Differential Equations (Mathematics)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Differential Equations (Mathematics)"

Transcript

1 H I SHIVAJI UNIVERSITY, KOLHAPUR CENTRE FOR DISTANCE EDUCATION Diffeetial Equatios (Mathematics) Fo K M. Sc. Pat-I J

2 Copyight Pescibed fo Regista, Shivaji Uivesity, Kolhapu. (Mahaashta) Fist Editio 8 Secod Editio M. Sc. Pat-I All ights eseved, No pat of this wo may be epoduced i ay fom by mimeogaphy o ay othe meas without pemissio i witig fom the Shivaji Uivesity, Kolhapu (MS) Copies : Published by: D. D. V. Muley Regista, Shivaji Uivesity, Kolhapu-46 4 Pited by : Shi. A. S. Mae, I/c. Supeitedet, Shivaji Uivesity Pess, Kolhapu-46 4 ISBN Futhe ifomatio about the Cete fo Distace Educatio & Shivaji Uivesity may be obtaied fom the Uivesity Office at Vidyaaga, Kolhapu-46 4, Idia. This mateial has bee poduced with the developmetal gat fom DEC-IGNOU, New Delhi. (ii)

3 Cete fo Distace Educatio Shivaji Uivesity, Kolhapu Pof. (D.) N. J. Pawa Vice-Chacello, Shivaji Uivesity, Kolhapu EXPERT COMMITTEE D. D. V. Muley Regista, Shivaji Uivesity, Kolhapu. ADVISORY COMMITTEE Pof. (D.) N. J. Pawa Vice-Chacello, Shivaji Uivesity, Kolhapu. D. A. B. Rajge Diecto BCUD, Shivaji Uivesity, Kolhapu. D. B. M. Hidea Cotolle of Eamiatio Shivaji Uivesity, Kolhapu. D. (Smt.) Vasati Rasam Dea, Faculty of Social Scieces, Shivaji Uivesity, Kolhapu. Pof. (D.) B. S. Sawat Dea, Faculty of Commece, Shivaji Uivesity, Kolhapu. D. T. B. Jagtap Dea, Faculty of Sciece, Shivaji Uivesity, Kolhapu. D. K. N. Sagale Dea, Faculty of Educatio, Shivaji Uivesity, Kolhapu. D. D. V. Muley Regista, Shivaji Uivesity, Kolhapu. Shi. B. S. Patil Fiace ad Accouts Office, Shivaji Uivesity, Kolhapu. Pof. (D.) U. B. Bhoite Lal Bahadu Shasti Mag, Bhaati Vidyapeeth, Pue. Pof. (D.) A. N. Joshi Diecto, School of Educatio, Y. C. M. O. U. Nashi. Shi. J. R. Jadhav Dea, Faculty of Ats & Fie Ats, Shivaji Uivesity, Kolhapu. Pof. (D.) S. A. Bai Diecto, Distace Educatio, Kuvempu Uivesity, Kaataa. Pof. D. (Smt.) Cima Yeole (Membe Secetay) Diecto, Cete fo Distace Educatio, Shivaji Uivesity, Kolhapu. B. O. S. MEMBERS OF MATHEMATICS Chaima- Pof. S. R. Bhosale P.D.V.P. Mahavidyalaya, Tasgao, Dist. Sagli. D. L. N. Kata Head, Dept. of Mathematics, Shivaji Uivesity, Kolhapu. D. H. T. Dide Kamvee Bhauao Patil College, Uu-Islampu, Tal. Walwa, Dist. Sagli. D. T. B. Jagtap Yashwatao Chava Istitute of Sciece, Sataa. Shi. L. B. Jamale Kisha Mahavidyalaya, Rethae B., Kaad, Dist. Sataa. D. A. D. Lohade Yashavatao Chava Waaa Mahavidyalaya, Waaaaga. Pof. S. P. Pataa Viveaad College, Kolhapu. Pof. V. P. Rathod Dept. of Mathematics, Gulbaga Uivesity, Gulbaga, (Kaataa State.) Pof. S. S. Bechalli Dept. of Mathematics,Kaataa Uivesity, Dhawad. Shi. Satosh Pawa,, 'A' Wad Sadashiv Jadhav, Housig Society, Radhaagai Road, Kolhapu-46. (iii)

4 Cete fo Distace Educatio Shivaji Uivesity, Kolhapu. Diffeetial Equatios Witig Team Uit No. D. (Ms.) Saita Thaa Depatmet of Mathematics Shivaji Uivesity, Kolhapu. Mahaashta All Edito D. (Ms.) Saita Thaa Depatmet of Mathematics, Shivaji Uivesity, Kolhapu. Mahaashta. (iv)

5 Peface Lage umbes of studets appea fo M.A./M. Sc. Eamiatios eteally evey yea. I view of this, Shivaji Uivesity has itoduced the Distace Educatio Mode fo eteal studets fom the yea 7-8, ad etusted the tas to us to pepae the Self Istuctioal Mateial (SIM) fo aspiats. It is hoped that studets must lea Mathematics ot oly to become competet mathematicias but also silled uses of Mathematics i the solutio of poblems i the eal wold. They must lea how to use thei Mathematical owledge i solvig the poblems of the eal wold. Diffeetial equatios usually ae desciptio of physical systems. This boo o Diffeetial Equatios cosists of fou chaptes. Chapte oe cotais the complete discussio of liea equatios with costat coefficiets, icludig the uiqueess theoem. I chapte two liea equatios with vaiable coefficiets ae tea. Equatios with aalytic coefficiets ae itoduced ad seies solutios ae obtaied by a simple fomal pocess. A detailed teatmet of liea equatios with egula sigula poits is discussed i chapte fou. Classificatio of egula sigula poits ad egula sigula poits at ifiity is studied. I chapte five eistece ad uiqueess of solutios of fist ode iitial value poblem ae established. The iumeable eamples ad eecises ae give at the ed of each uit. The boo itoduces the studets to some of the abstact topics that pevade mode aalysis. The fist chapte deals with the Riema Stieltjes itegatio. The poblems i Physics ad Chemisty which ivolve mass distibutio that ae patly discete ad patly cotiuous ca be solved by usig Riema Stietjes itegatios. The Chapte deals with covegece ad uifom covegece of sequeces of fuctios ad seies whee as the Chapte 3 cosists of multidimesioal calculus. The Chapte 4 deals with implicit fuctios ad etemum poblems which have wide applicatios i optimizatio theoy. Lie itegals, suface itegals ad Volume itegals ae the subject matte of Chapte 5. This povides sufficiet bacgoud to study the Gauss divegece Theoem ad Stoes Theoem. (v)

6 We owe a deep sese of gatitude to the Vice-Chacello D. N. J. Pawa who has give impetus to go ahead with ambitious pojects lie the peset oe. D. Saita Thaa, Reade, Depatmet of Mathematics, Shivaji Uivesity has to be pofusely thaed fo the ovatios he has poued to pepae the SIM o Diffeetial Equatios. We also tha Pof. M. S. Chaudhay, Head, Depatmet of Mathematics, Shivaji Uivesity, Diecto of Cete fo Distace Educatio Ms. Cima Yeole ad Deputy Diecto Shi. Raj Patil fo thei help ad ee iteest i completio of the SIM. Pof. S. R. Bhosale Chaima BOS i Mathematics Shivaji Uivesity, Kolhapu-464. (vi)

7 M. Sc. (Mathematics) Diffeetial Equatios Cotets Chapte : Liea Equatios with Costat Coefficiets Chapte : Liea Equatios with Vaiable Coefficiets 53 Chapte 3 : Liea Equatios with Regula Sigula Poits Chapte 4 : Eistece ad Uiqueess of Solutio to 59 Fist Ode Equatios (vii)

8 p p p M. Sc. (Mathematics) Pape III Diffeetial Equatios D. Saita Thaa p Depatmet of Mathematics Shivaji Uivesity, Kolhapu (M.S.) Diffeetial Equatios

9 Chapte Liea Equatios with Costat Coefficiets Cotets : Uit : Iitial value poblems fo secod ode equatios. Uit : Liea depedece ad idepedecce Uit 3 : The homogeous equatio of ode Uit 4 : The o-homogeeous equatio of ode Itoductio : We live i a wold of iteelated chagig etities. The positio of the eath chages with time, the velocity of fallig body chages with distace, the bedig of a beam chages with the weight of the load placed o it, the aea of cicle chages with the size of the adius, the path of pojectile chages with the velocity ad agle at which it is fied. I the laguage of mathematics chagig etities ae called vaiables ad the ate of chage of oe vaiable with espect to aothe is called deivative. Equatios which epess a elatio amog these vaiables ad thei deivatives ae called diffeetial equatios. A Liea diffeetial equatio of ode with costat coefficiets is a equatio of the fom ( ) ( ) ( ) ay + ay + a y + + ay b( ), whee, a, a, a,, a ae comple costats ad b is comple valued fuctio o a iteval I : a< < b. The opeato L defied by ( ) ( ) ( ) L( φ)( ) φ ( ) + a φ ( ) + a φ ( ) aφ( ) is called as diffeetial opeato of ode with costat coefficiets. The equatio L(y) b() is called o-homogeous equatio. If b() fo all i I the coespodig equatio L(y) is called a homogeous equatio. Diffeetial Equatios ()

10 Uit : Iitial Value Poblems fo Secod Ode Equatios whee Hee, we ae coceed with the equatio Theoem.. Diffeetial Equatios Ly ( ) y + ay + ay a ad a ae costats. Let, a, a be costats ad coside the equatio L(y) y + a y + a y. If, ae distict oots of the chaacteistic polyomial p() + a + a the the fuctios φ ( ) e ad φ ( ) e ae solutios of L(y).. If is a epeated oot of the chaacteistic polyomial p(), the the fuctios ( ) φ e ad ( ) φ e ae solutios of L(y). Poof : Let f () e be a solutios of L(y). + + ( + a+ a) e Le ( ) ( e ) a( e ) ae L (e ) if ad oly if p() + a + a.. If ad ae distict oots of p() the L( e ) L( e ) ad φ ( ) e ad φ ae solutios of L(y).. If is a epeated oot of p() the ( ) e P( ) ( ) ad p( ) ( ) Le ( ) Pe ( ) fo all &. Le ( ) Pe ( ) [ ] Le ( ) P() + P () e. At, P( ) P ( ). i.e. Le ( ) thus, showig that e is a solutio of L(y). Thus if is a epeated oot of the chaacteistic polyomial P(), the ( ) φ e ad φ ae solutios of L(y). ( ) e Theoem.. : If f ad f ae two solutios of L(y) the C f + Cf is also a solutio of L(y). Whee, C ad C ae ay two costats. Poof : Let f ad f be two solutios of L(y) L( φ ) φ + a φ + a φ ()

11 L( φ ) φ + a φ + a φ Suppose C ad C ae ay two costats the the fuctio f defied by f C f + C f is also a solutio of L(y). L( φ) ( aφ + c φ ) + a ( aφ + c φ ) + a ( aφ + c φ ) c ( φ + aφ + a φ ) + c ( φ + aφ + a φ ) cl( φ ) + c L( φ ) The fuctio f which is zeo fo all is also a solutio called the tivial solutio of L(y). The esults of above two theoems allow us to solve all homogeeous liea secod ode diffeetial equatios with costat coefficiets. Defiitio. : A iitial value poblem L(y) is a poblem of fidig a solutio f satisfyig φ( ) α ad φ ( ) β whee, is some eal umbe ad a, b ae give costats. Theoem..3 : (Eistece Theoem) Fo ay eal ad costats a, b, thee eists a solutio f of the iitial value poblem Ly ( ) y + ay + ay, y ( ) α, y ( ) β, < <. Poof : By theoem.. thee eist two solutios f ad f that satisfy L(f ) L(f ). Fom theoem.. we ow that c f + c f is a solutio of L(y). We show that thee ae uique costats c, c such that φ c φ + cφsatisfies φ( ) α ad φ ( ) β. ad φ( ) cφ ( ) + c φ ( ) α φ ( ) cφ ( ) + c φ ( ) β Above system of equatios will have a uique solutio c, c if the detemiat φ( ) φ( ) φ( ) φ ( ) φ( ) φ ( ). φ ( ) φ ( ) By theoem.. (), φ ( e ) ad φ ( e ), ae two solutio of Ly ( ) fo ( ) e + e e e e ( ). By theoem.. (), φ ( ) e ad φ ( ) e, ae solutios of L(y) ad Diffeetial Equatios e e + e e e e (3)

12 Thus, the detemiat coditio is satisfied i both the cases. Theefoe, c, c ae uiquely detemied. The fuctio f c f + c f is a desied solutio of the iitial value poblems. Defiatio. : A solutio of a diffeetial equatio will be called a paticula solutio if it satisfies the equatio ad does ot cotai abitay costats. Theoem..4 : Let, f be ay solutio of Whee, Ly ( ) y + ay + ay o a iteval I cotaiig a poit, The fo all i I. φ( ) e φ( ) φ( ) e φ( ) φ( ) + φ ( ) ad + +. Poof : Let, u ( ) φ( ) φ( ) + φ ( ) φ( ) φ( ) + φ ( ) φ ( ) The, u ( ) φ ( ) φ( ) + φ( ) φ ( ) + φ ( ) φ ( ) + φ ( ) φ ( ) ad u ( ) φ( ) φ ( ) + φ ( ) φ ( ) Sice f is a solutio of L(y), L( φ) φ + aφ + aφ as φ( ) φ( ) i.e. φ ( ) aφ ( ) aφ( ) ad the above iequality becomes u ( ) φ( ) φ ( ) + φ ( ) a φ ( ) + a φ( ) [ ] [ ] φ φ φ + a ( ) ( ) + a ( ) But, φ( ) φ ( ) φ( ) + φ ( ) Theefoe, Thus, we get ( ) φ ( ) ( a a ) φ φ u ( ) + a + a ( ) + + a φ( ) + + ( ) + ( ) u( ) u ( ) u ( ) u ( ) u ( ) u( ) is equivalet to u ( ) u( ) sice epoetial fuctios ae positive o multiplyig above iequality by e we get Diffeetial Equatios (4)

13 ( ) ( ) e u u e u ( ) ( ) ( ). Itegatig above iequality betwee the limits to fo > yields. ( ) ( ) e u e u ( ) u ( ) e u ( ) ( ) Thus, φ( ) e φ( ) Similaly, fo > the iequality u() u () implies ( ) ( ) ( ) φ e φ Theefoe fo > we get ( ) ( ) φ( ) e φ( ) e φ( )... (..) Fo <, the sig of above iequality will get chaged ( ) ( ) φ( ) e φ( ) e φ( ) This iequality ca be witte as ( ) ( ) φ( ) φ( ) φ( ) e e sice <, >. ( ) ( ) φ( ) φ( ) φ( ) e e... (..) Equatio (..) ad (..) togethe ca be put i the fom φ( ) φ( ) φ( ) e e Sice all the tems i above iequality ae positive the squae oot of each tem esults ito the equied iequality. Theoem..5 (Uiqueess Theoem) Let a, b be ay two costats ad let be ay eal umbe. O ay iteval I cotaiig thee eists at most oe solutio f of the iitial value poblem Ly ( ) y + ay + ay, y ( ) α, y ( ) β Poof : Suppose f ad y ae two solutios. Let θ φ ψ. Sice L( φ) L( ψ), L( θ) L( θ ψ) L( θ) L( ψ) Sice φ( ) ψ( ) α ad φ ( ) ψ ( ) β, θ( ) φ( ) ψ( ) ad θ ( ) φ( ) ψ ( ) Thus, L( θ), θ( ) ad θ ( ). θ( ) θ( ) + θ ( ) Diffeetial Equatios (5)

14 By theoem (..4) we see that θ( ) θ( ) + θ ( ) fo all i I This implies q () fo all i I. But θ( ) θ( ) ψ( ) i.e. φ( ) φ( ). Theoem..6 : Let f, f be two solutios of L(y) give by theoem... If c, c ae ay two costats the fuctio f c f + c f is a solutio of L(y) o < <. Covesely, if f is ay solutio of L(y) o < <, the thee ae uique costats C ad C such that f C f + C f. Poof : Fist pat of the theoem follows fom theoem... Covesely suppose f is ay solutio of L(y). Let φ( ) α ad φ ( ) β fo some costats a ad b. I the poof of eistece theoem..3 we showed that thee is a solutio y of L(y) satisfyig. ψ( ) α, ψ ( ) β of the fom ψ( ) cφ( ) + cφ( ) whee c ad c ae uiquely detemied by a ad b. By uiqueess theoem..5 φ ψ, fo all. Eamples :. Fid all solutios of the followig equatios. (a) y² 4 y (b) y²+ i y + y (c) y² 4 y + 5y Aswe : (a) The chaacteistic polyomial is p() 4. ad ae two distict oots of p (). Theefoe φ() s e ad φ() e ae two solutios. Fo ay costats c ad c, c e + c e is a solutio. Thus the geeal solutio is φ ( ) ce + ce. (b) The chaacteistic polyomial p() + i + p () i± () i 4 ± 8 i i± i ( ) ± i Diffeetial Equatios (6)

15 Thus ( + ) ad ( ) i i ae two distict oots of p(). ( + ) i ( ) Theefoe φ( ) ad φ( ) costats c ad c, ( + ) i ( ) i e e ae two solutios. Thus, fo ay φ ( ) c e + c e is a geeal solutio. (c) The chaacteistic polyomial p() p() gives + i ad i as two distict oots. f () e ( + i) ad f () e ( i) ae two solutios of the diffeetial equatio. Fo ay costats c ad c, f () c e ( i) + c e ( + i) is a geeal solutio. I paticula fo c c we get, i i e + e φ ( ) e e cos. ad fo c ad c i i we get i i e e φ ( ) e e si i Thus, f () A e cos + B e si is a solutio of the diffeetial equatio fo ay costats A & B.. Fid the solutios f of the followig iitial value poblems. (a) φ + φ 6φ, φ(), φ () (b), (), π φ + φ φ φ (c) φ + φ, is ay costat, φ(), φ ( π) (d) φ φ 3φ, φ(), φ () Aswe : (a) The chaacteistic polyomial p() + 6. ad 3 ae distict oots 3 φ ( ) c e + c e is a geeal solutio. φ () c + c... () 3 φ () φ ( ) c e 3c e at, gives φ () c 3c... () solvig equatio () ad () fo c ad c we get c 3/5 ad c +/5. 3 3e e Thus, the equied solutio is φ ( ) i Diffeetial Equatios (7)

16 (b) The chaacteistic polyomial is p () +. i ad i ae distict oots φ ( ) c cos+ c siis a geeal solutio. φ () c cos + c si gives c π c π + c π φ ( ) cos si. gives c. Thus, f () cos + si is the equied solutio. (c) The chaacteistic polyomial is p () + sice is ay costats, ca be positive, egative o zeo. Case. > The i ad i; ae distict oots. i i φ ( ) c e + c e is a geeal solutio I geeal φ ( ) Acos + Bsi is a solutio. φ () Acos + Bsi i.e. A φπ ( ) Acos π+ Bsiπ i.e. A Thus, f () B si is a solutio whee B is ay costat. Case. p () a epeated oot. φ( ) c e + c e c + c is a solutio φ() c φπ ( ) c+ cπ c Theefoe thee is o otivial solutio coespodig to. Case 3. < fo, p () + has distict oots & ( Sice <, > ) c φ ()c e + e φ () c + c π ce π φπ ( ) ce + Simultaeous evaluatio of above two equatios give c c. Thus, thee is o o-tival solutio coespodig to <. The oly o-tivial solutio fo the give equatio is φ( ) Bsi. (d) The chaacteistic polyomial p() 3 3, ae two distict oots. Diffeetial Equatios (8)

17 \ 3 ( ) ce ce φ + is a geeal solutio φ() φ() c + c 3 φ ( ) 3 c e c e φ () φ () 3 c c Thus, c + c ad 3c c gives c ad c Theefoe φ ( ) e e is the equied solutio Fill i the blas. EXERCISES (i) If, ae distict oots of chaacteistic polyomial p () + a + athe φ ( )... ad φ ( )... ae solutios of the diffeetial equatio y + a y + a y (ii) If p () ( ) is a chaacteistic polyomial the φ ( )... ad φ ( )... ae two solutios of the diffeetial equatio y y + y. (iii) Uiqueess theoem states that... (iv) Solutio of y y + 4y ae φ( )... ad φ( ).... (v) The geeal solutio of y 3y + y is.... Fid the getal solutio of each of the followig equatio. (i) y + 4y (ii) y y (iii) y + y 6y (iv) y + 4 y y (v) y ay + a y (vi) y 4y + y 3. Fid the solutio of the followig iitial value poblems : (i) y, y(), y () (ii) y + 4y + 4y, y(), y () (iii) y y + 5y, y(), y () 4 (iv) y y y y( π ) y ( π ) Aswes : 4 +,,. (i) φ ( ) e, φ ( ) e (ii) φ ( ) e, φ ( ) e Diffeetial Equatios (iii) theoem..5 (iv) φ ( ) e, φ ( ) e (v) ce + ce (9)

18 . (i) 4 c + c e (ii) ce + c e (iii) 3 ce + c e (iv) 6 ce + c e a (v) ( c+ c) e (vi) e ( ccos4+ csi4 ) 3. (i) 3 (ii) ( + 3) e (iii) e (cos+ si ) (iv) e 4 π si 4 Uit : Liea Depedece ad Idepedece Evey solutio of the equatio L (y) is a liea combiatio of two solutios obtaied i theoem... Theefoe these two solutios spa the solutio space of the diffeetial equatio L(y). Defiatio.3 : A set of eal o comple fuctios f, f, f 3,..., f defied o a iteval (a, b) is said to be liealy idepedet whe c f ( ) + c f ( ) + c 3 f 3 ( ) + + c f( ) fo evey i (a, b) implies c c c3 c. Defiatio.4 : Give the fuctios f, f, f 3,, f if costats c, c, c 3,, c ot all zeo eist such cf ( ) + c f ( ) + cf 3 3 ( ) + + cf( ) fo evey i (a, b), the these fuctios ae liealy depedet. A set which is ot liealy idepedet is said to be liealy depedet. Thee ae two otios of liea idepedece, accodig as we allow the coefficiets c,,, 3,..., to assume oly eal values o also comple values. I the fist case, oe says that the fuctios ae liealy idepedet ove the field of eals; i the secod case, that they ae liealy idepedet ove the comple field. Lemma.. : A set of eal valued fuctios o a iteval (a, b) is liealy idepedet ove the comple field if ad oly if it is liealy idepedet ove the eal field. Poof : If the set of eal valued fuctios o a iteval (a, b) is liealy idepedet ove the comple field the it is liealy idepedet ove the field of eals. Covesely suppose the set is liealy idepedet ove the eal field. Theefoe fo j j j 3 3 j cj f j( ) j α R, α f ( ) α f ( ) + α f ( ) + α f ( ) + + α f ( ) fo all i (a, b) implies a j fo all j,, 3...,. Let fo all i (a, b) ad fo some c C, j,,3,. Sice the fuctio f j ae eal valued ad c f ( ), j * * c * j cj ( ) cj fj. implies cj fj( ). Thus, * f j( ). But j j ( cj cj )/ i i ae all eal ad the set is liealy idepedet ove the eal field theefoe c c *. But the c j s j j j j Diffeetial Equatios ()

19 ae all eal theefoe c f ( ) implies c j fo j,,... j j j A set of fuctios which is liealy depedet o a give domai may become liealy idepedet whe the fuctios ae eteded to a lage domai. Howeve, a liealy idepedet set of fuctios clealy emai liealy idepedet o the esticted domai. Illustatio : The fuctios f ad f defie by f () Cos ad f () Si ae liealy idepedet o the eal lie IR ad theefoe ae liealy idepedet o (, p). Illustatio : The fuctios f ad f defie by f (), f () ae liealy idepet o the iteval (, ) but is ot liealy idepedet o the iteval (, ) as o the iteval (, ), f () f (). Theoem.. : Let a, a be costats ad coside the equatio Ly ( ) y + ay + ay. The two solutios of L (y) give i the theoem.. ae liealy idepedet o ay iteval I. Case. Poof : Let, be the oots of chaacteistic polyomial p() + a + a. If ¹, the ( ) φ e ad ( ) φ e ae two solutios of the equatio L(y) o a iteval I. I. c, ( ) ce Suppose ce + c e fo all i I. The c + fo all i I. ( ) Diffeetiatio of above equatio with espect to givesc ( ) e fo all i Sice, ¹ ad epoetial fuctio i o-zeo, c is zeo. But if c is zeo the ( ) ce + implies c is zeo. Thus, ce + c e implies c c. Case. Theefoe φ ( ) e ad φ ( ) e ae liealy idepedet. If, the ( ) φ e ad ( ) φ e ae two solutios of the equatio L(y) o a iteval I. e Suppose ce + ce the c+ c fo all i I. Theefoe c c. Thus, f ad f ae liealy idepedet Thus, i both cases the two solutios f ad f of L(y) ae liealy idepedet. Defiatio.5 : Assume that each of the fuctios f ( ), f ( ), f 3 ( ),, f( ) ae diffeetiable atleast ( ) times i the iteval (a, b). The the detemiat Diffeetial Equatios ()

20 Diffeetial Equatios f( ) f( ) f3( ) L f( ) f ( ) f ( ) f 3 ( ) L f ( ) f ( ) f ( ) f 3 ( ) L f ( ) M M M M ( ) ( ) ( ) ( ) 3 L f ( ) f ( ) f ( ) f ( ) deoted by W( f, f, f3,..., f)( ) is called the wosia of the fuctios f, f, f3,..., f. Theoem.. : Two solutios f, f of L (y) ae liealy idepedet o a iteval I if ad oly if W( φ φ ) ( ) fo all i I., Poof : Suppose W( φ, φ )() fo all i I Let c, c be costats such that c f () + c f () fo all i I. The c f () + c f () fo all i I. Above two equatios ca be witte as φ( ) φ( ) c φ ( ) φ ( ) c Sice, W( φ, φ)( ) fo all i I, the coefficiet mati is ivetible. O pemultiplyig the ivese of the coefficiet mati esults i c c. This poves that f ad f ae liealy idepedet o I. Covesely, assume that f, f ae liealy idepedet o I. Suppose that thee is a poit i I such that W( φ, φ ) ( ). The the system of equatios φ( ) φ( ) c φ ( ) φ ( ) c has a solutio c, c whee at least oe of these umbes is ot zeo. Let c, c, be such a solutio ad coside the fuctio ψ( ) cφ( ) + cφ( ). Now L( ψ) ad ψ( ), ψ ( ). Theefoe ψ( ) ψ( ) + ψ ( ). By theoem..4 ψ ( ). But ψ( ) ψ( ) + ψ ( ). Theefoe ψ ( ) fo all i I ad thus c φ ( ) + c φ ( ) fo all i I. But the f ad f ae liealy depedet. Thus, the suppositio W( φ, φ ) ( ) must be false ad theefoe W( φ, φ) ( ) fo all i I. I the et theoem we will pove that we eed to compute W( φ, φ) at oly oe poit to test the liea idepedece of the solutios f ad f. ()

21 Theoem..3 : Let f, f be two solutio of L(y) o a iteval I ad let be ay poit i I. The two solutios f ad f ae liealy idepedet o I if ad oly if W( φ, φ) ( ). Poof : If f ad f ae liealy idepedet o I the by theoem.., W( φ, φ) ( ) fo all i I. I paticula W( φ, φ) ( ) covesely, suppose W( φ, φ) ( ) ad suppose c, c ae costats such that c φ ( ) + c φ ( ) fo all i I. The i.e. c φ ( ) + c φ ( ) ad cφ ( ) + cφ ( ). φ( ) φ( ) c φ ( ) φ ( ) c But sice the detemiat of the coefficiet is W( φ, φ) ( ) we obtai c c. Thus f, f ae liealy idepedet o I. I the et theoem we show that the owledge of two liealy idepedet solutios of L(y) is sufficiet to geeate all solutios of L(y). Theoem..4 : Let f, f be ay two liealy idepedet solutios of L(y) o a iteval I. Evey solutio f of L(y) ca be witte uiquely as φ c φ + c φ whee c, c ae costats. Poof : Let be a poit i I. Let φ( ) α, φ ( ) β. Sice f, f ae liealy idepedet o I we ow that W( φ, φ)( ). Coside the two equatios. φ( ) φ( ) c α φ ( ) φ ( ) c β Sice W( φ, φ) ( ), above system of equatios has a uique solutio c, c. Fo this choice of c, c the fuctioψ( ) cφ( ) + cφ( ) satisfies ψ( ) cφ( ) + cφ( ) α φ( ) i.e. ψ( ) φ( ) similaly ψ ( ) φ ( ) ad L( ψ). Fom the uiqueess theoem..5 it follows that ψ φ o I i.e. φ c φ + c φ. Eamples : Q. Show that the fuctios e, e, e 3 ae liealy idepedet. As. : Method : Let 3 ce + c e + ce 3 the c+ ce + c3e... () Diffeetial Equatios (3)

22 Diffeetiate above equatio () with espect to the c e + c 3 e implies c + c e... () 3 By diffeetiatig equatio () with espect to we get ce 3 theefoe c 3. But the by equatio () c ad by equatio () we get c. Thus c c c 3. Theefoe the fuctios e, e, e 3 ae liealy idepedet. Method : 3 Let 3 φ ( ) e, φ ( ) e, φ ( ) e 3 e e e 3 3 W( φ, φ, φ 3) e e 3e e e e 3 3 e 4e 9e 4 9 e 6 [(8 ) (9 3) + (4 )] e 6 ¹. by theoem.. f, f, f 3 ae liealy idepedet. Q. : The fuctios f, f ae defied o < <. Detemie whethe they ae liealy depedet o idepedet thee. (i) φ( ), φ( ) e, is a comple costat (ii) φ ( ), φ ( ) 5 (iii) φ( ), φ( ) (iv) φ( ) cos, φ( ) si As. (i) : Method : c ( ) + c ( ) Let φ φ i.e. c + c e... () if, c+ c fo all Rimplies c ad c. \ f, f ae liealy idepedet if ¹, diffeetiate equatio () with espect to the c+ ce Agai diffeetiate above equatio with espect to the ce. But ad e theefoe c ad fom equatio () we get c. Thus f, f ae liealy idepedet. Method : e W( φ, φ ) e e Diffeetial Equatios (4)

23 e ( ) fo IR \ f, f ae liealy idepedet Method 3 : idepedet. As. (ii) : W(, ) () Let c φ + c φ i.e. c + c 5 if ( c + 5 c ) φ φ theefoe by theoem..3 f, f ae liealy If we choose c 5c ¹ the the liea combiatio c φ + c φ theefoe by defiitio.4, f, f ae liealy depedet. As. (iii) : > c φ + c φ ( c + c ) as Fo ad fo < cφ+ cφ ( c c) as Thus, cφ+ cφ fo R ( c + c ) ad ( c c ) fo evey R above two equatios hold tue if ad oly if c c. Thus f, f defied by φ ( ) ad φ ( ) ae liealy idepedet. As. (iv) : φ ( ) cos ; φ ( ) si cos si W( φ, φ ) ( ) si cos Q W( φ, φ )( ), φ, φ ae liealy idepedet. Q3. : Let f be ay fuctio satisfyig the bouday value poblem y + y, y() y( π), y () y ( π),,,,3,... show that π φ ( ) φ ( ) d if m. m As. : The chaacteistic polyomial p () + has oots i, i ad theefoe the Diffeetial Equatios (5)

24 geeal solutio φ ( ) ccos + dsi Fom the give bouday coditios. φ () c ad φ ( π) c φ () φ ( π) ad φ () d ad φ ( π) d φ () φ ( π) Thus, φ ( ) c cos + d si satisfies the give bouday coditios. The solutio f satisfies φ ( ) + φ ( ) whee as φ ( ) + m φ ( ) holds. Thus, ( m ) φ ( ) φ ( ) φ ( ) φ ( ) φ ( ) φ ( ) m m m Itegatig above equatio fom to p We get, ( ) π φ ( ) φm( ) φ( ) φ m ( ) π φ φm φ φ φ φ m m m ( ) ( ) d ( ) ( ) ( ) ( ) d φ ( ) φm( ) φ( ) φ m ( ) But φ () c, φ ( π) c ; φ () d, φ ( π) d Similaly, φ (), ( ) ; () m cm φm π cm φm mdm φm ( π) π Thus, ( m ) φ ( ) φ ( ) d [ d c c md ] [ d c c md ] Sice, π φ m m π m m m m m m, ( ) φ ( ) d. m Q4. (a) : Show that f () Si satisfies the bouday value poblem y² + y, y ( ), y ( p ),,... (b) : Usig (a) show that π si si m d if m As. 4(a) : Method : The chaacteistic polyomial p () + has oots ± i ad theefoe the geeal solutio Diffeetial Equatios (6)

25 φ ( ) c cos + d si y() φ () φ () c y( π) φ( π) φ( π) c( ). Thus, φ ( ) si is a solutio fo,, 3,... Method : φ ( ) si, φ ( ) cos φ ( ) si Thus, φ ( ) + φ ( ) si+ si. Sice, φ ( ) si satisfies φ ( ) + φ( ) ad φ (), φ ( π) φ ( ) si is a solutio of As. 4(b) : Woig o the simila lie as i eample we get, π π φ φ m y + y, y() y( π). ( m ) ( ) ( ) d ( m ) si sim d [ si ( mcos m) si m( cos ) ] π (as si si p ) Sice π φ m, ( ) φ ( ) d. m Q5 : Suppose f, f ae liealy idepedet solutios of the costat coefficiet equatio y + a y + a y Let W (f, f ) be abbeviated to W. Show that W is costat if ad, oly if a. As. : φ W φ W( φ, φ) ( φφ φφ ) φ φ The W ( ) φφ φ φ φφ + φ φ φ φ φ φ φφ φφ But f ad f ae solutios of y + ay + ay. Diffeetial Equatios (7)

26 + a + a a a Theefoe φ φ φ φ φ φ Similaly, φ aφ aφ W ( ) ( ) Thus, φ aφ aφ φ aφ aφ a ( φφ φ φ ) aw Thus, W iff a Theefoe W costat if ad oly if a Q6 : Let f, f be two diffeet fuctio o a iteval I, which ae ot ecessaily solutios of a equatio L(y). Pove the followig As. 6(a) : (a) If f, f ae liealy depedet o I the W(f, f ) () fo all i I (b) If W(f, f ) ( ) ¹ fo some i I, the f, f ae liealy idepedet o I. (c) W(f, f )() fo all i I does ot imply that f, f ae liealy depedet o I. (d) W(f, f ) () fo all i I ad f () ¹ o I, imply that ae f, f liealy depedet. Suppose f, f ae liealy depedet o I the c φ ( ) + c φ ( ) fo some o-zeo c ad c. i.e. As. 6(b) : c φ ( ) ( ). φ c φ φ W( φ, φ )( ) φ ( ) φ ( ) φ ( ) φ ( ) φ φ W( φ, φ c c )( ) ( ) ( ) ( ) ( ) c φ φ φ c φ W( φ, φ )( ) fo all I. Suppose cφ( ) + cφ( ) the c φ ( ) + c φ ( ) Thus we have a system of equatio φ( ) φ( ) c φ ( ) φ ( ) c Diffeetial Equatios (8)

27 Theefoe at φ( ) φ( ) c φ ( ) φ ( ) c Thus, c c if ad oly if the coefficiet mati is ivetible i.e. the detemiat of coefficiet mati is o-zeo As. 6(c) : φ( ) φ( ) But W( φ, φ)( ) φ ( ) φ ( ) Sice, W( φ, φ)( ) c c cφ( ) + cφ( ) c c. Hece f ad f ae liealy idepedet o I. Defie φ ( ), φ ( ) fo >, φ ( ), φ ( ) W( φ, φ)., ( ) ( ) W(, ) fo φ φ φ φ fo <, φ ( ) ad φ ( ) W( φ, φ). Thus W( φ, φ ) ( ) fo < < c ( ) + c ( ) Let φ φ fo >, c φ ( ) + c φ ( ) ( c + c ). c +... (i) c fo <, c φ ( ) + c φ ( ) c c. c c... (ii) But c c c c c c + ad Thus, cφ+ cφ c c Theefoe f, f ae liealy idepedet. Diffeetial Equatios (9)

28 As. 6(d) : φ( ) φ( ) W( φ, φ)( ) W( φ, φ)( ) φ ( ) φ ( ) φ ( ) φ ( ) φ ( ) φ ( ) φ ( ) φ ( ) φ ( ) φ ( ) Sice φ ( ) I φ ( ) φ ( ) φ ( ) φ ( ) φ ( ) φ φ costat (say) φ φ Theefoe φ ( ) φ ( ) ad hece φ, φ ae liealy depedet. Q7 : If f, f ae two solutio of L(y) o a iteval I cotaiig a poit, the a( ) e W( φ, φ )( ) W( φ, φ )( ). As. : Sice f, f ae solutio of L(y), φ φ φ + a + a φ φ φ + a + a O multiplyig the fist equatio by f, secod equatio by f ad addig we obtai Let φφ φ φ + a ( φφ φφ ) + a ( φφ φφ) ( φφ φ φ ) + a ( φφ φφ )... (i) φ( ) φ( ) W W ( φ, φ) ( ) φ ( ) φ ( ) The φ φ φ φ W ( ) ( ) ( ) ( ) W ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ad φ φ + φ φ φ φ φ φ φ( ) φ ( ) φ( ) φ ( ) Thus, equatio (i) becomes W + aw. Thus W satisfies the fist ode diffeetial equatio W + aw Diffeetial Equatios ()

29 a Hece, W( ) c e whee c is costat of itegatio. At we get a, a W( ) c e i.e. c e W( ) a a Thus, W( ) e W( ) e a ( ) W( ) e a ( ), Theefoe W( φ φ )( ) e W( φ, φ )( ) EXERCISES. The fuctios f, f ae defied o < < Detemie whethe they ae liealy depedet o idepedet thee. (i) φ( ) cos, φ( ) si (ii) φ( ) si, φ( ) e i (iii) φ ( ) si, φ ( ) cos (iv) φ( ), φ( ) cos (v) φ ( ) si, φ ( ) cos (vi) φ ( ), φ ( ) si, φ ( ) cos 3 (vii) i φ ( ) cos, φ ( ) e + e i. State whethe the followig statemets ae tue o false. (a) If f, f ae liealy idepedet fuctios o a iteval I, they ae liealy idepedet o ay iteval J cotaied iside I. (b) If f, f ae liealy depedet o a iteal I, they ae liealy depedet o ay iteal J cotaied iside I. (c) If f, f ae liealy idepedet solutios of L (y) o a iteal I, they ae liealy idepedet a ay iteal J cotaied iside I. (d) If f, f ae liealy depedet solutios of L (y) o a iteval I, they ae liealy depedet o ay iteal J cotaied iside I. As. :. (i) idepedet (ii) idepedet (iii) idepedet (iv) idepedet (v) idepedet (vi) depedet (vii) depedet. As. :. (a) false (b) tue (c) tue (d) tue S Diffeetial Equatios ()

30 Uit 3 : The Homogeeous Equatio of Ode Eveythig we have doe fo the secod ode equatio ca be caied ove to the case of the equatio of ode. Hee, we ae coceed with the equatio ( ) ( ) ( ) Ly ( ) y + ay + ay + + ay, whee, a, a, a3,..., a ae costats. Theoem.3. : Let,, 3,..., s be the distict oots of the chaacteistic polyomial p () + a + a + + a ad suppose i has multiplicity mi( m+ m+ m3+ + ms ). The fuctios m m e, e,..., e ; e, e,..., e ;...;, m e, e, e,..., e s s s s s ae solutios of ( ) ( ) ( ) Ly ( ) y + ay + ay + + ay Poof : Suppose i is a oot of p() of multiplicity m i. The () ( ) i p i qwhee () q is a polyomial of degee m i. O diffeetiatig p(), (m i ) times we get, ad so o m i i i m () ( ) i () + ( ) i p q m q() [ ] m i i i i ( ) q( )( ) + m q( ) mi mi mi i i i i i i m i i i i i i i p ( ) ( ) q ( ) + m ( ) q ( ) + m ( m )( ) q( ) ( ) ( ) q () + m ( ) q() + m ( m ) q() m ( ) i Polyomial of ode m i [ ] mi ( m ) i [ i] [ ] ( mi p ) ( ) ( ) Polyomial of ode m i ( ) Polyomial of ode m i Theefoe, ( m ) p ( ) p ( ) p ( ) p i ( ). i i i i Let e be a solutio of L(y). We see that Le ( ) pe ( ) whee p () + a. + a + + a Theefoe ( i ) ( ) i Le p e. Thus i e is a solutio of L(y). i i i m If we diffeetiate Le ( ) pe ( ) times with espect to we obtai Diffeetial Equatios ( ) Le ( ) L e L e ()

31 ( ) ( ) ( ) ( ) p () + p () + p () + + p()! e Thus fo i ad,,,...m i we get ( i Le ). Theefoe i e,,,,... m, ae solutios of L(y). This is tue fo evey chaacteistic oot i Diffeetial Equatios i with multiplicity m i. i.e. i e,,,,... mi, i,,3,... sae solutios of L(y) ad the esult follows. Theoem.3. : The solutios of L(y) give i theoem.3. ae liealy idepedet o ay iteval I. Poof : We pove that fuctios give i theoem.3. satisfy the coditio give i defiatio.3. Suppose we have costats c, i,... s, j,... m Such that Defie ij m ( ce + c e + c e c( m ) e ) m +( ce + c e + c e c( m ) e ) s s s ms s ( cs e c s e c s e c s( ms ) e ) i( ) i i i... i( mi ) i m p c + c + c + + c i The ( ) + ( ) + 3( ) ( ) s p e p e p e ps e. Assume that ot all costats c ij ae zeo. The thee will be at least oe of the polyomials p i which is ot idetically zeo o I. Suppose p s () is ot idetically zeo o I. O dividig above equatio by e we get ( ) 3 ( 3 ) ( s ) s p ( ) + p ( ) e + p ( ) e p ( ) e. Upo diffeetiatig above equatio sufficietly may (at most m i ) times, we obtai the epessio of the fom ( ) ( 3 ) ( s ) 3 s ( ) ( ) ( ) + 3( ) ( ) s s Q ( ) e + Q ( ) e Q ( ) e i.e. 3 Q Q e Q e whee the Q i s ae polyomials, degee of Q i is equal to degee of P i ad Q s does ot vaish idetically. Cotiuig this pocess we fially aive at a situatio whee, ( ) s Rs e, o I ad R s is a polyomial, degee of R s is equal to degee of P s, which does ot vaish idetically o I. But ( ) s Rs e implies Rs( ) is a cotadictio. Theefoe ou suppositio that Ps( ) is ot idetically zeo is ot tue. Thus Ps( ) fo all i I. (3)

32 Thus all costatsc ij povig that the solutios give i theoem 3. ae liealy idepedet o a iteval I. * Iitial value poblem fo th ode equatios. The poblem of fidig a solutio f of Diffeetial Equatios ( ) ( ) ( ) Ly ( ) y + ay + ay ay satisfyig φ( ) α, φ ( ) α,..., φ ( ) α whee a, a, a 3,..., a ad α, α, α3,..., α ae costats is deoted by ( ) Ly ( ), y ( ) α, y( ) α,..., y ( ) α ad is called a iitial value poblem. Theoem.3.3 : Let f be ay solutio of ( ) ( ) ( ) Ly ( ) y + ay + ay ay o a iteval I cotaiig a poit. The fo all i I ( ) φ( ) e φ( ) φ( ) e whee, + a + a + a a ad ( ) φ ( ) φ ( ) + φ ( ) φ ( ) Poof : This poof is simila to the poof of theoem..4. Let u ( ) φ( ) ( ) φ + φ φ ( ) ( ) φφ + φ φ φ φ Hece ( ) ( ) ( ) ( ) u ( ) φφ + φφ + φ φ + φφ φ φ + φ φ Theefoe u ( ) φ( ) φ ( ) + φ φ φ φ Sice f is solutio of L(y), L(f ) ad theefoe ( ) ( ) ( ) ( 3) 3 φ a φ a φ a φ... a φ O substitutig the epessio fo ( ) φ we get ( ) ( ) ( ) ( ) u ( ) φ φ + φ φ φ φ ( ) ( ) ( ) ( ) + a φ + a φ φ a φ φ ( a b ) a + b a b ( ) ( ) u ( ) ( φ + φ ) + ( φ + φ ) ( φ + φ ) ( ) ( ) ( ) a φ φ a φ φ + ( + ) ( + ) (4)

33 φ φ φ ( + a ) + (+ + a ) + ( + a ) ( ) ( ) φ φ ( + a ) + ( + a + a a ) Sice each coefficiet o the ight had side is less tha we have ( ) u ( ) ( φ + φ φ ) φ( ) u( ) Theefoe u ( ) u( ) Thus, we get u( ) u ( ) u( ) u u( ) implies ( e u( )) Itegatig above iequality betwee the limits to fo > yields ( ) ( ) e u e u ( ) i.e. ( ) u e u ( ) ( ) Thus, φ( ) e φ( ) Similaly fo > the iequality u( ) u ( ) implies ( ) ( ) ( ) φ e φ Combiig the above two iequalities we get the equied esult fo >. Fo < itechage the ole of ad ( ) ( ) We get φ( ) ( ) ( ) e φ φ e φ( ) ( ) ( ) ad φ( ) e φ( ) φ( ) e φ( ) ( ) ( ) Thus, φ( ) e φ( ) e φ( ), ( < ) which is the equied esult fo < Theoem.3.4 (Uiqueess theoem) Let α, α, α3,..., α be ay costats ad let be ay eal umbe. O ay iteval I cotaiig thee eists at most oe solutio f of L (y) satisfyig φ( ) α, φ ( ) α, ( ),..., φ ( ) α Poof : Suppose f ad y wee two solutios of L (y) o I satisfyig the above coditios at. i.e. Defie θ φ ψ Thus ( ) ( ) φ( ) ψ( ) α, φ ( ) ψ ( ) α,..., φ ( ) ψ ( ) α. Sice f ad y satisfy L( φ) L( ψ) theefoe L ( θ ) ad ( ) ( ) θ( ) φ( ) ψ( ), θ ( ),..., θ ( ). θ( ) θ ( ) + θ ( ) θ ( ) Diffeetial Equatios (5)

34 Applyig theoem.3.3 we obtai θ ( ) fo all i I. This implies θ ( ) fo all i I. i.e. φ( ) ψ( ) fo all i I. Theoem.3.5 φ, φ, φ,... φ, ae solutios of L(y) o a iteval I, they ae liealy idepedet If 3 if ad oly if W( φ, φ, φ3,... φ)( ) fo all i I. (defiitio.5) Poof : The poof is etiely simila to the poof of theoem.. Suppose W( φ, φ, φ3,... φ)( ) fo all i I. Let c, c, c 3,..., c be costats such c φ ( ) + c φ ( ) c φ ( ) fo all i I. that By diffeetiatig above equatio ( ) times we get a system of equatios as follows. φ ( ) φ ( ) φ ( ) L φ ( ) 3 c φ ( ) φ ( ) φ 3 ( ) L φ ( ) c φ ( ) φ ( ) φ3 ( ) L φ ( ) 3 c M M M M M M ( ) ( ) ( ) ( ) φ ( ) φ ( ) φ3 ( ) φ ( ) c The coefficiet mati is ivetible because the detemiat of coefficiet mati is (defiitio.5) W( φ, φ, φ3,... φ)( ). O pemultiplyig the ivese of the coefficiet mati we get, c c c3... c. This poves that φ, φ, φ3,... φ ae liealy idepedet. Covesely, assume that φ, φ,... φ ae liealy idepedet o I. Suppose thee is a poit i I such that W( φ, φ, φ3,... φ )( ). The the system of equatios φ ( ) φ ( ) φ ( ) L φ ( ) 3 c φ ( ) φ ( ) φ 3 ( ) L φ ( ) c φ ( ) φ ( ) φ3 ( ) L φ ( ) 3 c M M M M M M ( ) ( ) ( ) ( ) φ ( ) φ ( ) φ3 ( ) φ ( ) c has a solutio c, c, c3,..., c whee at least oe of these umbes is ot zeo. Let c, c,..., c be such a solutio ad coside a fuctio ψ( ) c φ ( ) + c φ ( ) c φ ( ). Now Lψ ( ) ad ( ) ψ ( ) ψ ( )... ψ ( ). Theefoe ψ ( ). But the by theoem.3.3, ψ ( ), fo all i I. Theefoe Diffeetial Equatios (6)

35 by defiatio of ψ ( ), ψ ( ) fo all i I. But the φ, φ, φ3,... φ ae liealy depedet. Thus the suppositio W( φ, φ, φ3,... φ )( ) must be false. Theefoe W( φ, φ, φ,... φ)( ) fo all i I. 3 Theoem.3.6 (Eistece Theoem) Let α, α, α3,..., α be ay costats ad let be ay eal umbe. Thee eists a solutio f of L(y) o < < satisfyig ( ) 3 φ( ) α, φ ( ) α, φ ( ) α,..., φ ( ) α Poof : Let φ, φ, φ 3,... φ be ay set of liealy idepedet solutios of L(y) o < <. We will show that thee eist uique costats c, c, c3,..., c such that φ c φ + c φ + c φ + + c φ is a solutio of L(y) satisfyig the give iitial coditios () i φ ( ) αi, i,,,...,. These costats c, c, c3,..., c would have to satisfy φ ( ) φ ( ) φ ( ) L φ ( ) 3 c α φ ( ) φ ( ) φ 3 ( ) L φ ( ) c α φ ( ) φ ( ) φ3 ( ) L φ ( ) 3 c α3 M M M M M M ( ) ( ) ( ) ( ) ( ) ( ) 3 ( ) ( ) c α φ φ φ φ Sice φ, φ, φ3,... φ ae liealy idepedet, by theoem.3.5, the detemiat of the coefficiets i.e. W( φ, φ, φ3,... φ)( ). Thus the coefficiet mati is ivetible. Theefoe thee is a uique set of costats c, c, c3,..., c satisfyig above system of equatios. Fo this choice of c, c, c3,..., c the fuctio φ( ) cφ( ) + cφ( ) + c3φ3( ) cφ( ) will be the desied solutio. Theoem.3.7 : Let φ, φ, φ3,... φ be liealy idepedet solutios of L(y) o a iteval I. If c, c, c3,..., c ae ay costats φ( ) cφ( ) + cφ( ) + c3φ3( ) cφ( ) is a solutio ad evey solutio may be epeseted i this fom. Poof : Sice φ i, i,, 3... is solutio of L(y), L( φ i), i,, Theefoe L( φ) cl( φ) + c L( φ) + c3l( φ3) c L( φ) ad Diffeetial Equatios φ c φ + c φ + c φ + + c φ is a solutio of L(f ) (7)

36 Let f be ay solutio of L(y) ad be i I. Suppose ( ) φ( ) α, φ ( ) α, φ ( ) α,..., φ ( ) α. Diffeetial Equatios 3 By eistece theoem.3.6 thee eist uique costats c, c, c3,..., c such that ψ cφ+ cφ + c3φ cφ is a solutio of L(y) o I satisfyig ( ) 3 ψ ( ) α, ψ ( ) α, ψ ( ) α,..., ψ ( ) α The uiqueess theoem.3.4 implies that f y. Thus φ cφ+ cφ + c3φ c φ. Theoem.3.8 Let φ, φ, φ3,... φ be solutios of L(y) o a iteval I costaiig a poit. The a ( ) 3 e 3 W(,,,... )( ) W(,,,... )( ) φ φ φ φ φ φ φ φ Poof : φ( ) φ( ) φ3( ) L φ( ) φ ( ) φ ( ) φ 3 ( ) L φ ( ) W( φ, φ, φ3,..., φ)( ) φ ( ) φ ( ) φ 3 ( ) L φ ( ) M M M M ( ) ( ) ( ) ( ) 3 φ ( ) φ ( ) φ ( ) φ ( ) By diffeetiatig above detemiat ow-wise we get, φ φ φ L φ 3 φ φ φ 3 L φ W ( φ, φ, φ3,..., φ)( ) φ φ φ 3 L φ M M M M ( ) ( ) ( ) ( ) 3 φ φ φ φ φ φ φ3 L φ φ φ φ3 L φ φ φ φ L φ φ φ φ L φ φ φ φ 3 L φ φ φ φ 3 L φ M M M M M M M M ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 3 L 3 L φ φ φ φ φ φ φ φ Sice two ows ae idetical the value of fist ( ) detemiats is zeo. Theefoe φ φ φ3 L φ φ φ φ L φ 3 W ( φ, φ, φ3,..., φ)( ) φ φ φ 3 L φ M M M M ( ) ( ) ( ) ( ) 3 φ φ φ φ (8)

37 i i i Sice each φ i, i,,3,..., is a solutio of L(y) ( ) ( ) ( ) φ ( a φ + a φ ( 3) i aφi + a3 φ... + ). Hece, W ( φ, φ, φ,..., φ )( ) 3 φ ( ) φ ( ) φ ( ) L φ ( ) 3 φ ( ) φ ( ) φ ( ) L φ ( ) 3 M M M L M ( ) ( ) ( ) 3 ( ) ( ) φ ( ) φ ( ) φ3 L ( ) φ φ ( ) φ ( ) φ ( ) φ ( ) a ( ) a ( ) a ( ) a ( ) Sice, φ ( ) φ ( ) φ ( ) L φ ( ) 3 φ ( ) φ ( ) φ ( ) L φ ( ) 3 M M M L M ( ) ( ) ( ) ( ) 3 ( ) ( ) ( ) ( ) φ φ φ3 L φ φ ( ) φ ( ) φ ( ) φ ( ) a ( ) a ( ) a ( ) a ( ) fo, 3, 4,..., as two ows of the detemiat ae costat multiplies of each othe ae Thus, φ( ) φ( ) φ3( ) L φ( ) φ ( ) φ ( ) φ 3 ( ) L φ ( ) W ( φ, φ, φ3,..., φ)( ) a φ ( ) φ ( ) φ 3 ( ) L φ ( ) M M M M ( ) ( ) ( ) ( ) 3 L φ ( ) φ ( ) φ ( ) φ ( ) a W( φ, φ, φ,..., φ )( ) 3 Thus W + aw. O itegatig this equatio betwee the limits to we get, a W( ) a W( ) e e a ( ) o W( ) e W( ) a ( ) 3 3 Thus W( φ, φ, φ,..., φ )( ) e W( φ, φ, φ,..., φ )( ) Theoem.3.9 Let φ, φ, φ3,... φ be solutios of L(y) o a iteval I cotaiig. The they ae liealy idepedet o I if ad oly if W( φ, φ, φ3,..., φ)( ) Diffeetial Equatios (9)

38 Poof : By theoem.3.5 the solutios φ, φ, φ3,... φ of L(y) ae liealy idepedet o a iteval I if ad oly if W( φ, φ, φ3,..., φ)( ) fo all i I. a ( ) But W( φ, φ, φ3,..., φ)( ) e W( φ, φ, φ3,..., φ)( ) (by theoem.3.8.) Theefoe W( φ, φ, φ3,..., φ)( ) if ad oly if W( φ, φ, φ3,..., φ)( ) ad the esult follows. Q.. Coside the equatio (5) (4) EXAMPLES y y y + y (a) Compute five liealy idepedet solutios. (b)compute the woia of the solutios foud i (a). (c) Fid that solutio f satisfyig (4) φ(), φ () φ () φ () φ (). As (a) : The chaacteistic equatio 5 4 p () + 4 ( ) ( ) 4 ( )( ) ( )( + )( ) ( + ) ( ) ( + ) ( ) Thus the chaacteistic oots ae,,, i, i Theefoe φ( ) e, φ( ) e, φ3( ) e, φ4( ) si φ 5 ( ) cos ae solutios of the give diffeetial equatio. As (b) : a ( ) e W(,,,, )( ) W(,,,, )( ) φ φ φ φ φ φ φ φ φ φ Fo the give equatio a. Let the e W( φ, φ, φ, φ, φ )( ) W( φ, φ, φ, φ, φ )(). e e e si cos e ( + ) e e cos si e e e W( φ, φ, φ3, φ4, φ5)( ) ( + ) si cos e (3 + ) e e cos si e (4 + ) e e si cos Diffeetial Equatios (3)

39 W( φ, φ, φ3, φ4, φ5)() 3 4 The ow tasfomatios R R, R3 R, R4 R, R5 R gives W( φ, φ, φ3, φ4, φ 5)() As (c) : Thus, φ φ φ3 φ4 φ5 e φ φ φ3 φ4 φ5 W(,,,, ) W(,,,, )() 3e The geeal solutio f is φ ( ) c e + c e + c e + c si+ c cos The iitial coditios system of equatios (iv) φ(), φ () φ () φ () φ () gives the followig + c c c3 3 c4 4 c 5 The ow tasfomatio R R, R3 R, R4 R, R5 Rgives Diffeetial Equatios (3)

40 + c c c3 3 c4 4 c 5 Solvig the above system of equatios simultaeously we get the values of c, c, c 3, c 4, c 5. Fom last equatio we get 4c gives c 4 Fom the thid ow of the above system we get, c c5 gives c5 4 Fom secod ad fouth ow we get, c c + c c c c3 c4 c5 Substitutio of c ad c 5 i above equatios give c3+ c4 c3 c4 Thus, c3, c Fom fist ow we get, c 8 Thus, φ ( ) ce + ce + c3e + c4si+ c5cos 5 e e + e si+ cos is the equied solutio. Q.. Fid all solutios of the followig equatios. As. (a) : (a) y 8y (b) (4) y + 6y (c) y 5y + 6y (d) ( iv y ) 6y (e) y 3 y y (f) (4) y + 5y + 4y The chaacteistic polyomial is Thus, thee liealy idepedet solutios ae give by Diffeetial Equatios 3 p () 8ad its oots ae, + 3 i, 3i i i ( 3) ( 3), + i i e e, e ad ay solutio f has the fom φ( ) ce ( + 3 ) + ce ( 3 ) + c3e whee c, c, c 3 ae ay costats. (3)

41 As. (b) : The chaacteistic polyomial is 4 p () + 6 Diffeetial Equatios 4 4 p( ) ( i) ( + ( i) ) ( ( i) ) ( i ( i) ) ( ( i) ) ( + i i)( i i)( + i)( i) Thus, p( ) ( + i i)( i i)( + i)( i) \ π π i cos + isi e i π π π i i 4 π π i e e cos + isi i i( + i) + i Theefoe i, i i The oots of chaacteistic polyomial ae ( + i), ( + i), ( + i), ( + i) Thus fou liealy idepedet solutios ae ad evey solutio f has the fom ( i ) ( + i) ( + i ) ( i ) e, e, e, ( i ) ( + i ) ( + i ) ( i ) 3 4 φ( ) ce + c e + c e + c e As. (c) : The chaacteistic polyomial is p () 5 + 6ad its oots ae, 3,. Thus thee liealy idepedet solutios ae give by, e 3, e ad ay solutio f has the fom 3 φ ( ) c e + c e + c 3 e 3 As. (d) : The chaacteistic polyomial is 4 p ( ) 6 ( + 4)( 4) ( + i)( i) ( + )( ) ad its oots ae,, i, i. Thus fou liealy idepedet solutios ae give by e, e, cos, si ad evey solutio f has the fom 3 4 φ ( ) c e + c e + c cos+ c si As. (e) : The chaacteistic polyomial is 3 p ( ) 3 ( + ))( ) ad its oots ae,,. (+ 5 ) 5 Thus, thee liealy idepedet solutios ae e, e, e, ad evey solutio f has the fom + 5 ( ) 3 φ( ) c e + c e + c e 5 ( ) (33)

42 As. (f) : The chaacteistic polyomial is 4 p () ( + 4)( + ) ad its oots ae i, i, i, i. Thus fou liealy idepedet solutios ae cos, si, cos, si ad evey solutio f has the fom φ ( ) c cos, + c si+ c cos+ c si. 3 4 Q.3. Coside the equatio y 4y (a) Compute thee liealy idepedet solutios. (b)compute the woia of the solutios foud i (a). (c) Fid the solutio f satisfyig φ(), φ (), φ () As. (a) : The chaacteistic polyomial p () 4ad its oots ae,,. Thus, thee liealy idepedet solutio ae e, e, e ad evey solutio f has the fom 3 As. (b) : 3 φ ( ) c + c e + c e ( ) 3 e 3 W( φ, φ, φ )( ) W( φ, φ, φ )() 3 W( φ, φ, φ )( ) e e e e 4e 4e 3 W( φ, φ, φ )() 4 4 Thus, W( φ, φ, φ 3)( ) 6. As. (c) : φ(), φ (), φ (), R 3 R gives 3 φ 3 φ( ) c + c e + c e, () c + c + c ad so o c c 4 4 c3 c c 8 c3 Diffeetial Equatios (34)

43 Theefoe c3, c c3 c c3 c 4 4 c + c + c c 3 Thus, ( ) c ce c3e ( e e ) φ + + is the equied solutio. 4 EXERCISE. Ae the followig statemets tue o false? (a) If φ, φ, φ3,..., φ ae liealy idepedet fuctios o a iteval I, the ay subset of them foms a liealy idepedet set of fuctios o I. (b) If φ, φ, φ3,..., φ ae liealy depedet fuctios o a iteval I, the ay subset of them foms a liealy depedet set of fuctios o I.. Ae the followig sets of fuctios defied o < < liealy idepedet o depedet? why? (a) φ ( ), φ ( ), φ ( ) 3 (b) i φ φ φ3 ( ) e, ( ) si, ( ) cos (c) φ ( ), φ ( ) e, φ ( ) 3 3. Fid a basis of solutios of the diffeetial equatios. (a) y + 5y + 4 (b) y + 6y + y + 8y (c) y (4) y 4. Fid the geeal solutio of each of the followig equatios. (i) 6 y y + 4y (As. y( ) c e + c e ) 4 3 (ii) ( + ) ( ) y + y y y ce + ce (As. ( ) ) (iii) 3 y + y 6y (As. y( ) c + c e + c e ) 3 (iv) (4) y y y c+ c+ c3e + c4e (As. ( ) ) (v) y + 8y ( As. y( ) ce + ce + c3e ) 5. Fo each of the followig equatios fid a paticula solutio which satisfies the give iitial coditios. (i) y, y(), y () (ii) y + 4y + 4y, y(), y () Diffeetial Equatios (35)

44 (iii) y y + 5y, y(), y () 4 (iv) y y y y( π ) y ( π ) 4 +,, (v) 3y + 5 y + y y, y(), y (), y () [As. : (i) y( ) 3, (ii) y( ) (+ 3 ) e (iii) y( ) e (cos+ si ) (iv) e 4 π si 4 (v) y e + e.] As. : (a) Tue (b) false As. : (a) idepedet (b) depedet (iii) idepedet As. 3 : (a) 4 φ( ) e, φ( ) e (b) φ( ) e, φ( ) e, φ3( ) e 3 4 (c) φ ( ) e, φ ( ) e, φ ( ) cos, φ ( ) si Uit 4 : The No-Homogeeous Equatio of Ode We ow etu to the th ode o-homogeeous liea diffeetial equatio with costat coefficiets. I the fist pat we will discuss the method of fidig all solutios of the secod ode o-homogeeous equatio. Ly ( ) y + ay + ay b ( ), Whee b is some cotiuous fuctio o a iteval I. The geeal solutio of the above equatio is y ( ) y( ) + y ( ), c p whee, y c (), the complemetay fuctio is the geeal solutio of the elated homogeous equatio ad y p () is a paticula solutio of the equatio. Suppose we ow that y p is a paticula solutio of the equatio L(y) b() ad let y be ay othe solutio. The, L( ψ ψ ) L( ψ) L( ψ ) b( ) b( ) p p o I. This shows that y y p is a solutio of the homogeous equatio L(y). Theefoe if f, f ae liealy idepedet solutios of L(y), thee ae uique costats c, c such that Diffeetial Equatios (36)

45 ψ ψ p c φ + c φ I othe wods evey solutio y of L(y) b () ca be witte i the fom ψ ψ p + cφ+ cφ The poblem of fidig all solutios of L(y) b () educes to fidig a paticula solutio y p. Theoem.4. Let b() be cotiuous o a iteval I. Evey solutio y of L(y) b () o I ca be witte as ψ ψ p + cφ+ cφ. Whee y p is a paticula solutio, f, f ae two liealy idepedet solutios of L(y) ad c, c ae costats. A paticula solutio y p is give by [ φ( t) φ( ) φ( ) φ( t)] b( t) ψ p( ) dt. W( φ, φ )( t) Covesely evey such y is a solutios of L(y) b () Poof : Let y ad y p be two solutios of Ly ( ) y + ay + ay b The L( ψ ψ ) L( ψ) L( ψ ) p p This shows that ψ ψ p is a solutio of a homogeeous equatio L(y). By theoem.. thee eist two liealy idepedet solutios f, f ad evey solutio of L(y) is of the fom cφ+ cφwhee c ad c ae costats. Such a fuctio cφ+ cφcaot be a solutio of L(y) b() uless b() o I. Suppose φ( ) u( ) φ( ) + u( ) φ( ) is a solutio of L(y) b() o I. (This pocedue is called as the vaiatio of costats.) The ( u φ + u φ ) + a ( u φ + u φ ) + a ( u φ + u φ ) b( ) i.e. a( uφ+ uφ) + a( u φ+ uφ + u φ + uφ ) Theefoe + ( u φ + u φ + u φ + u φ + u φ + u φ ) b( ) u ( φ + a φ + a φ ) + u ( φ + a φ + a φ ) + ( φ u + φ u ) + ( φ u + φ u ) + a ( φ u + φ u ) b( ) i.e. φ + φ + φ + φ + φ + φ ( u u ) ( u u ) a ( u u ) b( ) Diffeetial Equatios (37)

46 Obseve that if φ u + φ u ( ) ( ) ( ) the φu + φu φu + φu + φu + φu ad φ u + φ u b( ) Thus if we ca fid two fuctios u () ad u () such that φ The u φ uφ u + φu φ u + φ u b( ) + will satisfy L(y) b(). ad O solvig above two equatios fo u ad u we get, φb ( ), φ b u u ( ), W( φ, φ) W( φ, φ) Itegatio of above equatio betwee the limits to povides φ() t b() t u( ) dt+ u( ) W( φ, φ )( t) φ() t b() t + W( φ, φ)( t) u ( ) dt u ( ). The solutio u φ + uφtaes the fom φ() t b() t φ( ) φ( ) dt+ u( ) W( φ, φ)( t) φ() t b() t + φ( ) + dt+ u( ) W( φ, φ)( ) t The tem φ ( u ) ( ) + φ ( u ) ( ) is a complemetay fuctio o the solutio of coespodig homogeeous equatio L(y) ad the paticula solutio taes the fom φ t b t φ φ φ t φ φ () () () t b() t ψ p( ) φ ( ) dt+ φ ( ) dt W(, )( ) W(, )( t) [ φ( t) φ( ) φ( t) φ( )] b( t) ψ p( ) dt W( φ, φ )( t) The fuctio y p () is a solutio of L(y) b (). Theoem.4. povides a method to fid a solutio of secod ode o-homogeeous diffeetial equatio with costat coefficiets. The same pocedue ca be geealized fo the o-homogeeous equatio of ode. Diffeetial Equatios (38)

47 Theoem.4. Let b be cotiuous o a iteval I ad let φ, φ, φ 3,..., φ be liealy idepedet solutios of ( ) ( ) ( ) Ly ( ) y + ay + ay ay o I. Evey solutio y of L(y) b() ca be witte as ψ ψ + cφ + c φ + c φ + + c φ p Whee y p is a paticula solutio of L(y) b() ad c, c, c3,..., c ae costats. Evey such y is a solutio of L(y) b(). A paticula solutio y p is give by W φ 3 () t b() t ψ p( ) ( ) dt. W( φ, φ, φ,..., φ )( t) Poof : The poof is simila to the poof of theoem.4. Let b be cotiuous fuctio o a iteval I. Coside the diffeetial equatio ( ) ( ) ( ) Ly ( ) y + ay + ay ay b ( ) whee, a, a, a 3,..., a ae costats. If y p is a paticula solutio of L(y) b() ad y is ay othe solutio of L(y) b(), the L( ψ ψ ) L( ψ) L( ψ ) b( ) b( ) p p ad y y p is a solutio of coespodig homogeeous equatio L(y). (is called subtactio piciple). Thus ay solutio y of L(y) b() ca be witte i the fom ψ ψ + φ + φ + φ + + φ p c c c c whee, y p is a paticula solutio of L(y) b(), the fuctios φ, φ, φ 3,..., φ ae liealy idepedet solutios of L(y) (detemied i theoem.3.) ad c, c, c3,..., c ae costats. To fid a paticula solutio y p we use the vaiatio of costats method. Suppose ψ u ( ) φ ( ) + u ( ) φ ( ) + u ( ) φ ( ) u ( ) φ ( ) p 3 3 is a solutio of L(y) b(). Sice y p is a solutio it satisfies the equatio i.e L(y p ) b(). ψ uφ + u φ + u φ + + u φ p uiφi i The, ψ u φ + u φ+ uφ + uφ u φ + u φ p ( u φ + u φ + u φ u φ ) + ( u φ + u φ u φ ) 3 3 u φ i i ui φi i i + Let u φ the ψ u φ i i p i i We have ψ u φ + u φ p i i i i Diffeetial Equatios (39)

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Identities of Generalized Fibonacci-Like Sequence

Identities of Generalized Fibonacci-Like Sequence Tuish Joual of Aalysis ad Numbe Theoy, 4, Vol., No. 5, 7-75 Available olie at http://pubs.sciepub.com/tjat//5/ Sciece ad Educatio Publishig DOI:.69/tjat--5- Idetities of Geealized Fiboacci-Lie Sequece

Διαβάστε περισσότερα

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif) Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

physicsandmathstutor.com

physicsandmathstutor.com physicsadmathstuto.com physicsadmathstuto.com Jauay 009 blak 3. The ectagula hypebola, H, has paametic equatios x = 5t, y = 5 t, t 0. (a) Wite the catesia equatio of H i the fom xy = c. Poits A ad B o

Διαβάστε περισσότερα

CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS

CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS Asia Pacific Joual of Mathematics, Vol. 5, No. 08, 9-08 ISSN 57-05 CERTAIN HYPERGEOMETRIC GENERATING RELATIONS USING GOULD S IDENTITY AND THEIR GENERALIZATIONS M.I.QURESHI, SULAKSHANA BAJAJ, Depatmet of

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231) List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

17 Monotonicity Formula And Basic Consequences

17 Monotonicity Formula And Basic Consequences Lectues o Vaifols Leo Sio Zhag Zui 7 Mootoicity Foula A Basic Cosequeces I this sectio we assue that U is oe i R, V v( M,θ) has the geealize ea cuvatue H i U ( see 6.5), a we wite µ fo µ V ( H θ as i 5.).

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα, Αλγόριθμοι και Πολυπλοκότητα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 06 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα,

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

М. I. Parolya, М. М. Sheremeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS

М. I. Parolya, М. М. Sheremeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS Математичнi Студiї. Т.39, Matematychni Studii. V.39, No. УДК 59.23.2+57.53 М. I. Paolya, М. М. Sheemeta ESTIMATES FROM BELOW FOR CHARACTERISTIC FUNCTIONS OF PROBABILITY LAWS M. I. Paolya, M. M. Sheemeta.

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

arxiv: v1 [math.fa] 30 Jan 2018

arxiv: v1 [math.fa] 30 Jan 2018 axiv:181.151v1 math.fa 3 Ja 218 Cotiuity of the factioal Hakel wavelet tasfom o the spaces of type S Kaailal Mahato Abstact. I this aticle we study the factioal Hakel tasfom ad its ivese o cetai Gel fad-shilov

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα

Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μια διμελής σχέση πάνω σε ένα σύνολο X καλείται μερική διάταξη αν η είναι ανακλαστική, αντισυμμετρική και μεταβατική, δηλαδή: a X, a

Διαβάστε περισσότερα