ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση 2 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΙI ΛΥΣΗ ΑΣΚΗΣΗΣ 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση 2 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΙI ΛΥΣΗ ΑΣΚΗΣΗΣ 2"

Transcript

1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α. Σπηλιόπουλος Μάρτιος 009 Άσκηση Η δοκός κύλισης γερανογέφυρας, διατομής ΗΕΑ60 από χάλυβα ποιότητας S355, αποτελείται από διαδοχικά αμφιέρειστα τμήματα, ανοίγματος 6,00m (Σχήμα 1α). Η γερανογέφυρα κινείται σε κάθε άκρο της επί δύο τροχών που απέχουν μεταξύ τους απόσταση ίση με α3,60m (Σχήμα 1β). Οι τροχοί κυλίονται επί τροχιάς από συμπαγή ορθογωνική διατομή 0x50mm. Θεωρείται εκκεντρότητα των κατακόρυφων φορτίων ίση με eb r /450mm/41,5mm, όπου b r είναι το πλάτος της τροχιάς (Σχήμα 1γ). Ζητείται ο ελαστικός έλεγχος επάρκειας της διατομής της δοκού κύλισης, σε οριακή κατάσταση αστοχίας, για κατακόρυφο φορτίο σχεδιασμού P50kN και οριζόντιο φορτίο σχεδιασμού Η15kN σε κάθε τροχό. Να θεωρηθεί ότι τα άκρα των αμφιέρειστων τμημάτων της δοκού είναι δεσμευμένα έναντι στροφής και ελεύθερα να στρεβλωθούν, γενικότερα δε ο τρόπος στήριξης των δοκών στα άκρα τους παρέχει τη δυνατότητα να προσομοιωθούν ως απλές στρεπτικές (διχαλωτές) στηρίξεις. α) β) γ) Σχήμα 1: α) Προοπτικό γερανογέφυρας β) ένα τμήμα δοκού κύλισης γ) θέση εφαρμογή φορτίων στη δοκό κύλισης Σημείωση: Με βάση τη γραμμή επιρροής της καμπτικής ροπής σε τυχαία θέση αμφιέρειστης δοκού, ανοίγματος L, αποδεικνύεται ότι η ροπή αυτή, λόγω δύο συγκεντρωμένων φορτίων P που απέχουν απόσταση α μεταξύ τους, γίνεται μέγιστη όταν το πρώτο φορτίο βρίσκεται σε απόσταση x(l-α)/4 από το άκρο της δοκού, υπό την προϋπόθεση ότι ισχύει α<0,586l. Η μέγιστη αυτή τιμή της καμπτικής ροπής είναι: P maxm ( L α) L Σε περίπτωση που ισχύει α>0,586l τότε η μέγιστη ροπή προκύπτει όταν το ένα από τα δύο φορτία βρίσκεται στο μέσον του ανοίγματος (οπότε το άλλο βρίσκεται εκτός της δοκού) και τότε ισχύει: maxmpl/4.

2 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση ΛΥΣΗ ΑΣΚΗΣΗΣ Υλικά Ποιότητα δομικού χάλυβα S355 y 355MPa35,5kN/cm u 510MPa51,0kN/cm Ε10000MPa1000kN/cm 1. ΓΕΩΜΕΤΡΙΑ ΓΕΡΑΝΟΓΕΦΥΡΑΣ α) β) γ) Σχήμα 1: α) Προοπτικό γερανογέφυρας β) θέση εφαρμογή φορτίων στη δοκό κύλισης γ) ένα τμήμα δοκού κύλισης. ΣΤΟΙΧΕΙΑ ΔΙΑΤΟΜΗΣ Σχήμα : Διατομή δοκού κύλισης γερανογέφυρας ΗΕΑ 60 b60mm t 1,5mm h50mm t w 7,5mm 86,80cm r4mm d177mm W el,y 836,4cm 3 W el,z 8,10cm 3 I y 10450cm 4 I z 3668cm 4 3. ΚΑΤΗΓΟΡΙΑ ΔΙΑΤΟΜΗΣ Κατηγορία κορμού Με βάση τους πίνακες με τις πρότυπες διατομές και σύμφωνα με τον πίνακα για την κατηγοριοποίηση του κορμού υπό κάμψη έχουμε: d177mm c/td/t w 177/7,53,60<7ε58,3-1

3 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση όπου ε 35 / y 0, 81 και y 355MPa, το όριο διαρροής του χάλυβα. Επομένως ο κορμός ανήκει στην κατηγορία 1. Κατηγορία πέλματος Με βάση τους πίνακες με τις πρότυπες διατομές και σύμφωνα με τον πίνακα για την κατηγοριοποίηση του πέλματος υπό θλίψη έχουμε: c (b t w ) / r (60 7,5)mm / 4mm 8,18 < 14ε 11,34 t t 1,5mm όπου ε0,81 Επομένως και το πέλμα ανήκει στην κατηγορία 3. Συνεπώς: Κατηγορία διατομής 3 4. ΘΕΣΗ ΜΕΓΙΣΤΗΣ ΚΑΜΠΤΙΚΗΣ ΡΟΠΗΣ Ισχύει: α3,60m>0,586 L0,586 6,00m3,5m Επομένως η μέγιστη ροπή προκύπτει όταν το ένα από τα δύο φορτία βρίσκεται στο μέσον του ανοίγματος (οπότε το άλλο βρίσκεται εκτός της δοκού) και η θέση αυτής είναι στο μέσον του ανοίγματος Εντατικά μεγέθη Κάμψη κατά τον τοπικό y Μ Ed,y PL/450kN 6,00m/475,00kNm 7500kNcm Διάτμηση κατά τον τοπικό z V Ed,z P/50kN/5kN Κάμψη κατά τον τοπικό z Μ Ed,z HL/415kN 6,00m/4,50kNm50kNcm Διάτμηση κατά τον τοπικό y V Ed,y H/15kN/7,5kN Στρέψη Τα άκρα των αμφιέρειστων τμημάτων της δοκού είναι δεσμευμένα έναντι στροφής και ελεύθερα να στρεβλωθούν, γενικότερα δε ο τρόπος στήριξης των δοκών στα άκρα τους παρέχει τη δυνατότητα να προσομοιωθούν ως απλές στρεπτικές (διχαλωτές) στηρίξεις Η στρεπτική ροπή θα υπολογιστεί ως προς το κέντρο διάτμησης της δοκού. Η συγκεντρωμένη ροπή στο μέσον του ανοίγματος θα είναι: Μ t,ed P e+h (h/+,0cm)50kn 1,5cm+15kN (5,0cm/+,0cm) 80kNcm -

4 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση Σχήμα 3: Θέση εφαρμογής των φορτίων Η μέγιστη στρεπτική ροπή που αναπτύσσεται στη δοκό θα είναι: Τ w,ed Μ t,ed /140kNcm Σχήμα 4: Εντατικά μεγέθη για το φορτίο στη θέση της μέγιστης καμπτικής ροπής α) λόγω κατακόρυφου φορτίου β) λόγω οριζοντίου φορτίου γ) λόγω στρεπτικής ροπής 4.. Υπολογισμός τάσεων Υπολογισμός ορθών τάσεων της διατομής λόγω καμπτικής ροπής περί τον τοπικό άξονα y Οι ορθές τάσεις λόγω ροπής κάμψης Μ Ed,y είναι: MEd,y 7500kNcm σ Ed,x,My 8,97kN / cm W 3 836,40cm el,y -3

5 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση Υπολογισμός διατμητικών τάσεων στον κορμό λόγω τέμνουσας δύναμης κατά τον τοπικό άξονα z Το εμβαδόν του κορμού είναι: w h w t w (5,0cm- 1,5cm) 0,75cm16,875cm Η διατμητική τάση λόγω τέμνουσας V Ed,z είναι: VEd,z 5,0kN τ Ed,xz 1,48kN / cm 16,875cm w Υπολογισμός ορθών τάσεων των πελμάτων λόγω καμπτικής ροπής περί τον τοπικό άξονα z Οι ορθές τάσεις λόγω ροπής κάμψης Μ Ed,z είναι: MEd,z 50kNcm σ Ed,x,Mz 7,98kN / cm W 3 8,1cm el,z Υπολογισμός διατμητικών τάσεων στα πέλματα λόγω τέμνουσας δύναμης κατά τον τοπικό άξονα y Το εμβαδόν του κάθε πέλματος είναι: Α b t 6,0cm 1,5cm3,50cm Οι διατμητικές τάσεις λόγω τέμνουσας V Ed,y κατανέμονται στο πέλμα της διατομής που είναι μία ορθογωνική διατομή. Η μέγιστη τάση στο μέσον κάθε πέλματος είναι ίση με 1,50 επί τη μέση τάση και είναι: 1,50 0,5 VEd,y 1,50 0,5 7,5kN τ Ed,xy 3,50cm 0,17kN / cm Υπολογισμός τάσεων στα πέλματα λόγω στρεπτικής ροπής Στην περίπτωση ενός μέλους με ανοιχτή διατομή, όπως η I ή H, μπορεί να υποτεθεί ότι οι επιδράσεις της στρέψης κατά St. Venant μπορούν να αγνοηθούν. Κατά τη στρέβλωση αναπτύσσεται ένα ζεύγος ίσων και αντίθετων ροπών στα πέλματα Μ, το οποίο ονομάζεται δίρροπο και η αντίστοιχη τέμνουσα δύναμη V. Στη διατομή αναπτύσσονται κατά συνέπεια τόσο ορθές τάσεις λόγω των Μ, όσο και διατμητικές τάσεις λόγω της V. Για να υπολογίσουμε τη μέγιστη τιμή της ροπής M αναλύουμε τη ροπή στρέψης M t,εd σε ζεύγος δυνάμεων στα πέλματα: V F M t,εd /(h-t )80kNcm/(5,0cm-1,5cm)11,79kN Η δύναμη αυτή προκαλεί μία ροπή κάμψης στο μέσον του κάθε πέλματος ίση με: M V F L/411,79kN (600cm)/41768,4kNcm και μία τέμνουσα δύναμη στο κάθε πέλμα ίση με: V V F /5,89kN -4

6 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση Σχήμα 5: Εντατικά μεγέθη για το φορτίο στη θέση της μέγιστης καμπτικής ροπής, λόγω της στρεπτικής ροπής α) στο άνω πέλμα β) στο κάτω πέλμα Το εμβαδόν του κάθε πέλματος είναι: b t 6,00cm 1,5cm3,50cm η ροπή αδράνειας του κάθε πέλματος είναι: I t b 3 /11,5cm (6,0cm) 3 /11830,83cm 4 και η ελαστική ροπή αντίστασης θα είναι: W el, I /(b/) 1830,83cm 4 /6,0cm140,83cm 3 Οι ορθές τάσεις λόγω της παραπάνω ροπής στο κάθε πέλμα δίνονται ως εξής: M 1768,4kNcm σ w,ed 1,56kN / cm W 3 140,83cm el, Η διατμητική τάση στο κάθε πέλμα λόγω της παραπάνω τέμνουσας δίνεται ως εξής: V 5,89kN τ w,ed 1,50 1,50 0,7kN / cm 3,50cm -5

7 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση α) β) Σχήμα 6: Ορθές και διατμητικές τάσεις λόγω κατακορύφου φορτίου α) σ x,my λόγω Μ y β) τ xz λόγω V z α) β) Σχήμα 7: Ορθές και διατμητικές τάσεις λόγω φορτίου οριζοντίου φορτίου Η α) σ x,mz, λόγω Μ z β) τ xy λόγω V y -6

8 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση Σχήμα 8: Στρέβλωση της δοκού κύλισης. Ανάλυση στης στρεπτικής ροπής σε ζεύγος δυνάμεων στα πέλματα α) β) Σχήμα 9: Ορθές και διατμητικές τάσεις λόγω στρέβλωσης α) σ w,ed, λόγω Μ β) τ w,ed λόγω V 4.3. Ελαστικός έλεγχος σε συνδυασμό διάτμησης, κάμψης και στρέψης Ελέγχουμε δύο σημεία στη διατομή, το άκρο του άνω πέλματος όπου αναπτύσσονται οι μέγιστες ορθές τάσεις και το μέσον του άνω πέλματος όπου αναπτύσσονται οι μέγιστες διατμητικές τάσεις. Άκρο πέλματος (σημείο 1): Στο σημείο 1 η διατμητική τάση είναι μηδέν, ενώ η ορθή τάση είναι: σ x σ Ed,x,My +σ Ed,x,Mz +σ w,ed (8,97+7,98+1,56)kN/cm 9,51kN/cm y < 35,5kN / cm γ M0 Μέσον άνω πέλματος (σημείο ): Στο σημείο η ορθή τάση είναι: σ x σ Ed,x,My 8,97kN/cm -7

9 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση και η συνισταμένη διατμητική τάση είναι: Ed,xy w,ed Ed,xz τ (τ + τ ) + τ (0,17 + 0,7) + 1,48 1,54kN / cm y σ VM σ + 3τ 8, ,54 9,35kN / cm < 35,5kN / cm γ M0 5. ΘΕΣΗ ΜΕΓΙΣΤΗΣ ΤΕΜΝΟΥΣΑΣ ΔΥΝΑΜΗΣ Από τη γραμμή επιρροής της μέγιστης τέμνουσας προκύπτει ότι μέγιστη τέμνουσα θα είναι στη στήριξη όταν ο ένας τροχός είναι πολύ κοντά στη μία στήριξη, ενώ ο άλλος βρίσκεται σε απόσταση α. Τότε η τέμνουσα στη στήριξη θα είναι ίση με VP(-α/L) Εντατικά μεγέθη Κάμψη κατά τον τοπικό y & z Δεν υπάρχει καμπτική ροπή στη στήριξη αμφιέρειστης δοκού Διάτμηση κατά τον τοπικό z H τέμνουσα στη στήριξη θα είναι ίση με: V Ed,z P(-α/L)50kN (-3,60m/6,0m)70,00kN Διάτμηση κατά τον τοπικό y V Ed,y H(-α/L)15kN (-3,60m/6,0m)1,00kN Στρέψη Η συγκεντρωμένη ροπή θα είναι: Μ t,ed P e+h (h/+,0cm)50kn 1,5cm+15kN (5,0cm/+,0cm)80kNcm Τ w,ed Μ t,ed (-α/l)80 (-3,60m/6,0m) 39,00kNcm -8

10 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση Σχήμα 10: Εντατικά μεγέθη για το φορτίο στη θέση της μέγιστης τέμνουσας δύναμης α) λόγω κατακόρυφου φορτίου β) λόγω οριζοντίου φορτίου γ) λόγω στρεπτικής ροπής 5.. Τάσεις Υπολογισμός διατμητικών τάσεων κατά τον τοπικό άξονα z Η διατμητική τάση λόγω τέμνουσας V Ed,z είναι: VEd,z 70,00kN τ Ed,xz 4,15kN / cm 16,875cm w Υπολογισμός διατμητικών τάσεων κατά τον τοπικό άξονα y Η διατμητική τάση λόγω τέμνουσας V Ed,y είναι: 1,50 0,5 VEd,y 1,50 0,5 1,00kN τ Ed,xy 0,48kN / cm 3,50cm Υπολογισμός τάσεων στα πέλματα λόγω στρεπτικής ροπής Για να υπολογίσουμε τη μέγιστη τιμή της τέμνουσας V αναλύουμε τη ροπή στρέψης T w,εd σε ζεύγος δυνάμεων στα πέλματα: V T w,εd /(h-t ) 39,00kNcm/(5,0cm-1,5cm)16,50kN Η διατμητική τάση στο κάθε πέλμα λόγω της παραπάνω τέμνουσας δίνεται ως εξής: V 16,50kN τ w,ed 1,50 1,50 0,76kN / cm 3,50cm -9

11 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Άσκηση α) β) γ) Σχήμα 11: Διατμητικές τάσεις α) τ xz λόγω V z, β) τ xy λόγω V y, γ) τ w,ed λόγω V 5.3. Ελαστικός έλεγχος σε συνδυασμό διάτμησης, κάμψης και στρέψης Στο άκρο της δοκού έχουμε μόνο διατμητικές τάσεις, επομένως και η συνισταμένη διατμητική τάση είναι: y τ (τ Ed,xy + τ w,ed ) + τ Ed, xz (0,48 + 0,76) + 4,15 4,33kN / cm < 0,50kN / cm 3γ M0-10

Σιδηρές Κατασκευές Ι. Άσκηση 9: Δοκός κύλισης γερανογέφυρας υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 9: Δοκός κύλισης γερανογέφυρας υπό στρέψη. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 9: Δοκός κύλισης γερανογέφυρας υπό στρέψη Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Άσκηση 9 Δοκός κύλισης γερανογέφυρας υπό στρέψη. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι Άσκηση 9 Δοκός κύλισης γερανογέφυρας υπό στρέψη. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση 9 Δοκός κύλισης γερανογέφυρας υπό στρέψη χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.

Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 5: Κοχλίωση κοντού προβόλου γερανογέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 10: Έλεγχος διακοπτόμενης συγκόλλησης Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι. Άσκηση 4: Θλιβόμενο υποστύλωμα. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών. Εργαστήριο Μεταλλικών Κατασκευών Σιδηρές Κατασκευές Ι Άσκηση 4: Θλιβόμενο υποστύλωμα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Άσκηση 5 Ελαστικός έλεγχος τεγίδας στεγάστρου. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι Άσκηση 5 Ελαστικός έλεγχος τεγίδας στεγάστρου. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση λαστικός έλεγχος τεγίδας στεγάστρου χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση : Κόμβος δοκού υποστυλώματος (συγκολλητή σύνδεση) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α.

Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος)

Σιδηρές Κατασκευές Ι Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) ιδηρές ατασκευές Άσκηση 7 Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 3: Δικτύωμα πεζογέφυρας (θλιβόμενο άνω πέλμα) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 7: Σύνδεση με κοχλίες τύπου D και E Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές ΙΙ Διδάσκοντες : Ι. Βάιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 6: Έλεγχος πείρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm

ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 4: Δικτύωμα πεζογέφυρας Αποκατάσταση συνέχειας εφελκυόμενου κάτω πέλαμτος με κοχλίες Α, Β, C Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1

ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ

6 ΣΙΔΗΡΕΣ ΚΑΤΑΣΚΕΥΕΣ ΤΟΜΟΣ ΙΙ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...7 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση...9 Παράδειγμα Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι Διάλεξη 7 Μέλη υπό εγκάρσια φορτία. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές Ι Διάλεξη 7 Μέλη υπό εγκάρσια φορτία. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη 7 έλη υπό εγκάρσια φορτία χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΗΜΕΡΟΜΗΝΙΑ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2016

ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΗΜΕΡΟΜΗΝΙΑ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙΔΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 016

Διαβάστε περισσότερα

Ευστάθεια μελών μεταλλικών κατασκευών

Ευστάθεια μελών μεταλλικών κατασκευών Ευστάθεια μελών μεταλλικών κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 009 Περιεχόμενα παρουσίασης Εισαγωγή Μορφές

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 017 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260

ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 260 ΣΥΝΔΕΣΗ ΔΟΚΟΥ ΙΡΕ 180 ΣΕ ΔΟΚΟ ΗΕΑ 60 Έργο Υπολογισμός συνδέσεων τέμνουσας COPYRIGHT 1999-013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss - Σελίδα /8 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ

Διαβάστε περισσότερα

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1

www.runet.gr 1-Μοντέλο πεπερασμένων στοιχείων (FEM) Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 Διαστασιολόγηση κατασκευής από Χάλυβα Σελ. 1 1Μοντέλο πεπερασμένων στοιχείων (FEM) Κόμβοι κατασκευής Κόμβος x [m] y[m] 1 0.000 0.000 2 0.000 4.600 3 8.400 4.600 4 8.400 0.000 Στηρίξεις κατασκευής Κόμβος

Διαβάστε περισσότερα

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27

Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή... 17

Περιεχόμενα. 1 Εισαγωγή... 17 Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 1: Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών

Σιδηρές Κατασκευές Ι. Άσκηση 1: Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών Σιδηρές Κατασκευές Ι Άσκηση 1: Έλεγχος ελκυστήρα, κοχλιωτής σύνδεσης και λεπίδας σύνδεσης Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ

Σιδηρές Κατασκευές ΙΙ Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Κόμβος δοκού υποστυλώματος (κοχλιωτή σύνδεση) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 5 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Άσκηση 9 Αποκατάσταση συνέχειας καμπτόμενης δοκού. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Άσκηση 9 Αποκατάσταση συνέχειας καμπτόμενης δοκού. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Άσκηση 9 ποκατάσταση συνέχειας καμπτόμενης δοκού χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.

Διαβάστε περισσότερα

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες: Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΜΠΕΡΝΑΚΟΣ ΑΝΤΩΝΙΟΣ Περίληψη Στόχος της παρούσας εργασίας είναι η πρακτική εφαρμογή αναλυτικών προβλέψεων του ΚΑΝΕΠΕ

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

6 ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΦΑΡΜΟΓΗΣ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Περιεχόμενα Πρόλογος... 7 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη, υπό ανεμοπίεση... 9 Αμφιέρειστη τεγίδα ψυχρής ελάσεως δεσμευμένη από την επικάλυψη υπό αναρρόφηση ανέμου... 7 3

Διαβάστε περισσότερα

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)

Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005) RUET sotware Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, E1993-1-1:005) Πίνακες με όλες τις πρότυπες χαλύβδινες διατομές, διαστάσεις και ιδιότητες, κατάταξη, αντοχές, αντοχή σε καμπτικό και στρεπτοκαμπτικό

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Δομή - Βασικές Αρχές Ιούνιος 2009 Περιεχόμενα παρουσίασης Μέρη Ευρωκώδικα 3 Βασικές έννοιες o o o o o o o o Μηχανική συμπεριφορά δομικού χάλυβα Ποιότητες δομικού χάλυβα Σύγκριση χάλυβα με άλλα δομικά υλικά

Διαβάστε περισσότερα

Σιδηρές Κατασκευές Ι. Άσκηση 2: Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ

Σιδηρές Κατασκευές Ι. Άσκηση 2: Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σιδηρές Κατασκευές Ι Άσκηση : Δικτύωμα πεζογέφυρας (εφελκυόμενο κάτω πέλμα και εφελκυόμενη διαγώνια ράβδος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Στρέψη κυκλικής διατομής

Διαβάστε περισσότερα

4.5 Αµφιέρειστες πλάκες

4.5 Αµφιέρειστες πλάκες Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και

Διαβάστε περισσότερα

Μόρφωση χωρικών κατασκευών από χάλυβα

Μόρφωση χωρικών κατασκευών από χάλυβα Εθνικό Μετσόβιο Πολυτεχνείο Χάρης Ι. Γαντές Επίκουρος Καθηγητής Μόρφωση χωρικών κατασκευών από χάλυβα Επιστημονική Ημερίδα στα Πλαίσια της 4ης Διεθνούς Ειδικής Έκθεσης για τις Κατασκευές Αθήνα, 16 Μαίου

Διαβάστε περισσότερα

Μάθηµα : Σιδηρές Κατασκευές ΙΙ ιδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάµ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α.

Μάθηµα : Σιδηρές Κατασκευές ΙΙ ιδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάµ Ι. Μαλλής Ξ. Λιγνός I. Βασιλοπούλου Α. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής Εραστήριο Μεταλλικών Κατασκευών Μάθηµα : Σιδηρές Κατασκευές ΙΙ ιδάσκοντες : Ι Βάιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάµ

Διαβάστε περισσότερα

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3

ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.

Διαβάστε περισσότερα

Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων

Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων 1 Λυμένες ασκήσεις του κεφαλαίου 3: Είδη φορτίσεων Πρόβλημα 3.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές.

Διαβάστε περισσότερα

ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA

ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA Άρης Αβδελάς, Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τα δομικά συστήματα στις σύμμικτες κτιριακές κατασκευές, αποτελούνται

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά

Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΣΧΕΣΕΙΣ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΣΧΕΣΕΙΣ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΡΕΠΤΙΚΩΝ ΣΤΑΘΕΡΩΝ ΤΥΠΙΚΩΝ ΜΕΤΑΛΛΙΚΩΝ ΔΙΑΤΟΜΩΝ Παναγιώτης Ι. Κόκκαλης, Διπλ. Π.Μ., ΜSc ΑSAναστασιάδης & Συνεργάτες 1. Εισαγωγή Η στρέψη ως φαινόμενο καταπόνησης συνδυάζεται, κυρίως,

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς.

Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 4 Προσδιορισμός του μέτρου στρέψης υλικού με τη μέθοδο του στροφικού

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ TREYLOR ΜΕΓΙΣΤΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑΣ ΦΟΡΤΙΟΥ 500Kp ΣΠΟΥΔΑΣΤΕΣ

Διαβάστε περισσότερα

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Πρόβλημα Ε.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η

Διαβάστε περισσότερα

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων: ΔΕΔΟΜΕΝΑ: ΘΕΜΑ Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα) Δίνονται:

Διαβάστε περισσότερα

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή

Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Ευρωκώδικες Εγχειρίδιο αναφοράς Αθήνα, Μάρτιος 01 Version 1.0.3 Συνοπτικός οδηγός για κτίρια από φέρουσα λιθοδομή Με το Fespa έχετε τη δυνατότητα να μελετήσετε

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΕΥΤΙΚΟ ΙΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική Ι 15 Φεβρουαρίου 1 ιδάσκων:, Ph.D. ιάρκεια εξέτασης : ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ (1 η περίοδος χειμερινού

Διαβάστε περισσότερα

ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙ ΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2010-2011 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Για αποκλειστική χρήση από τους φοιτητές

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων

ΜΗΧΑΝΙΚΕΣ ΚΑΤΕΡΓΑΣΙΕΣ. Υπολογισμοί συγκολλήσεων Σχήμα 1 Δυο ελάσματα πάχους h, συγκολλημένα σε μήκος L, με υλικό συγκόλλησης ορίου ροής S y, που εφελκύονται με δύναμη P. Αν το πάχος της συγκόλλησης είναι h, τότε η αναπτυσσόμενη στο υλικό της συγκόλλησης

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ

ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ 49 ΚΕΦΑΛΑΙΟ 5 ΕΝΙΣΧΥΣΗ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΣΕ ΔΙΑΤΜΗΣΗ 5.1 Γενικά Η ενίσχυση στοιχείων οπλισμένου σκυροδέματος σε διάτμηση με σύνθετα υλικά επιτυγχάνεται μέσω της επικόλλησης υφασμάτων ή, σπανιότερα,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας

Διαβάστε περισσότερα

Ελικοειδείς ρωγµές Καθαρή στρέψη ( τυχαία διατοµή ) 2F 2F + = F F 2 Gϑ τ = τ = 2 x 2 y zy zx x y

Ελικοειδείς ρωγµές Καθαρή στρέψη ( τυχαία διατοµή ) 2F 2F + = F F 2 Gϑ τ = τ = 2 x 2 y zy zx x y ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Τοµέας οµικών Κατασκευών Εργαστήριο Ωπλισµένου Σκυροδέµατος Σχεδιασµός φορέων από ΗΜΕΡΙ Α από σκυρόδεµα µε βάση τον Ευρωκώδικα

Διαβάστε περισσότερα

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων

W H W H. 3=1.5εW. F =εw 2. F =0.5 εw. Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων 1 Παράδειγμα 6: Ικανοτικός Σχεδιασμός δοκών, υποστυλωμάτων και πεδίλων F 3=1.5εW W H F =εw W F =0.5 εw 1 Υ4 Δ1 Υ Δ1 W H Υ3 Υ1 H Π L L To τριώροφο επίπεδο πλαίσιο του σχήματος έχει (θεωρητικό) ύψος ορόφου

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 03-04 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 04 Κατεύθυνση: Θεωρητική Μάθημα: Εφαρμοσμένη Μηχανική Επιστήμη Τάξη: Β' Αριθμός Μαθητών: 0 Κλάδος: Μηχανολογίας

Διαβάστε περισσότερα

Νέα έκδοση προγράμματος STeel CONnections 2013.099

Νέα έκδοση προγράμματος STeel CONnections 2013.099 http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2013.099 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Διαβάστε περισσότερα

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320

ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 ΕΔΡΑΣΗ ΥΠΟΣΤΥΛΩΜΑΤΟΣ ΗΕΑ 320 Έργο Υπολογισμός συνδέσεων ροπής COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Σύνδεση_Έδραση_Ορ0_Κ3_MTC.tss - Σελίδα 2/11 1. Παραδοχές μελέτης Οι συνδέσεις ροπής δοκού

Διαβάστε περισσότερα

Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών

Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών ιδηρές ατασκευές Διάλεξη Πλευρικός λυγισμός χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΖΟΝΤΑΣ ΤΟΝ Κ.Α.Δ.Ε.Τ. ΣΕ ΕΝΑ ΑΠΛΟ ΚΤΙΡΙΟ ΑΠΟ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ

ΕΦΑΡΜΟΖΟΝΤΑΣ ΤΟΝ Κ.Α.Δ.Ε.Τ. ΣΕ ΕΝΑ ΑΠΛΟ ΚΤΙΡΙΟ ΑΠΟ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ Εφαρμόζοντας τον Κ.Α.Δ.Ε.Τ. σε ένα απλό κτίριο από φέρουσα τοιχοποιία ΕΦΑΡΜΟΖΟΝΤΑΣ ΤΟΝ Κ.Α.Δ.Ε.Τ. ΣΕ ΕΝΑ ΑΠΛΟ ΚΤΙΡΙΟ ΑΠΟ ΦΕΡΟΥΣΑ ΤΟΙΧΟΠΟΙΙΑ ΒΑΣΙΛΕΙΑΔΗ ΜΙΧΑΕΛΑ Προπτυχιακή Φοιτήτρια Π.Π., mikaelavas@gmail.com

Διαβάστε περισσότερα

εν απαιτείται οπλισµός διάτµησης για διατµητική δύναµη µικρότερη ή ίση µε την τιµή V Rd,c

εν απαιτείται οπλισµός διάτµησης για διατµητική δύναµη µικρότερη ή ίση µε την τιµή V Rd,c Χ. Κααγιάννης, Πολιτικός Μηχ. ΕΜΠ,. Μηχ. ΚΑΘΗΓΗΤΗΣ Κατασκευών Ωπλισµένου Σκυοδέµατος και Αντισεισµικού Σχεδιασµού ΠΡΟΕ ΡΟΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΘ Συνοπτική Παουσίαση Σχεδιασµού έναντι ιάτµησης

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων

Διαβάστε περισσότερα

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ

Ενότητα ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ Ενότητα Β ΑΡΧΕΣ ΣΧΕΔΙΑΣΜΟΥ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΙΙ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΤΩΝ ΡΑΣΕΩΝ ΕΝΤΟΠΙΣΜΟΣ ΣΤΑΤΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΙΑΚΡΙΣΗ ΦΟΡΤΙΩΝ-ΣΤΗΡΙΞΕΩΝ-ΕΠΙΠΟΝΗΣΕΩΝ ΣΤΑΤΙΚΗ ΕΠΙΛΥΣΗ ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ

Διαβάστε περισσότερα

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης

4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης

Διαβάστε περισσότερα

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1)

Υπολογισμός συνδέσεως διαγωνίου. Σύνδεση διαγωνίου Δ (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Υπολογισμός συνδέσεως διαγωνίου Σύνδεση διαγωνίου Δ 100.1 (1) με τη δοκό Δ1.1 (1) και το στύλο Κ 1 (1) Έργο Υπολογισμός συνδέσεως διαγωνίου COPYRIGHT 1999-2013 LH ΛΟΓΙΣΜΙΚΉ Fespa 10 5.6.0.14 - Connection1_MTC.tss

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα.

ΑΣΚΗΣΗ 1: Υπολογίστε τη συνισταμένη κατακόρυφη δύναμη σε οριζόντιο επίπεδο με για συγκεντρωμένο σημειακό φορτίο, σύμφωνα με το σχήμα. Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Μετάδοση τάσεων στο έδαφος (8 η σειρά ασκήσεων). Ημερομηνία:

Διαβάστε περισσότερα

Σέρρες 20-1-2006. Βαθμολογία:

Σέρρες 20-1-2006. Βαθμολογία: Τ.Ε.Ι. ΣΕΡΡΩΝ Τμήμα Πολιτικών Δομικών Έργων Κατασκευές Οπλισμένου Σκυροδέματος Ι (Εργαστήριο) Διδάσκοντες: Λιαλιαμπής Ι., Μελισσανίδης Σ., Παναγόπουλος Γ. A Σέρρες 20-1-2006 Ονοματεπώνυμο: Εξάμηνο Βαθμολογία:

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

ΔΙΑΤΜΗΣΗ ΛΟΓΩ ΚΑΜΨΗΣ

ΔΙΑΤΜΗΣΗ ΛΟΓΩ ΚΑΜΨΗΣ 95 Κεφάλαιο 7 ΔΙΑΤΜΗΣΗ ΛΟΓΩ ΚΑΜΨΗΣ 7. Γενικά Στο προηγούµενο κεφάλαιο έγινε η ανάλυση δοκών σε καθαρή κάµψη, αποτέλεσµα της οποίας είναι η ανάπτυξη (µόνο) ορθών τάσεων. Επίσης είδαµε ότι η ύπαρξη τεµνουσών

Διαβάστε περισσότερα

Π A N E Π I Σ T H M I O Θ E Σ Σ A Λ I A Σ TMHMA MHXANOΛOΓΩN MHXANIKΩN

Π A N E Π I Σ T H M I O Θ E Σ Σ A Λ I A Σ TMHMA MHXANOΛOΓΩN MHXANIKΩN EPΓΣTHPIO MHXNIKHΣ KI NTOXHΣ TΩN YΛIKΩN Λεωφόρος θηνών Πεδίον Άρεως 84 όλος Πρόβλημα Π N E Π I Σ T H M I O Θ E Σ Σ Λ I Σ TMHM MHXNOΛOΓΩN MHXNIKΩN MHXNIKH ΤΩΝ ΥΛΙΚΩΝ Ι Σειρά Ασκήσεων Διευθυντής: Kαθηγητής

Διαβάστε περισσότερα