Review Problems for Basic Algebra I Students

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Review Problems for Basic Algebra I Students"

Transcript

1 Review Problems for Basic Algebra I Students Note: It is very important that you practice and master the following types of problems in order to be successful in this course. Problems similar to these are presented in the computer homework under Review Exercises. Once you have mastered the problems on this sheet, go to the computer program and complete the review on line to be graded. 1. Review Problem Reference section in text Answer Simplify: Combine: Combine: Multiply: 7 12 x Divide: Add: Multiply: 7.21 x Multiply: 4.23 x Write as a percent: % 10. Write as a decimal: 196.5% A

2 Review Problems for Basic Algebra II Students Note: It is very important that you practice and master the following types of problems in order to be successful in this course. Problems similar to these are presented in the computer homework under Review Exercises. Once you have mastered the problems on this sheet, go to the MyMathLab and complete the review on line to be graded. Review Problem Reference section in text Answer 1. Combine: 7 + (- 6) Combine: - 1(- 2)(- 3)( 4) Combine: (-5) Multiply: Evaluate: 3(5 7) 2 6(3) Simplify: 5(2a b) 3(5b 6a) a 20b 7. Evaluate: x 2 3x for x = Solve for x: 4x 11 = x = 6 9. Translate into an algebraic expression: three more than half of a number x 10. Explain how you would locate the point (4, -3) on graph paper. 3.1 Count from the origin 4 squares to the right. From that location count 3 squares down. Place a dot at this final location. B

3 Inequality Symbols Place the correct symbol, < or >, between the two numbers. 1) 2 4 2) 6 5 3) ) ) ) ) 7-6 8) 3-5 9) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) The Opposite of a Number

4 Find the opposite number. 1) 7 2) 11 3) -4 4) -5 5) -18 6) 34 7) -28 8) -77 9) 66 Evaluate. 10) 3 11) -3 12) 7 13) -5 14) 4 15) -4 16) ) ) 15 19) ) ) ) ) ) ) ) ) ) ) ) ) 30 32) 21 33) ) ) )

5 Rules for Combining Signed Numbers - 1.1, 1.2 Rule 1: If the signs of the numbers to be combined are the same, then add the numbers and keep the common sign as part of your answer. Examples: = + 9; = + 8; = - 9; = = + 11 (Notice that the 7 has no sign, so we know it is a + 7) Exercise A: 1) ) ) ) ) ) ) ) ) ) ) ) ) ) ) Rule 2: To combine numbers with different signs, subtract the numbers and take the sign of the larger number for your answer. Examples: = - 2 (The answer is negative since 5 is greater than 3, and 5 is negative.) = + 1 (The answer is positive since 8 is greater than 7, and 8 is positive.) = + 5 (The answer is positive since 9 is greater than 4, and 9 is positive.) = - 3 (The answer is negative since 13 is greater than 10, and 13 is negative.) Exercise B: 1) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 7-9 Exercise C: 1) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )

6 Combining Signed Numbers - 1.1, 1.2 (a) When the signs of numbers are the same or alike, add the numbers and keep the same sign. Examples: a = + 8 b = - 14 c = 53 d = - 21 (b) When the signs of the numbers are different or unlike, subtract the smallest number from the largest, and then take the sign of the largest number. Examples: a = - 16 b = -36 c = 16 d = 6 Add the following problems: 1) = 2) = 3) = 4) = 5) = 6) = 7) = 8) = 9) = 10) = 11) = 12) = 13) = 14) = 15) = 16) = 17) = 18) = 19) = 20) = 21) = 22) = 23) = 24) = 25) = 26) = 27) = 28) = 29) = 30) = 31) = 32) = 33) = 34) = 35) = 36) = 37) = 38) = 39) = 40) = 41) = 42) = 43) = 44) = 45) = 46) = 47) = 48) = 49) = 50) = 51) = 52) = 53) = 54) + 5-6= 55) = 56) = 57) = 58) = 59) = 60) = Double Signs

7 Always change double signs to a single sign before combining with RULES 1 or 2 from the previous worksheet. For example: a) +5 + ( + 7) (Add the numbers, keep the common sign.) = = + 12 b) 5 - (- 7) (Add the numbers, keep the common sign.) = = + 12 c) 5 - (+ 7) (Subtract the numbers, keep the sign of the larger number.) = 5-7 = - 2 d) 5 + (- 7) (Subtract the numbers, keep the sign of the larger number.) = 5-7 = - 2 Add or Subtract: (A) 1) +4 + (+ 2) = 2) (- 2) = 3) (- 2) = 4) (+ 2) = 5) (+ 3) = 6) (- 3) = 7) (- 3) 8) (+ 3) = 9) 8 - (- 10) = 10) 8 + (- 10) = 11) 8 - (+ 10) = 12) 8 + (+ 10) = (B) 1) 5 + (+ 2) - (+ 6) = 2) (+3 ) + 5 = 3) 17 - (+ 7) - ( - 5) 4) (+ 5) - (- 8) = 5) 15 - (+ 16) - (- 1) = 6) (+ 6) = 7) 20 + (- 23) - 5 = 8) (+ 6) - (- 6) = 9) 30 - (+ 15) - (-5) = 10) (- 7) = 11) (- 2) = 12) 3 + (- 4) - (- 3) +5 = 5

8 Review of Combining Signed Numbers Add or Subtract: 1) 3 + (- 6) 2) ) (- 16) 4) (- 15) ) 3 + (- 9) + (- 7) 6) (- 8) + (- 14) 7) (3) 8) 1 + (- 2) + (- 3) 9) 11 +(- 20) + (- 30) 10) 12 + (- 20) (- 7) 11) (- 9) 12) (- 10) + (- 6) + (- 15) 13) ) ) 13 - (- 14) 16) (- 4) 17) ) ) (- 7) + (- 6) 20) (- 14) 21) (- 17) 22) (- 26) ) ) 13 + (- 13) (- 13) 25) (- 23) )

9 Multiplication (a) The product is positive if the two signs are the same, either both positive or both negative. Examples: -5(-4) = +20; (+4)(+2) = +8 (b) The product is negative if the two signs are different, one positive and one negative. Examples: (-8)(4) = -32; +6(-5) = -30 (c) When multiplying more than two terms, the product is positive if there is an even number of signs and the product is negative if there is an odd number of negative signs. Examples: (-2)(-1)(8) = +16 (-1)(3)(+2) = -6-2(-10)(-5) = (2)(-2)(+2) = 32 Multiply: 1) (-3)(5) = 2) -8(-3) = 3. (-1)(-1) = 4) (+9)(7) = 5) +5(-10) = 6) (-6)(-2) = 7) (-7)(-8) = 8) -3(-9)= 9) -8(4) = 10) (-2)(-3) = 11) +6(+7) = 12) -8(+8) = 13) -3(-3) = 14) (-7)(-5)= 15) (-5)(3)= 16) (-2)(-2)(4)= 17) -3(6)(-6)= 18) -8(-7)(-1) = 19) (5)(5)(+3) = 20) (3)(-4)(+8) = 21) (1)(-1)(-1) = 22) (-2)(+2)(2) = 23) -6(-3)(-2) = 24) 3(+2)(-6) = 25) 5(-2)(-2) = 26) (1)(-2)(-1) = 27) (7)(3)(-2)= 28) (+5)(-2)(3)= 29) (+4)(+2)(3)= 30) (-8)(8)(4) = 31) -7(-6)(-2) = 32) -2(+5)(-3)= 33) -4(+5)(-2)= 34) -3(-2)(-7) = 35) (-5)(-5)(5) = 36) +8(2)(-1/4) = 37) (3)(-3)(-1/3) 38) -4(-2)(3)(-1) = 39) (+3)(7)(1/7) = 40) -5(1)(-1)(-1) = 41) (-3)(-2)(-7)= 42) (-9)(5)(1/9) = 43) (2)(2)(2)(-1/2) = 44) (-4)(2)(3)(-3) = 45) -10(3)(2)(1/5) = 46) (5)(6)(3)(1/3) = 47) 5(-2)(5)(-2) = 48) (-2)(5/6)(4)(-3) = 7

10 Division The rules used in multiplication are also used in division. (a) The quotient is positive if the two signs are the same, either both positive or both negative. Examples: ; ; (b) The quotient is negative if the two signs are different, one positive and one negative. Examples: (+8) (-4) = -2; ; Divide: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) +35 (-5) = 17) (-13) (-13) = 18) (+22) (-2) = 19) -16 (-4) = 20) (-51) (17) = 21) 90 (-15) = 22) (46) (+2) = 23) 38 (-2) = 24) (-75) -5 = 25) -24 (-6) = 26) -81 (9) = 27) (+32) (+8) = 28) (-45) (-9) = 29) +80 (-16) = 30) (+28) -14 = 31) 32) 33) 34) 35) 36) 37) 38) 39) 40) 41) 42) 43) 44) 45) 46) EXPONENTS A. Raise each base to its given power: 8

11 1) 2 2 = 2) 3 2 = = 4) 5 2 = 5) 6 2 = 6) 7 2 = 7) 8 2 = 8) 9 2 = 9) 10 2 = 10) 11 2 = 11) 12 2 = 12) 1 2 = 13) 2 3 = 14) 3 3 = 15) 4 3 = 16) 5 3 = 17) 1 3 = 18) 0 3 = 19) 1 5 = 20) 1 12 = B. Raise each base to its given power: 1) (-2) 2 = 2) (-3) 2 = 3. (-4) 2 = 4) (-5) 2 = 5) (-6) 2 = 6) (-2) 3 = 7) (-3) 3 = 8) (-4) 3 = 9) (-5) 3 = 10) (-6) 3 = 11) (-1) 2 = 12) (-1) 3 = 13) (-1) 4 = 14) (-1) 5 = 15) (-1) 6 = 16) (+6) 2 = 17) (-10) 2 = 18) (-10) 3 = 19) (+10) 2 = 20) (+10) 3 = C. Raise each base to its given power. Be careful. These are tricky. 1) -2 2 = 2) -6 2 = = 4) -2 3 = 5) -1 5 = 6) -4 3 = D. Evaluate the following. (Remember, always simplify the exponent in these problems before doing any addition, subtraction, multiplication or division. 1) = 2) (-2) = = 4) 2 3 +(-2) 2 = 5) -7 - (-5) 2 = 6) 2(3) 2 = 7) -6(2) 2 = 8) (3)(4) 2 = 9) -6(-2) 3 = 10) 5(-3) 2 = 11) = 12) = 13) (-4) 2 +(+3) 3 = 14) 15 +(-2) 3 = 15) = Order of Operations Simplify using the order of operations (PEMDAS).

12 1) 10 - (-2) 3 - (-1) 2) 3(5-1) - (-2) 2 3) 5-3[9 - ( - 3)] 4) [8 (1 + 3)] 5) 3[15 - (8-5)] 6 6) 5[20 - (9-4)] 25 7) 6[14 - (11-9)] 3 2 8) (-6) 9) ) (5-2)

13 EQUATIONS Solve the equations: 1) a + 5 = 7 2) y + 1 = 6 3) k + 4 = 1 4) 5 + a = 12 5) 3 + y = -7 6) 2 + z = 0 7) 9 = 8 + c 8) 1 = 1 + x 9) y + 4 = -4 10) -12 = k ) y - 5 = 1 12) x - 10 = 6 13) k - 1= ) m - 7 = 0 15) 12 = y ) 4 = x ) a - 7= ) 3=n-3 19) 0 = n ) -6 = y ) 6x= 18 22) 3y = 21 23) 4a = ) 30 = 10k 25) 1 = 4x 26) 5x = 0 27) -48 = 8m 28) -14y = -7 29) -x = -2 30) 11 = -k 31) 2x + 3 = 13 32) k = ) 7x -2 = 33 34) 5a + 7 = 12 35) 25 = 6x ) 10k -7 = 23 37) 6m + 2 = ) 3 = 4z ) a = 12 40) y = Two-Step Equations - 2.2

14 Two Step Equations With Four Terms: The proper procedure is to move the variables (x s) to one side of the equation and to move all the constants/numbers to the other side of the equation. Examples a. -6x +4 = -8x x -4 +8x -4 2x = 6 x = 3 b. 3x - 5 = 13x +15-3x -15-3x = 10x -2 = x Solve the equations: 1) 6x + 6 = 8x + 2 2) 12x + 6 = 8x ) 5x + 8 = 8x - 1 4) 7x - 11= 14x ) 2x - 8 = 5x ) 10x + 4 = 8x - 8 7) 5x + 13 = 3x ) 9x + 11 = 6x ) 2x - 8 = 4x ) 16x - 2 = 14x ) 4x - 1 = 13x ) 8x + 11 = 7x ) 20x + 10 = 10x ) x - 8 = 5x ) x - 1 = 2x ) 4x - 9 = 3x ) 5x + 15 = 10x ) 2x - 14 = 19x ) 5x + 12 = 6x ) 7x - 6 = x ) 15x + 14 = 10x ) x - 12= 2x ) 6x - 5 = -4x ) 4x + 7 = 13x

15 Multi-Term Equations Multi-Term Equations - If an equation has more than one of the same term on either side of the equation, the like terms should be combined before solving the equation. Example 2y = 5y y 2y - 6 = 8y y +12-2y = 6y 1 = y (On the left side of the equation, the +8 and the -14 are combined first. On the right side of the equation, the 5y and the 3y are combined first.) Solve: 1) 8x = 3x x 2) 12x x = x - 7 3) 4 + 8x + 12 = 4x x 4) 11x x = x - 8 5) - 4-6x + 5 = 3x x 6) x - 6 = 4x x 7) 5x x = x ) 6x + 3x - 5 = 4x ) 13x = 3x + 5x ) x = x + x ) - 2x + 9x - 4x = ) 8-2x + 7x = 2x ) 7x x = 15-3x ) 4x x = x 15) x + 14 = x + 3x Equations With Parentheses

16 Equations With Parentheses - The proper procedure is remove all parentheses on both sides of the equation and then to combine like terms before solving. Example: 7 + 2(x - 4) = 6x - (5x + 10) 7 + 2x - 8 = 6x - 5x x - 1 = x x +1 = -x + 1 x = - 9 (parentheses removed) (terms combined) Solve: 1) 8 + 3(x + 2) = 4x - (2x + 5) 2) 2 +3(x + 6) = 11 - (5x + 15) 3) 3(x + 4) = 5 - (x - 11) 4) 8(x + 12) = 3(x - 18) 5) x - 4(x - 7) = 2(3x - 13) 6) 3(x - 3) + 3 = 3x - (3x - 3) 7) 7(3x + 1) = 3(2x + 8) 8) (8 - x) = 4 - (4 - x) 9) 9(2x + 3) = 3(x - 6) 10) 3-6(x - 3) = 4x + 3(x - 8) 11) 3x - 2(x - 7) = 3(2x - 3) ) 6x + 7(x - 2) = - 2(x - 5) ) 5x + 3(2x + 3) = 12 - (2x - 5) 14) (5x + 3) = (3x + 9) 15) 11(x - 2) = 22-2(7x - 3) 14 Supplementary Equations Solve:

17 1) x + = 5 2) 3x + 5 = x + 7 3) (x + 6) = x + 4 4) x = - x 5) 4x - 3 = x - 9 6) 3 - x = 2(1 - x) 7) x + = 8) 3x - 1 = 2(x - 5) 9) 2x - = x 10) 3x + 2 = 5x ) 3(x + 4) + 1 = 9 - x 12) 2x - = x ) x - 7 = 4x ) (2x + 4) = (x - 5) 15) 2x +3 = 3x ) 4x - = x ) x - 6 = 5x ) x + = + x 19) x - 5 = x ) 3x + 7 = 2x + (2x +1) 21) 5x + = 5 - x 22) 3x + 7 = 5x - 4 Solve: 23) Supplementary Equations (Cont.) 24) 3x + 2(x - 5) = 7 - (x + 3) 15

18 25) 3 - x = (7 + 2x) 26) x - = x ) 5x - 3(x + 1) = 5 28) x + = 3x + 29) x x = x ) 7x + 5 = 2(x - 1) ) (x + 3) + 8 = x ) 5 + 6x - 3 = 2 + 4x 33) x = 11 + x - 34) x + = - (2x - 5) 35) 5x - (2x - 3) = 4(x + 9) 36) (x + 6) = (10 - x) 37) 6x - = x x 38) = 39) (4 - x) - 6 = x ) x = 28 - x 41) (x + 6) + 5 = 2x ) 2x + = x

19 Literal Equations Literal Equations ~ Equations that contain more than one letter Example: 2x + 3y = 12. Solve for x. Example: 2x + 3y = 12. Solve for y. 2x = - 3y x 2 = -3y x = -3 2 y + 6 3y = - 2x y 3 = -2x y = -2 3 x + 4 Solve for the indicated variable: 1) x + y = 12. Solve for x. 2) 3x + 2y = -12. Solve for y. 3) a - b = 5. Solve for b. 4) 2a + 3b = 9. Solve for a. 5) 6x - 6y = 6. Solve for x. 6) x - 2y = 10. Solve for x. 7) x 2 + y = 6. Solve for x. 8) 2 a - 6b = 9. Solve for a. 3 9) a + b 4 = 2. Solve for a. 10) 2x - 4y = 5. Solve for y. 11) x + y = 12. Solve for y. 12) 3x + 2y = 12. Solve for x. 13) a - b = 5. Solve for a. 14) 2a + 3b = 9. Solve for b. 15) 6x - 6y = 6. Solve for y. 16) x - 2y = 10. Solve for y. 17) x 2 + y = 6. Solve for y. 18) 2 a - 6b = 9. Solve for b. 3 19) a + b 4 = 2. Solve for b. 20) 2x - 4y = 5. Solve for x. 17

20 T a b l e Equation: y = 3x - 2 x y Equation: y = -2x + 4 o f x y V a l u e s Equation: x y 18

21 T a b l e Equation: y = x 2-4 x y Equation: y = x 2 - x - 2 o f V a l u e s x y Equation: y = x 2 +2x - 6 x y 19

22 T a b l e Equation: x Equation: y o f x y V a l u e s Equation: x y The Equation of a Line y = mx + b Find the Equation of the line given the following information: 20

23 A Information given What you will need The answer is Given: m (slope) and b (y intercept or (0, b)) Nothing! Easy! Examples Given: m = 3, b = 7 Y = 3x + 7 Given: m = 2 3, (0, - 4) Y = 2 3 x - 4 Find the Equation of the line given the following information: 1. m = 2, b = m = 5, (0, 9) 3. m = 1 5, b = 5 4. m = 7, b = 2 5. m = 5 7, (0, 0) *********************************************************************************** B Information given What you will need The answer is Given: m (slope) and a point The y intercept or b. (that is not the y intercept) Use the m that is given Use the m given Use the point (x, y) Use the b you found Replace the x, m, and y Discard the point (x, y) y = mx + b ( ) = ( )( ) + b Write the equation of the line! Solve for b Examples Given: m = 5, (2, 7) Given: m = 2 3, (3, 2) y = m x + b ( ) = ( )( ) + b 7 = (5)(2) + b 7 = 10 + b 3 = b Y = mx + b ( ) = ( )( ) + b 2 =( 2 3 )(3) + b 2 = 2 + b 4 = b Find the Equation of the line given the following information: Y = 5x 3 Y = 2 3 x 4 6. m = 2, (3, 3) 7. m = 5, ( 2 5, 5) 8. m = 1 5, ( 5, 0) 9. m = 7, (2, 4) 10. m = 5 7, (7, 2) C Information given What you will need: The answer is Given: Two points (x 1, y 1 ) (x 2, y 2 ) 1. The slope: m = y 2 y 1 x 2 x 1 2. The y intercept or b. Use the m you found Use the b you found 20A

24 Now Find m Use one of the points (x, y) Replace the x, m, and y y= mx + b ( ) = ( )( ) + b Solve for b OR Use the Point Slope Formula: y y 1 = m (x x 1 ) Examples Given: ( 2, 5) and (4, 1) 1.Find the slope: m = y 2 y 1 = 1 5 x 2 x 1 4 ( 2) = 6 6 = 1 Given: (3, 2) and ( 3, 6) Using the Point Slope Formula: y y 1 = m (x x 1 ) 2.Now, use only one of the points. y = m x + b ( ) = ( )( ) + b 5 = ( 1)( 2) + b 5 = 2 + b 3 = b m = y 2 - y 1 = 6-2 x 2 - x = 4-6 = -2 3 y y 1 = m(x x 1 ) y (2) = 2 3 (x 3) y 2 = 2 3 x + 2 y = 2 3 x + 4 Discard both points Write the equation of the line! Y = x + 3 y = 2 3 x + 4 Find the Equation of the line given the following information: 11. (4, 3), ( 1, 7) 12. ( 1, 5), ( 4, 1) 13. (2, 14), ( 4, 4) 14. ( 2, 6), (1,0) 15. (3, 1), (4, 1) ************************************************************************************* Answers: 1. y = 2x y = 5x y = 2x y = 2x y = 5x y = 2x 7 3. y = y = 7x 2 8. y = 1 5 x y = 7x y = 3x y = 2x 2 5. y = 5 7 x 10. y = 5 7 x y = 1 20B

25 Multiplication of Monomials Multiplication of Monomials by Monomials - Three steps: a) multiply the signs, b) multiply the numerical coefficients, and c) add the exponents of the same bases. Examples: a) (2x 3 )(+4x 2 y 4 ) = +8x 5 y 4 b. (-2a 5 b 3 )(-10a 2 b 3 )(3b 2 ) = -60a 7 b 8 Multiply: 1) x 3 x 3 2) b 8 b 3 3) y 8 y 2 4) 4x 4 (10x 2 ) 5) (5y 8 )(5y 3 ) 6) (-2a 3 )(7a 4 ) 7) (7y 8 )(-5y 9 ) 8) -8x 6 (3x 9 ) 9) (3b 4 c 4 )(-2b 2 c 5 ) 10) (-9m)(+2m) 11) (+8x 3 )(4x 8 ) 12) (2x 2 y 5 )(-14xy) 13) (-8x 3 )(-6x 7 ) 14) (4x 9 )( x 2 ) 15) (-2y 2 z 2 )(-7y 3 z 3 ) 16) (-5x 7 y)(3xy 3 ) 17) (-4x 3 )(4x 8 )(4x 6 ) 18) (2x 5 )(-2x 5 )(-11x 3 ) 19) (-10c)(3c 3 )(-2c 5 ) 20) (-10b 4 )(2b 5 )(- b 3 ) 21) a 9 b 9 a 2 b 6 22) (-x 2 y 2 )(-x 5 y 5 ) 23) (3a)(-7a 5 )( a 5 ) 24) (-10x 2 )(-7x 6 )( x 5 ) 25) (a 2 b 3 )(-2bc)(-2a 5 c 5 ) 26) (14mn)(2mn)(2mn) 27) (-2a 5 b)(6b 2 )(5a 2 ) 28) (6x 5 )(-8xy 2 ) 29) (-3x 5 y)(-2x 2 y 4 ) 30) (-y 5 )(+3y 5 ) 21

26 Multiplication of Monomials (Exponents outside Parentheses) Multiplication of Monomials with Exponents outside of Parentheses - The exponent outside a parentheses indicates the power to which the parentheses must be raised. Examples a. (2a 2 ) 4 = (2a 2 ) (2a 2 ) (2a 2 ) (2a 2 ) = 16a 8 Multiply: b. If there is no numerical coefficient, multiply the exponents inside the parentheses by the exponent that is outside the parentheses. (a 3 b 5 ) 6 =x 18 y 30 1) (3r 2 s) 2 2) (5x 3 y 3 ) 3 3) (-4x 3 y 2 ) 3 4) (8x 3 y 4 ) 2 5) (6a 3 b 5 ) 2 6) (-2x 4 y 4 ) 4 7) (10x) 3 8) (3a 2 ) 4 9) (2y 5 z) 3 10) (-4ab 2 ) 3 11) (a 3 b 3 ) 3 12) (-5xy 2 ) 3 13) (x 5 y 2 ) 6 14) (-2ab 8 ) 2 15) (3a 3 ) 2 16) (x 5 ) 5 17) (z 7 ) 3 18) (a 2 ) 3 19) (m 3 n 4 ) 5 20) (xy 2 ) 2 21) (-p 3 q 3 ) 7 22) (-a 5 b 6 ) 5 23) (-v 6 ) 6 24) (b 3 c 3 ) 3 25) (abc 3 ) 5 26) (x 5 y 2 ) 8 27) (-a 4 b 4 ) 5 28) (-a 4 c 4 ) 7 29) (x 3 y 3 z 2 ) 4 30) (d 2 ) 15 31) (4x 3 ) 4 32) (f 7 ) 6 33) (7x 2 y 3 ) 3 34) (x 2 y 2 ) 5 35) (-5a 5 b 4 ) (-m 5 n 2 ) 7 22 Multiplication of Monomials and Monomials (Exponents outside the Parentheses) - 5.1

27 Examples a. (3x 2 y 2 ) 2 (2xy) 3 = (3x 2 y 2 ) (3x 2 y 2 ) (2xy) (2xy) (2xy) = 72x 7 y 7 b. (-2a 5 ) 3 (a 2 b 5 ) 4 = (-2a 5 ) (-2a 5 ) (-2a 5 ) (a 2 b 5 ) (a 2 b 5 ) (a 2 b 5 ) (a 2 b 5 ) = -8x 23 y 20 Multiply: 1) (4xy) 3 (x 3 ) 2 2) (6x 2 y 3 ) 3 (x 2 ) 4 3) (-2a 2 ) 2 (a) 3 4) (-3x 2 y) (xy 3 ) 3 5) (12x 3 ) 2 (-2x 2 ) 3 6) (2x) 4 (-2x) 7) (4b 2 ) 2 (2a 2 b 3 ) 2 8) (2x 2 ) 5 (2x 3 y 2 ) 9) (-8x) 3 (x 4 y 3 ) 2 10) (mn 2 ) 4 (-2) 2 11) (b 5 ) 3 (-5b 3 ) 2 12) (x 2 y) 2 (xy 3 ) 4 13) (x 2 y) 4 (-xy 2 ) 4 14) (xy 3 )(-3x 3 y 2 ) 15) (4b 3 ) 3 (-a 3 b 2 ) 16) (2x 5 y 7 )(5xy 4 ) 2 17) (4x 2 y) 3 (xy 2 ) 18) (2a 3 b 4 ) 2 (8ab) 2 19) (-3xy) 3 (xy 7 ) 4 20) (-4x 2 ) 2 (x 2 ) 9 21) (-2mn)(-m 4 ) 4 22) (2pq) 3 (-4p 2 q 2 ) 2 23) (-3y 4 ) 3 (x 5 y 6 ) 7 24) (r 5 s 4 ) 3 (r 5 s 4 ) 3 23

28 Zero Exponents Zero exponents - any number, variable, or entire term raised to the zero power is equal to "1". The only exception to this rule is "0" to the "0" power. Examples: a. x o = 1 b. x o y = 1y = y c. d. a 3 b o c = a 3 c Simplify: 1) a o = 2) y o = 3) r o = 4) (xz) o = 5) (ax) o = 6) (xyz) o = 7) x o b = 8) r o c = 9) xc o = 10) a 2 b o = 11) = 12) 13) a 2 b o x 2 = 14) 3xy o = 15) -xy o = 16) (3a 2 ) o = 17) 3(ab) o = 18) -3(c 2 d) o = 24

29 Division of Monomials Division of Monomials - If the largest exponent is in the numerator, the variable remains in the numerator, but if the largest exponent is in the denominator, then the variable stays in the denominator. Examples a. b. c. d. Simplify: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) Negative Exponents

30 Negative Exponents - To change a negative exponent to a positive exponent, move the exponent and its base from the numerator to the denominator. If the exponent is in the denominator, move it to the numerator. Examples a. b. c. Change all negative exponents to positive exponents and simplify. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) 26

31 Negative Exponents (Cont.) Write with a positive exponent. Then evaluate. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) Simplify. 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) 29) 30) 31) 32) 27

32 Addition and Subtraction of Polynomials Combining Polynomials - To add or subtract polynomials, combine the numerical coefficients of the like terms. (Like terms are terms that have the same variables with the same exponents.) Examples: a. (4x 2 + 3x -2) + (2x 2-5x -6) (4x 2 + 2x 2 ) + (3x - 5x) + (-2-6) 6x 2-2x - 8 b. (3a 2-5a + 2) - (4a 2 + a + 2) 3a 2-5a + 2-4a = -a -2 (3a 2-4a 2 ) + (-5a - a) + (2-2) -a 2-6a Simplify. 1) (x 2 + 5x) + (-2x 2-3x) 2) (y 2 + 3y) + (-2y -5) 3) (x 2 + 4x + 9) + (x 2 -x -6) 4) (x 3-5x + 6) + (3x 2 -x -6) 5) (4y 3 + 2y 2-2) + (-3y 3-2y 2-1) 6) (x 3-3x) - (x 2-7x) 7) (x 2-3x + 2) - (x 2 + 6x + 7) 8) (3x 3 + 6x + 3) - (-2x 2 + 3x + 2) 9). (5y 3 + 4y -1) - (y 3 + y 2 + 6) 10) (2x 3-5x + 6) - (x 3 -x + 7) 11) (y 3-6xy + 2) + (y 3-6xy -7) 12) (x 2-2xy) - (-2x 2 + 3xy) 13) (2x 2 + x -1) - (x 2 + 6x -3) 14) (3x 2 + 2x -2) + (x 2 + 5x -6) 15) (3x 3-2x -6) - (2x 2 +6x -1) 28

33 Distributive Property Simplify. 1) x(x + 1) 2) y(2 - y) 3) -x(x + 2) 4) -y(8 - y) 5) 2a(a - 1) 6) 3b(b + 5) 7) -2x 2 (x - 1) 8) -4y 2 (y + 6) 9) -6y 2 (y 2 - y) 10) -x 2 (2X 2-3) 11) 2x(5x 2-2x) 12) 3y(2y - y 2 ) 13) (2x - 3)4x 14) (2y - 1)y 15) (2x - 3)x 16) (2x - 1)3x 17) -x 2 y(x - y 2 ) 18) -xy 2 (2x - y) 19) x(x 2-2x + 1) 20) x(x 2-3x - 2) 21) y(-y 2 + 4y - 3) 22) -y(y 2-5y - 6) 23) -a(a 2-6a - 1) 24) -b(2b 2 + 3b - 6) 25) x 2 (2x 2-3x - 2) 26) y 2 (-3y 2-5y - 3) 27) x 3 (-x 2-5x - 6) 28) y 3 (-2y 2-3y - 4) 29) 2y 2 (-2y 2-5y + 8) 30) 3x 2 (4x 2-2x + 7) 31) 4x 2 (5x 2 - x - 9) 32) 5y 2 (-y 2 + 3y - 6) 33) xy(x 2 - xy + y 2 ) 34) ab(a 2-3ab - 4b 2 ) 35) xy(x 2-2xy + 2y 2 ) 36) ab(a 2 + 5ab - 7b 2 ) 29

34 Multiplying Binomials Simplify. 1) (x + 1)(x + 4) 2) (y + 2)(y + 3) 3) (a - 2)(a + 5) 4) (b - 5)(b + 4) 5) (y + 2)(y - 7) 6) (x + 9)(x - 4) 7) (y - 6)(y - 2) 8) (a - 7)(a - 8) 9. (a - 2)(a - 8) 10) (x + 11)(x - 3) 11) (2x + 1)(x + 6) 12) (y + 1)(3y + 2) 13) (2x - 3)(x + 3) 14) (5x - 2)(x + 3) 15) (3x - 2)(x - 5) 16) (2x - 1)(3x - 5) 17) (2y - 9)(y + 1) 18) (4y - 7)(y + 2) 19) (3x + 4)(3x + 7) 20) (5a + 2)(6a + 1) 21) (6a - 13)(2a - 5) 22. (5a - 9)(2a - 7) 23) (3b + 11 )(5b - 4) 24) (3a + 10)(4a - 3) 25) (x + y)(x + 2y) 26) (2a + b)(a + 2b) 27) (2x - 3y)(x - y) 28) (a - 3b)(2a + 3b) 29) (4a - b)(2a + 5b) 30) (2x - y)(x + y) 31) (3x - 5y)(3x + 2y) 32) (5x + 2y)(6x + y) 30

35 Special Products Simplify. 1) (x + 1)(x - 1) 2) (x - 3)(x + 3) 3) (x + 5)(x - 5) 4) (x - 7)(x + 7) 5) (2x - 1)(2x + 1) 6) (3x - 1)(3x + 1) 7) (4x - 3)(4x + 3) 8) (x + 5) 2 9) (y - 4) 2 10) (3y - 1) 2 11) (x - 1) 2 12) (x - 3) 2 13) (x + 7) 2 14) (x + 9) 2 15) (x - y) 2 16) (2a - 5) 2 17) (5x - 4) 2 18) (3x - 7) 2 19) (3a - 5)(3a + 5) 20) (6x + 5)(6x - 5) 21) (2x + 5) 2 22) (9x - 2) 2 23) (a - 2b) 2 24) (x + 2y) 2 25) (5x - 6)(5x + 6) 26) (b - 6a)(b + 6a) 27) (x + 5y) 2 28) (2-7y) 2 29) (3-5y) 2 30) (3-5y)(3 + 5y) 31) (4x - 1)(4x + 1) 32) (2a + 3b) 2 33) (x + 6y) 2 31

36 Applications with Polynomials Solve. 1. The length of a rectangle is 3x. The width is 3x - 1. Find the area of the rectangle in terms of the variable x. 2. The width of a rectangle is x - 2. The length is 3x + 2. Find the area of the rectangle in terms of the variable x. 3. The length of a rectangle is 3x + 1. The width is 2x - 1. Find the area of the rectangle in terms of the variable x. 4. The width of a rectangle is x + 7. The length is 4x + 3. Find the area of the rectangle in terms of the variable x. 5. The length of a side of a square is x + 3. Use the equation A = s 2 where s is the length of a side of a square, to find the area of the square in terms of the variable x. 6. The length of a side of a square is x - 8. Use the equation A = s 2. where s is the length of the side of a square, to find the area of the square in terms of the variable x. 7. The length of a side of a square is 2x + 1. Find the area of the square m terms of the variable x. 8. The length of a side of a square is 3x - 4. Find the area of the square in terms of the variable x 9. The radius of a circle is x + 4. Use the equation A = πr 2 where r is the radius, to find the area of the circle in terms of the variable x. 10. The radius of a circle is x - 3. Use the equation A = πr 2, where r is the radius, to find the area of the circle in terms of the variable x. 11. The radius of a circle is x + 6. Find the area of the circle in terms of the variable x. 12. The radius of a circle is 2x + 1. Find the area of the circle in terms of the variable x. 32

37 Dividing a Polynomial by a Monomial Simplify. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) ) 24) 25) 26) 27) 28) 33

38 Removing a Common Factor Factor. 1) 4a + 4 2) 6c - 6 3) 8-4a 2 4) x 2 5) 3x a ) 24a - 8 8) 24x ) 9x ) 16a 2-8a 11) 12xy - 16y 12) 6b 2-5b 3 13) 20x 3-24x 2 14) 12a 5-36a 2 15) 24a 3 b 4-18a 2 b 2 16) 4a 5 b + 6ab 4 17) a 3 b 2 + a 4 b 3 18) 25x 2 y 2-15x 3 y 19) 3x 2 y - 5xy 2 20) 8a 3 b 2-12a 2 b 3 21) x 3 y 2 - x 2 y 4 22) x 3-5x 2 + 7x 23) y 3-6y 2-8y 24) 4x 2-16x ) 6y 2-9y ) 3X 2-9x ) b 4-3b 3 + 7b 2 28) 4x 2-8x x 4 29) 12y 2-16y ) 5y y 3-35y 31) 4x X 3-28X 2 32) 45a 4 b 2-75a 3 b + 30ab 4 33) 32x 4 y 2-96x 2 y 4-48x 6 y 2 Factoring by Grouping - 6.1

39 Factor: 1) x(a+ b) + 3(a + b) 2) a(x - y) + 5(x - y) 3) x(b -1) - y(b - 1) 4) a(c - d) + b(c - d) 5) y(a - 1) - (a - 1) 6) a(y + 3) - (y + 3) 7) x(y - 2) - (y - 2) 8) 3x(y - 7) - (y - 7) 9) 2x(x - 5) - (x - 5) 10) 5y(x - 3) + (3 - x) 11) x(a - 2b) + y(a - 2b) 12) 4a(a + 1) - (a + 1) 13) a(x - 9) - (x - 9) 14) b( a - 5) -2(a - 5) 15) c (x - 3y) + d(x - 3y) 16) 3x(a + 1) + 4(a + 1) 17) a(x - 1) + 3(1 - x) 18) x(a - 4) + y(4 - a) 19) x(a - 3b) + y(3b - a) 20) x(a - 9) - (9 - a) 21) a(x - 7) + 3(7 - x) 22) 2x(x - 6) + (6 - x) 23) d(e - 5) + (5 - e) 24) 2x(a - 4) - y(4 - a) 25) m(a - 9) - n(9 - a) 26) 3m(n - 2) - (2 - n) 27) 2a(b - 1) - c(b - 1) 28) x(a - 2) - 3y(a - 2) 29) x(y - 5) + (5 - y) 30) 2(a - b) + c(b - a) 31) m(n - 1)+ 2(1 - n) 32) x(c - 7) - y(7 - c) 33) a(b - c) - 3(c - b) 35

40 Factoring by Grouping (Cont.) Factor by grouping: 1) 2xy - 6x + 3y - 9 2) x 2 + xy + 2x + 2y 3) ax + 5x + 6a ) 2x 2-2xy + x - y 5) 6x 2 + 2x + 6xy + 2y 6) 4a 2 + 4ab + 3a + 3b 7) ax - 7a - 2x ) 2x 2 + 2xy - 5x - 5y 9) ax + a - 2x ) 3xy + y - 9x ) 3a 2 - a - 6ab + 2b 12) 2ax + x - 6a ) 2ax - 3x - 4a ) 5a 2-15a - 3ax + 9x 15) xy - 3x - y 2 + 3y 16) 7a 2 - ay - 7ab + by 17) 6x 2-4x - 3xy + 2y 18) 4a a - ab - 3b 19) 2a 2 + 3a - 8ax - 12x 20) 3x 2-6x - xy + 2y 21) 8ax - 2a + 4xy y 36

41 Factoring Trinomials with Coefficients of Factor. 1) a 2-2a ) a 2-4a + 3 3) a 2 + 3a ) a 2-5a + 6 5) b 2-7b ) b 2 + 8b ) y 2 + 5y ) x 2-4x ) y 2-7y ) y 2-9y ) x 2-12x ) x 2-4x ) a 2 + 3a ) x x ) b 2-11b ) x x ) x 2-14x ) b 2 + 7b ) b b ) x 2-9x ) x 2-7x ) x x ) x 2-8x ) x 2-4x ) b 2-20b ) b 2-21b ) b 2-27b ) a a ) x 2-19x ) x 2-25x

42 38

43 39

44 Factoring Trinomials with Coefficients Greater than Factor. 1) 2x 2-5x + 2 2) 3x 2-2x - 1 3) 2a 2 + 7a+ 3 4) 3x 2 + x - 2 5) 2b 2-13b + 6 6) 3a 2-7a + 2 7) 3x 2-13x + 4 8) 4x 2 + 4x - 3 9) 5a 2 + 2a ) 5a a ) 6y 2 + 5y ) 6x 2 + x ) 5x 2-3x ) 7x 2-15x ) 7y 2 + 8y ) 14x 2-9x ) 7y 2 +18y ) 9a 2-3a ) 8x 2-26x ) 3a 2-5a ) 3x 2-10x ) 6x 2-5x ) 4y y ) 7x x ) 5x 2 + 2x ) 10x 2-11x ) 15x x ) 8x 2-26x ) 12x 2-7x ) 9x 2-12x ) 8x 2-2x ) 10x 2-21x ) 15x 2-26x

45 Difference of Perfect Squares Factor. 1) x ) x ) x ) 9x 2-1 5) 16x ) 9x ) x 4-4 8) x ) 36x ) 81x ) 1-100x 2 12) 1-81x 2 13) y ) 1-144x 2 15) x ) x ) x 2 - y 6 18) x 4 - y 8 19) 1-25x 2 20) 1-36x 2 21) 4-9x 2 22) 16-49x 2 23) b 2-144c 2 24) a 2-49b 2 25) x 2 y ) x ) 9x 2-16y 2 28) 25x ) x 2 y ) x ) 36a ) 49x ) x

46 Perfect Square Trinomials Factor: 1) x 2 + 4x + 4 2) x 2 + 8x ) x 2-2x + 4 4) x 2-10x ) x x ) 9x 2-6x + 1 7) 36x 2-12x + 1 8) 100x 2-20x + 1 9) 4x 2-40xy + 25y 2 10) 25x 2-30x ) 49x 2-14x ) 49x x ) 16x x ) x xy + 100y 2 15) x 2-10xy + 100y 2 16) 16x 2-24xy + 9y 2 17) 4x 2-20xy + 25y 2 18) 4x xy - 25y 2 19) 4x xy + 9y 2 20) 9x 2-30xy + 25y 2 42

47 Factor completely. Factor Completely 1) 3x 2-12x ) 3x 3-18x x 3) 5x ) 5x ) 4x x ) 3x 2-18x ) 2x 2-24x ) 2x 2-22x ) 7x ) 3x 2 + 6x ) 4x ) 3x ) 6x 3-6x 14) x 3-14x x 15) x 4-6x 3-7x 2 16) x 3-36x 17) 4x 2-8x ) x x 4-32x 3 43

48 Factoring Completely Factor Completely. 1) 3x ) 2x ) x 3 + 2x 2 + x 4) y 3-8y 2 +16y 5) x 4 + x 3-6x 2 6) a 4-3a 3-40a 2 7) 3b b ) 5a 2 + 7a - 6 9) 4y 2-32y ) 2a 2-18a ) x 3-8x 2-20x 12) b 3-5b 2-6b 13) 3x(x - 2) - 5(x - 2) 14) 5a 3-30a a 15) 4x 2-6x ) 2x 4-11x 3 + 5x 2 17) x 4-16x 2 18) a ) 15x 3-18x 2 + 3x 20) 3ax + 3bx - 3a - 3b 21) 3xy xy - 20x 22) x - 3x 2 23) a 2 b 2 + 7ab 2-8b 2 24) 4x 2 y + 12xy + 8y 25) a 2 26) 18a 3-54a a 27) 2x 2-2xy + 4x - 4y 28) 5x 2-45y 2 29) x 4-9x 2 30) 2x 2-3x + 2xy - 3y 44

49 Solving Quadratic Equations by Factoring Solve. 1) (y+1)(y+2) = 0 2) (y - 4)(y - 6) = 0 3) (z - 6)(z - 1) = 0 4) (x + 7)(x - 5) = 0 5) x(x - 8) = 0 6) x(x + 1) = 0 7) a(a - 4) = 0 8) a(a + 7) = 0 9) y(3y + 2) = 0 10) t(2t - 5) = 0 11) 3a(2a - 1) = 0 12) 2b(4b + 3) = 0 13) (b - 1)(b - 4) = 0 14) (b - 7)(b + 4) = 0 15) x 2-16 = 0 16) x 2-4x - 21 = 0 17) x 2 + 6x - 16 = 0 18) x 2-5x = 6 19) x 2-7x = 18 20) x 2-8x = 9 21) x 2-5x = 14 22) 2a 2 - a = 3 23) 4t 2-13t = -3 24) 5a a = 6 25) 2x 2 + 5x = -2 26) x(x+10) = 11 27) y(y - 9) = ) x(x+ 5) = 50 29) x(x - 11) = ) (2x + 3)(x - 1) = 25 31) (z + 1)(z - 9) = STORY PROBLEMS - 7.6

50 PROPORTIONS: 1) Doctor Payne prescribes a patient to take 3 tablets of a medication every four hours. How many tablets would the patient take in 24 hours? 2) Bob has to pay $9.00 in taxes for every thousand dollars that his house is worth. How much would he have to pay if his house is valued at $275,000? 3) Amy is five feet high. At noon one day she casts a three foot shadow. She is standing next to a tree that casts a 19.5 foot shadow at the same time. How tall is the tree? 4) In two minutes a printer can print six pages. How many pages would be printed after five minutes? DISTANCE, RATE & TIME: 5) An express train travels 440 miles in the same amount of time that a freight train travels 280 miles. The rate of the express train is 20 mph faster than the freight train. Find the rate of each train. 6) A twin engine plane can travel 1600 miles in the same time that a single engine plane travels 1200 miles. The rate of the twin engine plane is 50 mph faster than the single engine plane. Find the rate of the twin engine plane. 7) A car travels 315 miles in the same amount of time that a bus travels 245 miles. The rate of the car is 10 mph faster than the bus. Find the rate of the bus. 8) A helicopter flies 720 miles in the same amount of time that a plane flies 1520 miles. The rate of the plane was 200 miles faster than the rate of the helicopter. Find the rate for each. WORK: 9) Bill took 40 hours to build the barn on his property. If Sean had built the barn it would have been done in 24 hours. How long would it have taken if they had worked together? 10) Josie can put the ingredients for her family meal together in forty minutes. Her husband Jon takes sixty minutes to put together the same ingredients. How long would it take if they worked together to prepare the meal? 11) Ginny can shovel the driveway after a snow storm in 24 minutes. Ed uses a plow and can do it in 8 minutes. How long would it take them if they worked together? 12) Sergio and Maria are working on a class project. Sergio can do it in 30 minutes. Maria can do it on her own in half the time. How long would it take if they worked together? 46

51 Simplifying radicals Perfect Squares These numbers have a set of twins as factors: 16 = 4 4 (notice the twins as factors) = 4 9 = 3 3 = 3 4 = 2 1 = = 12 a) Try these: 1) 121 2) 25 3) 49 4) 100 5) 36 6) 7) 64 8) 81 NOT so perfect squares: Choose a set of factors, where one is a perfect square. Look for the largest perfect square that you can find. 18 = 9 2 = 2 = = 25 3 = 3 = = 16 2 = 2 = = = 2 = 10 2 b) Try these: 1) 72 2) 12 3) 4) 5) 27 6) 8 7) 8) 45 47

52 Simplifying Radicals and 8.2 Simplify. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) 29) 30) 48

53 SIMPLIFYING RADICALS WITH VARIABLES In a square root the index is 2 2 x In a cube root the index is 3 3 x In a fourth root the index is 4 4 x To simplify radicals with variables look at the radical as a jail with the variables trying to break out. The index indicates how many must be in a group to "break out". For instance, if the index is 3 then there must be 3 of the same thing to escape. 3 x 3 = 3 x x x = x 4 x 4 = = x Take note of this one: 3 x 6 = 3 x x x x x x = x 2 (Notice the square means two groups). But, watch what happens when there is an extra variable.. x 5 (which really means 2 x 5 ) = x x x x x = x 2 x To figure the answer without drawing all the x s, simply divide the index into the exponent. The number of times the answer comes out evenly, is the exponent of the variable on the outside and the remainder is the exponent under the radical in the answer. 3 x 4 ( 4 3 = 1 remainder 1) = x 3 x x 7 ( 7 2 = 3 remainder 1) = x3 x x 16 ( 16 2 = 8, no remainder) = x 8 4 x 14 ( 14 4 = 3, remainder 2) = x 3 4 x 2 Try these: 1. x 5 2. x x 7 4. x x x 17 49

54 Simplify. Simplifying Radicals with Variables ) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 26) 27) 28) 29) 30) 31) 32) 33) 50 Radicals and (Rational Exponents)

55 Index Exponent Exponent = Index Radicand Examples: (Assume all variables are > 0.) a) = b) = c) = d) = e) = = = f) = ( ) = g) = ( ) = Use rational exponents to simplify the following. Assume that variables represent positive numbers. 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 51

56 Imaginary Numbers Examples: i 3 = 3i i 6 = 6i Now Try These: 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 52

57 For each right triangle, find the value of x The Pythagorean Theorem Solving by Taking Square Roots

58 Solve by taking square roots. 1) x 2 = 4 2) y 2 = 16 3) v 2-81 =0 4) Z = 0 5) 9x 2-25 = 0 6) 16w 2-81 = 0 7) 16w 2 = 25 8) 4x 2 = 81 9) 25v 2-16 = 0 10) 36x 2-49 = 0 11) 4x 2-9 = 0 12) 9x = 0 13) x = 0 14) y = 0 15) w 2-8 = 0 16) v 2-18 = 0 17) x 2-50 = 0 18) (x + 1) 2 = 9 19) (y - 2) 2 = 36 20) 3(x + 5) 2 = 27 21) 5(z - 2) 2 = 80 22) 4(x - 1) 2-25 = 0 23) 9(y + 2) = 0 24) 16(w + 3) 2-49 = 0 25) 25(y - 1) 2-36 = 0 26) (x - 3) 2-32 = 0 27) (y + 4) 2-75 = 0 28) (x - 1) 2-50 = 0 29) (x + 1) 2-80 = 0 Solving Quadratic Equations by the Quadratic Formula 54 Determine the value of a, b, and c in the quadratic equation.

59 1. x 2 - x - 42= 0 2. x 2 + 8x - 20= 0 3. x 2-10x -24 = x 2 + 3x + 6 = 0 5. Fill in the a, b, c values in the quadratic equation, but do NOT solve. 6. x 2 - x - 42= 0 7. x 2 + 8x - 20= 0 8. x 2-10x -24 = x 2 + 3x + 6 = Solve using the quadratic formula. 11. x 2 - x - 42= x 2 + 8x - 20= x 2-10x -24 = x 2 + 3x + 6 =

60 Answers to Worksheet Problems Worksheet 1 Worksheet 2 Worksheet 3 Worksheet 4 1. < 2. > 3. > 4. < 5. < 6. < 7. > 8. > 9. < 10. > 11. > 12. < 13. > 14. > 15. > 16. > 17. < 18. < 19. > 20. > 21. < 22. < 23. > 24. > 25. < 26. < 27. > 28. < 29. > 30. > 31. > 32. < 33. > 34. > 35. > 36. < A: B: C:

61 Worksheet 5 Worksheet 6 Worksheet 7 Worksheet 8 A B

62 Worksheet 9 Worksheet 10 Worksheet 11 Worksheet 12 A: B: C: D: a = 2 2. y = 5 3. k = a = 7 5. y = z = c = 1 8. x = 0 9. y = k = y = x = k = m = y = x = a = n = n = y = x = y = a = k = x = 1/4 26. x = m = y =1/2 29. x =2 30. k = x =5 32. k = x =5 34. a = x = k = m = z =0 39. a =8 40. y =5 1. x= 2 2. x = x= 3 4. x= x= 5 6. x= x = x = 1 9. x = x= x = x= x = x = x = x = x = x = x = x = 21. x = x= x = 24. x =

63 Worksheet 13 Worksheet 14 Worksheet 15 Worksheet

64 Worksheet 17 Worksheet 21 Worksheet 22 Worksheet x = -y y = -3 2 x 6 3. b = a 5 4. a = -3 2 b x = y x = 2y x = -2y a = 9b a = -b y = 1 2 x y = -x x = -2 3 y a = b b = -2 3 a y = x y = 1 2 x y = b = 1 9 a b = -4a x = 2y x 6 2. b y x y a y x b 6 c m x x 3 y x x y 5 z x 8 y x x c b a 11 b x 7 y a x a 7 b 4 c m 3 n a 7 b x 6 y x 7 y y r 4 s x 9 y x 9 y x 6 y a 6 b x 16 y x a y 15 z a 3 b a 9 b x 3 y x 30 y a 2 b a x z a m 15 n x 2 y p 21 q a 25 b v b 9 c a 5 b 5 c x 40 y a 20 b a 28 c x 12 y 12 z d x f x 6 y x 10 y a 15 b m 35 n x 9 y x 14 y a x 5 y x x a 4 b x 13 y x 11 y m 4 n b x 8 y x 12 y x 4 y a 3 b x 7 y x 7 y a 8 b x 7 y x m 17 n p 7 q x 35 y r 30 s 24

65 Worksheet 24 Worksheet 25 Worksheet 26 Worksheet b 8. c 9. x 10. a a 2 x x 15. -x x 2. a 3. -c y x 4 7. z 3 8. x 7 9. m x z a 7 b a 10 b x 3 y r 9 s a m 9 n x 9 y a 2 b a 14 b a 3 b m 2 n c a 9 b y a x 3 y ab 4

66 Worksheet 28 Worksheet 29 Worksheet 30 Worksheet x 2 + 2x 2. y 2 + y x 2 + 3x x 3 + 3x 2-6x 5. y x 3 -x 2 + 4x 7. -9x x 3 +2x 2 +3x y 3 -y 2 + 4y x 3-4x y 3-12xy x 2-5xy 13. x 2-5x x 2 + 7x x 3-2x 2-8x x 2 + x 2. 2y - y x 2-2x 4. -8y + y a 2-2a 6. 3b b 7. -2x 3 + 2X y 3-24y y 4 + 6y x 4 + 3x x 3-4x y 2-3y x 2-12x 14. 2y 2 - y 15. 2x 2-3x 16. 6x 2-3x 17. -x 3 y + x 2 y x 2 y 2 + xy x 3-2x 2 + x 20. x 3-3x 2-2x 21. -y 3 + 4y 2-3y 22. -y 3 + 5y 2 + 6y 23. -a 3 + 6a 2 + a b 3-3b 2 + 6b 25. 2x 4-3x 3-2x y 4-5y 3-3y x 5-5x 4-6x y 5-3y 4-4y y 4-10y 3 +16y x 4-6x 3 +21x x 4-4x 3-36x y 4 +15y 3-30y x 3 y - x 2 y 2 + xy a 3 b-3a 2 b 2-4ab x 3 y-2x 2 y 2 +2xy 3 36.a 3 b+5a 2 b 2-7ab 3 1. x 2 + 5x y 2 + 5y a 2 + 3a b 2 - b y 2-5y x 2 + 5x y 2-8y a 2-15a a 2-10 a x 2 + 8x x x y 2 + 5y x 2 + 3x x x x 2-17x x 2-13x y 2-7y y 2 + y x x a a a 2-56a a 2-53a b b a a x 2 + 3xy + 2y a 2 + 5ab + 2b x 2-5xy + 3y a 2-3ab - 9b a 2 +18ab - 5b x 2 + xy - y x 2-9xy - 10y x 2 +17xy+2y 2 1. x x x x x x x x x y 2-8y y 2-6y x 2-2x x 2-6x x x x x x 2-2xy + y a 2-20a x 2-40x x 2-42x a x x x x 2-36x a 2-4ab + 4b x 2 + 4xy+ 4y x b 2-36a x 2 +10xy +25y y + 49y y + 25y y x a 2 +12ab+9b x 2 +12xy +36y 2

67 Worksheet 32 Worksheet 33 Worksheet 34 Worksheet x 2-3x 2. 3x 2-4x x 2 - x x x x 2 + 6x x 2-16x x 2 + 4x x 2-24x π(x 2 + 8x + 16) 10. π(x 2-6x + 9) 11. π(x x+ 36) 12. π(4x 2 + 4x + 1) 1. x y a a a b a y b y x 2 + 2x a 2-4a x 2-2x a 3-6a 2-4a 15. xy xy y x y x x x y x a b 26. 2xy - 1-3y 27. 2a b 28. 2a + 1-4b 1. 4(a + 1) 2. 6(c - 1) 3. 4(2 - a 2 ) 4. 3(3 + 7x 2 ) 5. 3(x + 3) 6. 5(2a 2 + 3) 7. 8(3a - 1) 8. 12(2x + 1) 9. 3(3x - 2) 10. 8a(2a - 1) 11. 4y(3x - 4) 12. b 2 (6-5b) 13. 4x 2 (5x - 6) a 2 (a 3-3) 15. 6a 2 b 2 (4ab 2-3) 16. 2ab(2a 4 + 3b 3 ) 17. a 3 b 2 (1 + ab) 18. 5x 2 y(5y - 3x) 19. xy(3x - 5y) 20. 4a 2 b 2 (2a - 3b) 21. x 2 y 2 (x - y 2 ) 22. x(x 2-5x + 7) 23. y(y 2-6y - 8) 24. 4(x 2-4x + 5) 25. 3(2y 2-3y + 4) 26. 3(x 2-3x + 6) 27. b 2 (b 2-3b + 7) 28. 4x 2 (1-2x +3x 2 ) 29. 4(3y 2-4y + 12) 30. 5y(y 3 + 2y 2-7) 31. 4x 2 (x 2 + 3x - 7) ab(3a 3 b - 5a 2 +2b 3 ) x 2 y 2 (2x 2-6y 2-3x 4 ) 1. (a + b)(x + 3) 2. (x - y)(a + 5) 3. (b - 1)(x - y) 4. (c - d)(a + b) 5. (a - 1)(y - 1) 6. (y + 3)(a -1) 7. (y - 2)(x - 1) 8. (Y - 7)(3x -1) 9. (x - 5)(2x -1) 10. (x - 3)(5y + 1) 11. (a - 2b)(x + y) 12. (a + 1)(4a - 1) 13. (x - 9)(a - 1) 14. (a - 5)(b - 2) 15. (x - 3y)(c + d) 16. (a + 1)(3x + 4) 17. (x -1)(a - 3) 18. (a - 4)(x - y) 19. (a - 3b)(x - y) 20. (a - 9)(x + 1) 21. (x - 7)(a - 3) 22. (x - 6)(2x -1) 23. (e - 5)(d - 1) 24. (a - 4) (2x + y) 25. (a - 9)(m + n) 26. (n - 2)(3m + 1) 27. (b -1)(2a - c) 28. (a - 2)(x - 3y) 29. (y - 5)(x -1) 30. (a - b)(2 - c) 31. (n - 1)(m - 2) 32. (c - 7)(x + y) 33. (b - c)(a + 3)

68 Worksheet 36 Worksheet 37 Worksheet 40 Worksheet (y - 3)(2x + 3) 2. (x + y)(x + 2) 3. (a + 5)(x + 6) 4.(2x + 1)(x - y) 5. (2x+2y)(3x+1) = 2(x+ y)(3x+1) 6. (4a + 3)(a + b) 7. (a - 2)(x - 7) 8. (2x - 5)(x + y) 9. (a - 2)(x + l) 10. (y - 3)(3x + 1) 11. (a - 2b)(3a - 1) 12. (x - 3)(2a + 1) 13. (x - 2)(2a - 3) 14. (5a - 3x)(a - 3) 15. (x - y)(y - 3) 16. (7a - y)(a - b) 17. (2x - y)(3x - 2) 18. (4a - b)(a + 3) 19. (a - 4x)(2a + 3) 20. (x - 2)(3x - y) 21. (2a +y)(4x - 1) 1. (a - 7)(a + 5) 2. (a - 3)(a - 1) 3. (a + 5)(a - 2) 4. (a - 3)(a - 2) 5. (b - 5)(b - 2) 6. (b + 5)(b + 3) 7. (y + 11)(y - 6) 8. (x - 10)(x + 6) 9. (y - 2)(y - 5) 10. (y - 6)(y - 3) 11. (x - 6)(x - 6) 12. (x - 12)(x + 8) 13. (a + 7)(a - 4) 14. (x + 8)(x + 2) 15. (b - 20)(b + 9) 16. (x + 5)(x + 5) 17. (x - 7) (x - 7) 18. (b + 3)(b + 4) 19. (b + 8)(b + 2) 20. (x - 12)(x + 3) 21. (x - 12)(x + 5) 22. (x + 14)(x - 4) 23. (x - 16)(x + 8) 24. (x - 11)(x + 7) 25. (b - 14)(b - 6) 26. (b - 9)(b - 12) 27. (b - 12)(b - 15) 28. (a + 7)(a + 9) 29. (x - 15)(x - 4) 30. (x - 21)(x - 4) 1. (x - 2)(2x - 1) 2. (3x + 1)(x - 1) 3. (2a + 1)(a + 3) 4. (3x - 2)(x + 1) 5. (2b - 1)(b - 6) 6. (3a - 1)(a - 2) 7. (3x - 1)(x - 4) 8. (2x + 3)(2x - 1) 9. (5a - 3)(a + 1) 10. (5a - 2)(a + 3) 11. (3y - 2)(2y + 3) 12. (6x - 5)(x + 1) 13. (5x + 2)(x - 1) 14. (7x - 1)(x - 2) 15. (7y + 1)(y + 1) 16. (7x - 1)(2x - 1) 17. (7y + 4)(y + 2) 18. (3a + 1)(3a - 2) 19. (4x + 1)(2x - 7) 20. (3a + 4)(a - 3) 21. (3x + 2)(x - 4) 22. (3x + 2)(2x - 3) 23. (4y + 5)(y + 5) 24. (7x - 1)(x + 3) 25. (5x + 7)(x - 1) 26. (5x + 2)(2x - 3) 27. (5x - 2)(3x + 4) 28. (4x - 3)(2x - 5) 29. (4x - 5)(3x + 2) 30. (3x - 5)(3x + 1) 31. (4x + 5)(2x - 3) 32. (5x + 2)(2x - 5) 33. (5x - 2)(3x - 4) 1. (x + 4)(x - 4) 2. (x + 5)(x - 5) 3. (x + 8)(x - 8) 4. (3x + 1)(3x - 1) 5. (4x + 5)(4x - 5) 6. (3x + 7)(3x - 7) 7. (x 2 + 2)(x 2-2) 8. (x 4 +10)(x 4-10) 9. (6x + 1)(6x - 1) 10. (9x + 1)(9x -1) 11. (1+10x)(1-10x) 12. (1 +9x)(1-9x) 13. (y 2 +11)(y 2-11) 14. (1+12)(1-12x) 15. Irreducible over the integers 16. Irreducible over the integers 17. (x + y 3 )(x - y 3 ) 18. (x 2 + y 4 ) (x- y 2 )(x+ y 2 ) 19. (1 + 5x)(1-5x) 20. (1 +6x)(1-6x) 21. (2 + 3x)(2-3x) 22. (4 + 7x)(4-7x) 23. (b+12c)(b-12c) 24. (a +7b)(a -7b) 25. (xy+10)(xy -10) 26. (x 3 + 9)(x 3-9) 27. (3x+4y)(3x-4y) 28. (5x+12)(5x-12) 29. (xy + 1)(xy - 1) 30. (x + 20)(x - 20) 31. (6a + 1)(6a - 1) 32. (7x + 2)(7x - 2) 33. (x 2 + 2)(x 2-2)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 Name.. Class. Date. EXERCISE 1 Answer the question. Use: Yes, it is or No, it isn t. Απάντηςε ςτισ ερωτήςεισ. Βάλε: Yes, it is ή No, it isn

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple A/ Ονόματα και ένα παράδειγμα 1 Present Simple 7 Present PERFECT Simple 2 Present Continuous 8 Present PERFECT Continuous 3 Past Simple (+ used to) 9 Past PERFECT Simple she eats she is eating she ate

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Ιστορία νεότερων Μαθηματικών

Ιστορία νεότερων Μαθηματικών Ιστορία νεότερων Μαθηματικών Ενότητα 3: Παπασταυρίδης Σταύρος Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Περιγραφή Ενότητας Ιταλοί Αβακιστές. Αλγεβρικός Συμβολισμός. Άλγεβρα στην Γαλλία, Γερμανία, Αγγλία.

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

43603H. (NOV1243603H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November 2012. Unit 3 10 11 H

43603H. (NOV1243603H01) WMP/Nov12/43603H. General Certificate of Secondary Education Higher Tier November 2012. Unit 3 10 11 H Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Secondary Education Higher Tier November 2012 Pages 3 4 5 Mark Mathematics

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

A ΜΕΡΟΣ. 1 program Puppy_Dog; 2 3 begin 4 end. 5 6 { Result of execution 7 8 (There is no output from this program ) 9 10 }

A ΜΕΡΟΣ. 1 program Puppy_Dog; 2 3 begin 4 end. 5 6 { Result of execution 7 8 (There is no output from this program ) 9 10 } A ΜΕΡΟΣ 1 program Puppy_Dog; begin 4 end. 5 6 { Result of execution 7 (There is no output from this program ) 10 } (* Κεφάλαιο - Πρόγραµµα EX0_.pas *) 1 program Kitty_Cat; begin 4 Writeln('This program');

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα