ΕΠΕΜΒΑΣΕΩΝ ΣΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΙΣΤΟΡΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΙ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΤΟΥΣ - Ι ΤΕΧΝΟΛΟΓΙΑ ΕΠΕΜΒΑΣΕΩΝ ΣΤΟ ΦΕΡΟΝΤΑ ΟΡΓΑΝΙΣΜΟ ΙΣΤΟΡΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΙ ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ ΤΟΥΣ - Ι Άρης Αβδελάς, Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΤΕΧΝΟΛΟΓΙΑ

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Δράσεις

Βασικές Αρχές Σχεδιασμού Δράσεις Βασικές Αρχές Σχεδιασμού Δράσεις Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Εξέλιξη των Κανονισμών 1959 Κανονισμός Έργων από Σκυρόδεμα και Αντισεισμικός Κανονισμός (ΒΔ 59) Επιτρεπόμενες

Διαβάστε περισσότερα

Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων

Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων 1. Γενικά Τα κριτήρια σχεδιασμού κτιρίων σε σεισμικές περιοχές είναι η προσφορά επαρκούς δυσκαμψίας, αντοχής και πλαστιμότητας. Η δυσκαμψία απαιτείται για την

Διαβάστε περισσότερα

Επαλήθευση πασσάλου Εισαγωγή δεδομένων

Επαλήθευση πασσάλου Εισαγωγή δεδομένων Επαλήθευση πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 28.0.205 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : CSN 73 20 R Πάσσαλος Συντ ασφάλειας πάσσαλου θλίψης

Διαβάστε περισσότερα

Ευρωκώδικας 9- EN 1999 Σχεδιασμός κατασκευών από αλουμίνιο

Ευρωκώδικας 9- EN 1999 Σχεδιασμός κατασκευών από αλουμίνιο Ευρωκώδικας 9- EN 1999 Σχεδιασμός κατασκευών από αλουμίνιο Χ. Κ. Μπανιωτόπουλος, Καθηγητής Δρ. Πολιτικός Μηχανικός ΑΠΘ Εργαστήριο Μεταλλικών Κατασκευών Τμήμα Πολιτικών Μηχανικών Αριστοτέλειο Πανεπιστήμιο

Διαβάστε περισσότερα

Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8

Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8 Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8 Α. ΑΒΔΕΛΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. Α. ΑΒΔΕΛΑΣ 1986: Οδηγίες Σχεδιασμού της ECCS (European Convention

Διαβάστε περισσότερα

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3 ΚΑΝΟΝΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 3.1 ΑΝΟΧΕΣ ΔΙΑΣΤΑΣΕΩΝ [ΕΚΟΣ 5.2] Ισχύουν μόνο για οικοδομικά έργα. Απαιτούνται ιδιαίτερες προδιαγραφές για μη οικοδομικά έργα l: Ονομαστική τιμή διάστασης Δl: Επιτρεπόμενη

Διαβάστε περισσότερα

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων

Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος

Διαβάστε περισσότερα

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Δοκιμή κάμψης: συνοπτική θεωρία Όταν μια δοκός υπόκειται σε καμπτική ροπή οι αξονικές γραμμές κάπτονται σε

Διαβάστε περισσότερα

Ρόλος συνδέσεων στις μεταλλικές κατασκευές

Ρόλος συνδέσεων στις μεταλλικές κατασκευές Ρόλος συνδέσεων στις μεταλλικές κατασκευές Σύνδεση μελών κατασκευής μεταξύ τους Ασφαλής μεταφορά εντατικών μεγεθών από μέλος σε μέλος Απαιτήσεις: Ασφάλεια Κατασκευασιμότητα Συνέπεια με υπολογιστικό προσομοίωμα

Διαβάστε περισσότερα

ΥΛΙΚΑ ΧΑΛΥΒΑΣ. Θερμής ελάσεως (ΕΝ10025) : 1. S225 (fy=235n/mm 2 fu=360n/mm 2 ) 2. S275 (fy=270n/mm2 fu=430n/mm2) 3. S355 (fy=355n/mm2 fu=510n/mm2)

ΥΛΙΚΑ ΧΑΛΥΒΑΣ. Θερμής ελάσεως (ΕΝ10025) : 1. S225 (fy=235n/mm 2 fu=360n/mm 2 ) 2. S275 (fy=270n/mm2 fu=430n/mm2) 3. S355 (fy=355n/mm2 fu=510n/mm2) ΥΛΙΚΑ ΧΑΛΥΒΑΣ Ψυχρής ελάσεως (ΕΝ10147) : 1. FeE 220G (fy=220n/mm 2 fu=300n/mm 2 ) 2. FeE 250G (fy=250n/mm2 fu=330n/mm2) 3. FeE 280G (fy=280n/mm2 fu=360n/mm2) Θερμής ελάσεως (ΕΝ10025) : 1. S225 (fy=235n/mm

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

1 η Επανάληψη ιαλέξεων

1 η Επανάληψη ιαλέξεων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Πρόβλημα Ε.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων

Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Ανάλυση του διατμητικού πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία :.09.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Μεταλλικές κατασκευές

Διαβάστε περισσότερα

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων 1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου

Διαβάστε περισσότερα

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα

Διαβάστε περισσότερα

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

ΖΗΤΗΜΑ 1 ο (μονάδες 3.0) Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις Διδάσκων: Παναγόπουλος Γεώργιος Α Σέρρες 11-9-2009 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία: ΖΗΤΗΜΑ 1 ο (μονάδες 3.0)

Διαβάστε περισσότερα

ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙ ΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2010-2011 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Για αποκλειστική χρήση από τους φοιτητές

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ

ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ Ενίσχυση Προβόλου που έχει Υποστεί Βέλος Κάμψης ΕΝΙΣΧΥΣΗ ΠΡΟΒΟΛΟΥ ΠΟΥ ΕΧΕΙ ΥΠΟΣΤΕΙ ΒΕΛΟΣ ΚΑΜΨΗΣ ΒΕΝΙΟΣ ΚΥΡΙΑΚΟΣ ΚΟΥΦΟΠΟΥΛΟΥ ΣΤΥΛΙΑΝΗ Περίληψη Η παρούσα εργασία εξετάζει την δημιουργία βέλους κάμψης σε

Διαβάστε περισσότερα

Κεφάλαιο 2. Κανόνες λεπτομερειών όπλισης

Κεφάλαιο 2. Κανόνες λεπτομερειών όπλισης 2.5 ΑΓΚΥΡΩΣΕΙΣ [ΕΚΟΣ 17.6] 2.5.1 Τύποι αγκυρώσεων [ΕΚΟΣ 17.6.1] Διακρίνονται 4 τύποι αγκυρώσεων κατ αύξουσα αποδοτικότητα υπό εφελκυσμό ή θλίψη: 1. Ευθύγραμμες αγκυρώσεις 2. Αγκυρώσεις καμπύλου άκρου (D

Διαβάστε περισσότερα

ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφ. 4 ΥΠΟΣΤΥΛΩΜΑΤΑ

ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφ. 4 ΥΠΟΣΤΥΛΩΜΑΤΑ Κεφάλαιο 4 ΥΠΟΣΤΥΛΩΜΑΤΑ Τα υποστυλώµατα έχουν συνήθως τη µορφή κατακόρυφου αµφίπακτου ραβδόµορφου φορέα όπως φαίνεται στο σχήµα 1.8. Τα τµήµατα του υποστυλώµατος µεταξύ πάκτωσης και σηµείου καµπής θα µπορούσαν

Διαβάστε περισσότερα

Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ

Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ 3.1. Εφελκυσμός Τάση λόγω εφελκυσμού: Ν σz = ----(3-1) Α όπου Ν = η εφελκυστική δύναμη Α = το εμβαδό της διατομής του σώματος («διατομή» είναι το σχήμα που έχει το σώμα σε μία κάθετη

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 1 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Σκοπός και Στόχος του μαθήματος Στόχος του μαθήματος

Διαβάστε περισσότερα

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση

Fespa 10 EC. For Windows. Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή. Αποτίμηση Fespa 10 EC For Windows Προσθήκη ορόφου και ενισχύσεις σε υφιστάμενη κατασκευή Αποτίμηση της φέρουσας ικανότητας του κτιρίου στη νέα κατάσταση σύμφωνα με τον ΚΑΝ.ΕΠΕ 2012 Αθήνα, εκέμβριος 2012 Version

Διαβάστε περισσότερα

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων

Διαβάστε περισσότερα

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π

Παρουσίαση Ευρωκώδικα 2 Εφαρµογή στο FESPA. Χάρης Μουζάκης Επίκουρος Καθηγητής Ε.Μ.Π Παρουσίαση Ευρωκώδικα 2 Επίκουρος Καθηγητής Ε.Μ.Π Εισαγωγή Ο Ευρωκώδικας 2 περιλαµβάνει τα ακόλουθα µέρη: Μέρος 1.1: Γενικοί κανόνες και κανόνες για κτίρια Μέρος 1.2: Σχεδιασµός για πυρασφάλεια Μέρος 2:

Διαβάστε περισσότερα

Κατασκευές Οπλισμένου Σκυροδέματος Ι

Κατασκευές Οπλισμένου Σκυροδέματος Ι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχ/κών και Μηχ/κών Τοπογραφίας και Γεωπληροφορικής Τ.Ε. Κατασκευές Οπλισμένου Σκυροδέματος Ι Ασκήσεις

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ. Ευρωκώδικας 4: Σύµµικτες κατασκευές

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ. Ευρωκώδικας 4: Σύµµικτες κατασκευές ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Ευρωκώδικας 4: Σύµµικτες κατασκευές 1. ΙΑΤΜΗΤΙΚΗ ΣΥΝ ΕΣΗ 2. ΣΥΜΜΙΚΤΑ ΥΠΟΣΤΥΛΩΜΑΤΑ Ερµόπουλος Γιάννης 1. ΙΑΤΜΗΤΙΚΗ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος.

Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Τα θεµέλια είναι τα δοµικά στοιχεία ή φορείς που µεταφέρουν µε επάρκεια τα φορτία του κτιρίου (µόνιµα, κινητά, σεισµός, άλλοι συνδυασµοί) στο έδαφος. Προβλέπεται άρα Έλεγχος του φορέα: σχεδιασµός και όπλιση

Διαβάστε περισσότερα