Tvorivý učiteľ fyziky III, Smolenice máj 2010

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tvorivý učiteľ fyziky III, Smolenice máj 2010"

Transcript

1 ŠKOLSKÁ FYZIKA A LED Ľudmila Onderová Oddelenie didaktiky fyziky, ÚFV PF UPJŠ Košice Jozef Ondera Dubnický technologický inštitút, Dubnica nad Váhom Abstrakt: V príspevku je prezentovaných niekoľko jednoduchých experimentov, ktoré môžu pomôcť učiteľom spestriť vyučovanie fyziky na základnej aj na strednej škole. Vo všetkých prezentovaných experimentoch sa využíva v praxi často uplatňovaná súčiastka svietiaca dióda (LED). Kľúčové slová: svetlo emitujúca dióda LED, vyučovanie fyziky Úvod Svetlo emitujúce diódy (LED z anglického Light Emitting Diode) pozná každý. Rýchly nástup LED diód spôsobil, že si ich uplatnenie bežný používateľ častokrát ani nevšimne. Pritom sa s nimi stretávame na každom kroku, nájdeme ich napríklad na televízoroch, počítačoch i v mobiloch. V rámci vyučovania fyziky sa však s nimi nestretávame takmer vôbec. Žiaci a študenti sa stretávajú akurát s pojmom polovodičová dióda a jej využitím na usmernenie striedavého prúdu. Vzhľadom na rozšírenie LED a ich ďalšie výhody, je dobré a potrebné ak sa s touto súčiastkou stretnú žiaci aj na vyučovaní fyziky. LED ako elektronická súčiastka Dióda emitujúca svetlo alebo tiež elektroluminiscenčná dióda či LED, je elektronická polovodičová súčiastka, ktorá využíva emisiu svetla na prechode P-N. Svetlo vyžarované z LED diód je takmer monochromatické, čo znamená, že má prakticky iba jednu vlnovú dĺžku danú šírkou zakázaného pásu polovodiča. Spektrálne pásmo žiarenia diódy je závislé na chemickom zložení použitého polovodiča. LED sa vyrábajú s pásmom vyžarovania od skoro ultrafialových, cez rôzne farby viditeľného spektra, až po infračervené pásmo. Na rozdiel od žiaroviek, ktoré sú schopné pracovať so striedavým aj jednosmerným napätím, LED zapojené nesprávnym spôsobom nepracujú. Keď je napätie na P-N prechode diódy zapojené správne, je zapojená v priepustnom smere a prechádza ňou prúd. Keď je dióda zapojená v závernom smere neprechádza ňou takmer žiaden prúd a ani nevyžaruje žiadne svetlo. LED v závernom smere znáša pomerne malé napätie a jeho prekročenie diódu zničí. V priepustnom smere je na dióde približne konštantný úbytok napätia (podľa typu a farby cca 1,5 až 3V). Dióda je preto obvykle napájaná cez predradný odpor. Prúd v priepustnom smere sa pohybuje od 1-2mA u tzv. nízkopríkonových LED až 20mA u štandardných LED. Prúdy vyššie než 1A sa vyskytujú len pri špeciálnych vysoko svietivých LED používaných v osvetľovacej technike. Pôvodne ich využívali predovšetkým systémy, u ktorých stačil malý svetelný výkon. To znamená prevažne elektrotechnické aplikácie, kde plnili prevažne úlohu svetelných kontroliek. Najznámejšie sú rôzne indikátory signalizujúce napríklad prevádzkový resp. pohotovostný stav spotrebiča (on/off zelená/červená). Dnes nachádzajú čoraz širšie uplatnenie hlavne v osvetľovacej technike, kde vďaka stále sa zlepšujúcej svietivosti predstavujú svetelné zdroje budúcnosti. Medzi hlavné výhody LED z hľadiska využitia v rôznych zariadeniach a každodennom živote patria nasledovné: Produkujú viac svetla na watt energie než žiarovky (najmodernejšie vyše 100lm/W), čo je užitočné v zariadeniach napájaných batériami, alebo v úsporných zariadeniach. Môžu vyžiariť svetlo v požadovanej farbe bez použitia zložitých farebných filtrov

2 Ich puzdro môže byť navrhnuté tak, aby sústreďovalo, alebo rozptyľovalo svetlo. Sú odolné voči nárazom. Sú ideálne na použitie v zariadeniach, kde dochádza k častému vypínaniu a zapínaniu zariadení, na rozdiel od žiaroviek, ktoré môžu pri častom zapínaní a vypínaní rýchlo vyhorieť. Výrobcovia udávajú, že LED diódy vydržia svietiť 50 až 100 tisíc hodín, čo odpovedá približne 10 rokom nepretržitého svietenia. To je asi 100 krát viac než vydrží bežná žiarovka, ktorá je naviac omnoho náročnejšia na spotrebu elektrickej energie. Veľmi rýchlo sa rozsvietia. Typický červený LED indikátor sa rozsvieti rádove za mikrosekundy, LED používané v telekomunikačných zariadeniach môžu mať tieto doby mnohonásobne kratšie. Na rozdiel od žiariviek neobsahujú ortuť. Medzi nevýhody LED možno zaradiť nasledovné: Musia byť napájané správnym prúdom. Obvykle vyžarujú svetlo úzkym lúčom v jednom smere. Svetlo z bielych LED môže skresľovať farby. Ich výkonnosť závisí aj na teplote okolitého prostredia. Majú vyššie obstarávacie náklady ( v prepočte ceny za lumen) než tradičné svetelné zdroje. Pokiaľ však berieme do úvahy celkové náklady prekonávajú žiarivky aj halogénové zdroje svetla. V bežnom živote sa LED využívajú v najrozmanitejších aplikáciách, z ktorých môžeme spomenúť aspoň nasledujúce: Veľkoplošné LED displeje svetelné tabule na štadiónoch, dekoratívne obrazovky. Tenké, ľahké odkazové displeje letiská, vlakové stanice, ukazovatele zastávok vo vlakoch, autobusoch, električkách. V automobilovom priemysle ako brzdové a smerovkové svetlá, svetlá na motocykloch aj bicykloch. Podsvietenie pre LCD obrazovky, displeje, notebooky, zdroj svetla pre svetelné projektory. Svietiace trubice, svetelná výzdoba. Pódiové osvetlenie, osvetlenie pre medicínske účely. V diaľkových ovládačoch... Všetky vyššie spomenuté fakty sú dôvodom, prečo je vhodné aby sa žiaci stretli s týmito súčiastkami aj vo vyučovaní fyziky. Okrem toho vhodné využitie vlastností LED umožní názorne demonštrovať viaceré poznatky s ktorými sa žiaci pri vyučovaní a aplikácii fyziky stretávajú. V ďalšej časti prezentujeme niekoľko nápadov, ako to môže učiteľ na základnej či strednej škole urobiť. LED ako indikátor prechádzajúceho prúdu V jednoduchých elektrických obvodoch pri zapojeniach na ZŠ používame obvykle ako indikátor prúdu žiarovku. Rovnako dobre však môžeme na tento účel použiť LED. Ak porovnáme výhody a nevýhody jednotlivých alternatív, v prospech diódy hovorí jej nižšia elektrická spotreba a v prípade, že využívame farebnosť jej svetla, aj vyššia názornosť obvodu. Významná môže byť vyššia spoľahlivosť a v niektorých prípadoch nižšia cena zariadenia. LED má vyvedené dva kontakty, ktoré sa dajú ľahko zapájať do obvodu, kým kontakty žiarovky sú obvykle na pätici, takže jej zapájanie bez objímky je problematické. Nevýhodou LED je, že pri zapájaní obvykle potrebuje ochranný rezistor. Na druhej strane výhodou je indikácia smeru prúdu v obvodoch. Na zapojovanie je možné používať kontaktné polia, alebo zapojenie realizovať na plošnom spoji. Ak nechceme kupovať

3 pomerne drahé prepojovacie polia alebo sa chceme vyhnúť spájkovaniu, môžeme na realizovanie najjednoduchších elektrických obvodov napájaných malým napätím využiť napríklad kúsok polystyrénu a špendlíky.[1] LED ako indikátor zmeny smeru prúdu Pri niektorých pokusoch z elektriny demonštrujeme fyzikálne javy, pri ktorých sa za určitých podmienok mení smer elektrického prúdu. Na tento účel môžeme tiež výhodne využiť LED. Ak zapojíme proti sebe dve diódy, z ktorých jedna svieti červeno a druhá zeleno a použijeme ich na indikáciu prúdu ako v predchádzajúcom pokuse, pri jednej polarite napätia svieti červená, pri druhej zase zelená dióda.(obr. 1) Obr. 1: LED ako indikátor prechodu a zmeny smeru prúdu Ďalší príklad pokusu, v ktorom LED plnia úlohu indikátora prúdu v obvode a zároveň poskytujú informáciu o zmene smeru a čiastočne aj veľkosti prúdu predstavuje pokus s nabíjaním a vybíjaním kondenzátora. Antiparalelne spojené diódy zapojíme cez ochranný rezistor do obvodu s kondenzátorom. Môžeme použiť prepojovacie pole. Po pripojení zdroja napätia sledujeme nabíjací prúd svieti a postupne zhasína červená dióda.(obr. 2) Zmeny intenzity svetla odpovedajú zmenám veľkosti nabíjacieho prúdu. Dióda sa intenzívne rozsvieti a postupne hasne. Po prepnutí prepínača behom vybíjania kondenzátora svieti druhá zelená dióda, čo indikuje opačný smer prúdu pri vybíjaní. Takéto zapojenie dvoch LED môžeme využiť aj na demonštráciu obidvoch polarít prúdu, v prípade ich pripojenia na zdroj striedavého napätia, kedy budú svietiť obidve diódy. Obr. 2: Nabíjanie a vybíjanie kondenzátora

4 Názorným príkladom je tiež využitie LED diód na demonštráciu činnosti mostíkového usmerňovača v Graetzovom zapojení. Pri jednej polarite napätia svietia diódy červené, pri opačnej polarite zelené.(obr. 3) Ak využijeme toto zapojenie LED pri demonštrovaní javu elektromagnetickej indukcie pri zasúvaní magnetu do cievky sa rozsvieti jedna dióda a pri jeho vysúvaní druhá. Obr. 3: Usmerňovač LED ako indikátor zmien prúdu v obvode V prípade prechodu elektrického prúdu elektrolytom môžeme tiež využiť LED ako indikátor zmien veľkosti prúdu v obvode. Ako elektrolyt použijeme obyčajnú vodu a ako elektródy kovové uholníky, ku ktorým pomocou krokosvoriek pripojíme zdroj jednosmerného napätia okolo 20V. Ak budeme meniť vzdialenosť elektród veľkosť prúdu prechádzajúceho obvodom sa bude meniť rovnako aj intenzita svetla diódy. Táto sa bude meniť aj zmenou nasýtenia roztoku, čo zrealizujeme prisypaním malého množstva soli, prípadne zmenou plochy ponorenej časti elektród. Svetlo diódy nám teda signalizuje zmeny veľkosti prúdu v obvode.(obr. 4) Obr. 4: Indikácia veľkosti prúdu

5 Potenciálové hladiny v elektrolyte Vlastnosti kvapalného prostredia elektrolytu umožňujú realizovať aj niektoré efektné experimenty demonštrujúce rozloženie elektrického poľa vnútri elektrolytu a umožňujúce názorne objasniť pojmy elektrický potenciál a elektrické napätie. Ak pripojíme zdroj elektrického prúdu na elektródy, ponorené do elektrolytu, vytvorí sa medzi elektródami elektrické pole s intenzitou rovnou pomeru napätia zdroja a vzdialenosti elektród, pričom smer vektora intenzity elektrického poľa je rovnobežný so smerom spojnice medzi elektródami. Pomerne jednoducho možno dosiahnuť intenzitu elektrického poľa v elektrolyte okolo 2V/cm pri prúde niekoľko ma. Do nádoby na elektrolyt nalejeme obyčajnú vodu z vodovodu. Vložíme elektródy a pripojíme ich na regulovateľný zdroj napätia do 30V. Zoberieme LED a ich vývody roztiahneme smerom od seba. Zapneme zdroj a postupne zvyšujeme napätie. Keď, do elektrolytu pod napätím vložíme niekoľko LED, tieto sa v elektrolyte rozžiaria podľa toho, ako sú orientované ich vývody vzhľadom na smer intenzity elektrického poľa. Najjasnejšie budú svietiť tie, ktorých vývody sú orientované rovnobežne so smerom intenzity elektrického poľa (v smere najväčšieho spádu potenciálu) a samozrejme v správnej polarite.(obr. 5) Na zdroji nastavíme napätie, pri ktorom je jas diód optimálny. Diódy môžeme otáčať a pozorujeme, že ich jas sa postupne znižuje, až zanikne, ak sú ich vývody orientované kolmo na smer intenzity elektrického poľa. Vzhľadom na spomenutú veľkosť intenzity elektrického poľa, ktorú sa nám v elektrolyte podarí vytvoriť, je rozdiel potenciálov medzi prívodmi LED dostatočný na jej rozsvietenie bez toho, aby bola kontaktne pripojená k zdroju napätia. [2] Obr. 5: Potenciálové hladiny v elektrolyte Netradičné osvetlenie LED diódu môžeme využiť aj pri navonok efektnom pokuse, pri ktorom rozsvietime ľad. Budeme potrebovať: LED (je dobre, keď použijeme vysoko svietivú), medený izolovaný drôt (asi 0,5m), izolačnú pásku, nafukovací balónik, gumičku, nôž a mrazničku. Z drôtu odstrihneme dva asi dvadsať centimetrové kusy a odstránime na obidvoch koncoch asi 2cm izolácie. Takto upravené vodiče pripevníme k vývodom LED a vytvorené elektrické kontakty obalíme izolačnou páskou. Potom umiestnime toto elektrické zapojenie obsahujúce elektroluminiscenčnú diódu do balónika, tak aby konce drôtov vyčnievali von. Balónik naplníme vodou a pevne uzavrieme gumičkou. Potom umiestnime balónik s vodou na 24 hodín do mrazničky. Keď voda zamrzne, balónik rozrežeme a vyberieme ľadovú guľu. Keď pripojíme konce drôtov k napätiu 3V (napr. dve tužkové batérie) guľa sa krásne rozsvieti a pripomína žiariacu krištáľovú guľu.(obr. 6) Kryštálová štruktúra ľadu spôsobuje, že vnútri pevného ľadu sa svetlo odkláňa rôznymi smermi a odráža sa na početných ľadových plôškach. Pokiaľ by guľa nesvietila, pomýlili sme si polaritu vývodov a treba ich ku zdroju napätia pripojiť opačne. Môžeme použiť aj plochú 4,5V batériu vtedy ale treba medzi ňu a LED zapojiť ochranný odpor asi 120 Ω. [3]

6 Obr. 6: Svietiaci ľad Záver Uvedené námety prezentujú, len niekoľko z príkladov uplatnenia LED vo vyučovaní fyziky. Verím, že poslúžia učiteľom ako námety pre spestrenie vyučovania, ale hlavne ako inšpirácia pre vlastné experimentovanie. Literatúra [1] CIGÁNIK,V Ako je možné jednoducho zapájať elektrické obvody. In: Jednoduché elektrické (elektronické) obvody v elektrine a magnetizme [online], [citované 30.apríl 2010] Dostupné na : [2] LAZÚR, M Experimenty s vedením elektrického prúdu v elektrolytoch. In: Horváth, P.: Zborník príspevkov zo seminára Aktivity vo vyučovaní fyziky FMFI UK Bratislava s ISBN [3] Rozsviťme led. [online], [citované 30.apríl 2010] Dostupné na : [4] ONDEROVÁ, Ľ Niekoľko nápadov pre vyučovanie fyziky II. In: Bochníček, Z., Navrátil, Z.: Zborník z konferencie Veletrh nápadů učitelů fyziky Brno: Masarykova univerzita. 2009, s ISBN Adresa autora RNDr. Ľudmila Onderová, PhD. Oddelenie didaktiky fyziky Ústav fyzikálnych vied PF UPJŠ Park Angelinum Košice ludmila.onderova@upjs.sk

Elektrický prúd v kovoch

Elektrický prúd v kovoch Elektrický prúd v kovoch 1. Aký náboj prejde prierezom vodiča za 2 h, ak ním tečie stály prúd 20 ma? [144 C] 2. Prierezom vodorovného vodiča prejde za 1 s usmerneným pohybom 1 000 elektrónov smerom doľava.

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.

Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Laboratórna práca č.1 Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Zapojenie potenciometra Zapojenie reostatu 1 Zapojenie ampémetra a voltmetra

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

1. Určenie VA charakteristiky kovového vodiča

1. Určenie VA charakteristiky kovového vodiča Laboratórne cvičenia podporované počítačom V charakteristika vodiča a polovodičovej diódy 1 Meno:...Škola:...Trieda:...Dátum:... 1. Určenie V charakteristiky kovového vodiča Fyzikálny princíp: Elektrický

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

Školské experimenty so solárnou súpravou

Školské experimenty so solárnou súpravou Univerzita Pavla Jozefa Šafárika v Košiciach Prírodovedecká fakulta Ústav fyzikálnych vied JÁN DEGRO Školské experimenty so solárnou súpravou Environmentálne vzdelávanie vo vyučovaní fyziky 2007 Práca

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

1. VZNIK ELEKTRICKÉHO PRÚDU

1. VZNIK ELEKTRICKÉHO PRÚDU ELEKTRICKÝ PRÚD 1. VZNIK ELEKTRICKÉHO PRÚDU ELEKTRICKÝ PRÚD - Je usporiadaný pohyb voľných častíc s elektrickým nábojom. Podmienkou vzniku elektrického prúdu v látke je: prítomnosť voľných častíc s elektrickým

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

MERANIE OSCILOSKOPOM Ing. Alexander Szanyi

MERANIE OSCILOSKOPOM Ing. Alexander Szanyi STREDNÉ ODBORNÁ ŠKOLA Hviezdoslavova 5 Rožňava Cvičenia z elektrického merania Referát MERANIE OSCILOSKOPOM Ing. Alexander Szanyi Vypracoval Trieda Skupina Šk rok Teoria Hodnotenie Prax Referát Meranie

Διαβάστε περισσότερα

DIGITÁLNY MULTIMETER AX-100

DIGITÁLNY MULTIMETER AX-100 DIGITÁLNY MULTIMETER AX-100 NÁVOD NA OBSLUHU 1. Bezpečnostné pokyny 1. Na vstup zariadenia neprivádzajte veličiny presahujúce maximálne prípustné hodnoty. 2. Ak sa chcete vyhnúť úrazom elektrickým prúdom,

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

24. Základné spôsoby zobrazovania priestoru do roviny

24. Základné spôsoby zobrazovania priestoru do roviny 24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

ZBIERKA ÚLOH Z FYZIKY PRE 4.ROČNÍK

ZBIERKA ÚLOH Z FYZIKY PRE 4.ROČNÍK Kód ITMS projektu: 26110130519 Gymnázium Pavla Jozefa Šafárika moderná škola tretieho tisícročia ZBIERKA ÚLOH Z FYZIKY PRE 4.ROČNÍK (zbierka úloh) Vzdelávacia oblasť: Predmet: Ročník: Vypracoval: Človek

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Aktivity využívajúce jednoduché elektrické zapojenia PaedDr. Marianna Cigániková FMFI UK Bratislava

Aktivity využívajúce jednoduché elektrické zapojenia PaedDr. Marianna Cigániková FMFI UK Bratislava Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: 11230100112 Aktivity využívajúce jednoduché elektrické zapojenia PaedDr. Marianna Cigániková FMFI UK Bratislava

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Miniatúrne a motorové stýkače, stýkače kondenzátora, pomocné stýkače a nadprúdové relé

Miniatúrne a motorové stýkače, stýkače kondenzátora, pomocné stýkače a nadprúdové relé Motorové stýkače Použitie: Stýkače sa používajú na diaľkové ovládanie a ochranu (v kombinácii s nadprúdovými relé) elektrických motorov a iných elektrických spotrebičov s menovitým výkonom do 160 kw (pri

Διαβάστε περισσότερα

Meranie na jednofázovom transformátore

Meranie na jednofázovom transformátore Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................

Διαβάστε περισσότερα

Ohmov zákon pre uzavretý elektrický obvod

Ohmov zákon pre uzavretý elektrický obvod Ohmov zákon pre uzavretý elektrický obvod Fyzikálny princíp: Každý reálny zdroj napätia (batéria, akumulátor) môžeme považova za sériovú kombináciu ideálneho zdroja s elektromotorickým napätím U e a vnútorným

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave

Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave iešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave Lineárne elektrické obvody s jednosmernými zdrojmi a rezistormi v ustálenom stave riešime (určujeme prúdy

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

16 Elektromagnetická indukcia

16 Elektromagnetická indukcia 251 16 Elektromagnetická indukcia Michal Faraday 1 v roku 1831 svojimi experimentmi objavil elektromagnetickú indukciu. Cieľom týchto experimentov bolo nájsť súvislosti medzi elektrickými a magnetickými

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA: 1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

ELEKTROTECHNIKA zoznam kontrolných otázok na učenie toto nie sú skutočné otázky na skúške

ELEKTROTECHNIKA zoznam kontrolných otázok na učenie toto nie sú skutočné otázky na skúške 1. Definujte elektrický náboj. 2. Definujte elektrický prúd. 3. Aký je to stacionárny prúd? 4. Aký je to jednosmerný prúd? 5. Ako možno vypočítať okamžitú hodnotu elektrického prúdu? 6. Definujte elektrické

Διαβάστε περισσότερα

Elektrický prúd v kovoch

Elektrický prúd v kovoch Vznik jednosmerného prúdu: Elektrický prúd v kovoch. Usporiadaný pohyb voľných častíc s elektrickým nábojom sa nazýva elektrický prúd. Podmienkou vzniku elektrického prúdu v látke je prítomnosť voľných

Διαβάστε περισσότερα

Polovodiče Ing.Drgo Pavel,16.november 2016

Polovodiče Ing.Drgo Pavel,16.november 2016 Polovodiče Ing.Drgo Pavel,16.november 2016 Polovodiče v počítači Polovodiče v počítači Polovodiče výrazne ovplyvnili technický rozvoj v posledných desaťročiach. Vzhľadom k tomu, že polovodiče majú veľmi

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU

KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU DVOJEXCENTRICKÁ KLAPKA je uzatváracia alebo regulačná armatúra pre rozvody vody, horúcej vody, plynov a pary. Všetky klapky vyhovujú smernici PED 97/ 23/EY a sú tiež vyrábané pre výbušné prostredie podľa

Διαβάστε περισσότερα

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP 7 Obsah Analýza poruchových stavov pri skrate na sekundárnej strane transformátora... Nastavenie parametrov prvkov

Διαβάστε περισσότερα

1. OBVODY JEDNOSMERNÉHO PRÚDU. (Aktualizované )

1. OBVODY JEDNOSMERNÉHO PRÚDU. (Aktualizované ) . OVODY JEDNOSMENÉHO PÚDU. (ktualizované 7..005) Príklad č..: Vypočítajte hodnotu odporu p tak, aby merací systém S ukazoval plnú výchylku pri V. p=? V Ω, V S Príklad č..: ký bude stratový výkon vedenia?

Διαβάστε περισσότερα

Modulárne stykače pre inštaláciu do domových spínacích skríň

Modulárne stykače pre inštaláciu do domových spínacích skríň Modulárne stykače pre inštaláciu do domových spínacích skríň Technické údaje Menovité napätie U n 230 V - 440 V Menovité izolačné napätie U i 440 V termo-elektrický prúd I th 20A, 25A, 40A, 63A Životnosť

Διαβάστε περισσότερα

v d v. t Obrázok 14.1: Pohyb nabitých častíc vo vodiči.

v d v. t Obrázok 14.1: Pohyb nabitých častíc vo vodiči. 219 14 Elektrický prúd V predchádzajúcej kapitole Elektrické pole sme preberali elektrostatické polia nábojov, ktoré boli v pokoji. V tejto kapitole sa budeme zaoberať pohybom elektrických nábojov, ktorý

Διαβάστε περισσότερα

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z elektroniky

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z elektroniky Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z elektroniky Zpracoval: Marek Talába a Petr Bílek Naměřeno: 6.3.2014 Obor: F Ročník: III Semestr: VI Testováno:

Διαβάστε περισσότερα

ELEKTROTECHNIKA A ELEKTRONIKA PRE ZÁKLADNÉ ŠKOLY

ELEKTROTECHNIKA A ELEKTRONIKA PRE ZÁKLADNÉ ŠKOLY ELEKTROTECHNIKA A ELEKTRONIKA PRE ZÁKLADNÉ ŠKOLY Súbor pracovných listov pre predmet technika Elektrická energia, elektrické obvody 6. ro ník ZŠ Elektrické spotrebi e v domácnosti 8. ro ník ZŠ Technická

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

1. laboratórne cvičenie

1. laboratórne cvičenie 1. laboratórne cvičenie Téma: Úlohy: Určenie povrchového napätia kvapaliny 1. Určiť povrchové napätie vody pomocou kapilárnej elevácie 2. Určiť povrchové napätie vody porovnávacou metódou 3. Opísať zaujímavý

Διαβάστε περισσότερα

KATALÓG KRUHOVÉ POTRUBIE

KATALÓG KRUHOVÉ POTRUBIE H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.9. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.9. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.9 Vzdelávacia

Διαβάστε περισσότερα

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk

Διαβάστε περισσότερα

1 Úvod Organizácia výučby a osnovy Slovenská republika Nemecká spolková republika Veľká Británia...

1 Úvod Organizácia výučby a osnovy Slovenská republika Nemecká spolková republika Veľká Británia... Obsah 1 Úvod...2 2 Organizácia výučby a osnovy...5 2.1 Slovenská republika...5 2.2 Nemecká spolková republika...6 2.3 Veľká Británia...8 3 Porovnanie slovenských a zahraničných učebníc...12 4 Materiály

Διαβάστε περισσότερα

( V.m -1 ) ( V) ( V) (0,045 J)

( V.m -1 ) ( V) ( V) (0,045 J) 1. Aká je intenzita elektrického poľa v bode, ktorý leží uprostred medzi ďvoma nábojmi Q 1 = 50 µc a Q 2 = 70 µc, ktoré sú od seba vzdialené r = 20 cm? Náboje sú v petroleji /ε = 2 ε 0 /. (9.10 6 V.m -1

Διαβάστε περισσότερα

Viliam Laurinc, Oľga Holá, Vladimír Lukeš, Soňa Halusková

Viliam Laurinc, Oľga Holá, Vladimír Lukeš, Soňa Halusková FYZIKA II Viliam Laurinc, Oľga Holá, Vladimír Lukeš, Soňa Halusková SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE PREDSLOV Skriptá sú určené študentom všetkých

Διαβάστε περισσότερα

Odrušenie motorových vozidiel. Rušenie a jeho príčiny

Odrušenie motorových vozidiel. Rušenie a jeho príčiny Odrušenie motorových vozidiel Každé elektrické zariadenie je prijímačom rušivých vplyvov a taktiež sa môže stať zdrojom rušenia. Stupne odrušenia: Základné odrušenie I. stupňa Základné odrušenie II. stupňa

Διαβάστε περισσότερα

KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P

KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P Inštalačný manuál KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P EXIM Alarm s.r.o. Solivarská 50 080 01 Prešov Tel/Fax: 051 77 21

Διαβάστε περισσότερα

Gramatická indukcia a jej využitie

Gramatická indukcia a jej využitie a jej využitie KAI FMFI UK 29. Marec 2010 a jej využitie Prehľad Teória formálnych jazykov 1 Teória formálnych jazykov 2 3 a jej využitie Na počiatku bolo slovo. A slovo... a jej využitie Definícia (Slovo)

Διαβάστε περισσότερα

MATERIÁLY NA VÝROBU ELEKTRÓD

MATERIÁLY NA VÝROBU ELEKTRÓD MATERIÁLY NA VÝROBU ELEKTRÓD Strana: - 1 - E-Cu ELEKTROLYTICKÁ MEĎ (STN 423001) 3 4 5 6 8 10 12 15 TYČE KRUHOVÉ 16 20 25 30 36 40 50 60 (priemer mm) 70 80 90 100 110 130 Dĺžka: Nadelíme podľa Vašej požiadavky.

Διαβάστε περισσότερα

Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu

Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Zateplite fasádu! Zabezpečte, aby Vám neuniklo teplo cez fasádu Austrotherm GrPS 70 F Austrotherm GrPS 70 F Reflex Austrotherm Resolution Fasáda Austrotherm XPS TOP P Austrotherm XPS Premium 30 SF Austrotherm

Διαβάστε περισσότερα

ŠNEKÁČI mýty o přidávání CO2 založenie akvária Poecilia reticulata REPORTÁŽE

ŠNEKÁČI mýty o přidávání CO2 založenie akvária Poecilia reticulata REPORTÁŽE bulletin občianskeho združenia 2 /6.11.2006/ ŠNEKÁČI mýty o přidávání CO2 založenie akvária Poecilia reticulata REPORTÁŽE akvá ri um pr pree kre vet y, raky a krab y akva foto gr afi e Ji Jiřříí Plí š

Διαβάστε περισσότερα

MPO-02 prístroj na meranie a kontrolu ochranných obvodov. Návod na obsluhu

MPO-02 prístroj na meranie a kontrolu ochranných obvodov. Návod na obsluhu MPO-02 prístroj na meranie a kontrolu ochranných obvodov Návod na obsluhu MPO-02 je merací prístroj, ktorý slúži na meranie malých odporov a úbytku napätia na ochrannom obvode striedavým prúdom vyšším

Διαβάστε περισσότερα

pre 9.ročník základnej školy súbor pracovných listov

pre 9.ročník základnej školy súbor pracovných listov Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

Obr.2-1. a) Pásové spektrum energii v kryštále, b) Vlastná vodivosť v polovodiči. c) Polovodič s vodivosťou typu. d) Polovodič s vodivosťou typu

Obr.2-1. a) Pásové spektrum energii v kryštále, b) Vlastná vodivosť v polovodiči. c) Polovodič s vodivosťou typu. d) Polovodič s vodivosťou typu 2 DIÓDA - NELINEÁRNY JEDNOBRAN UČEBNÉ CIELE Zoznámiť sa s statickými a dynamickými parametrami náhradného obvodu diódy, pomocou ktorých možno aproximovať tento nelineárny jednobran na lineárny prvok Pochopiť

Διαβάστε περισσότερα

3. Meranie indukčnosti

3. Meranie indukčnosti 3. Meranie indukčnosti Vlastná indukčnosť pasívna elektrická veličina charakterizujúca vlastnú indukciu, symbol, jednotka v SI Henry, symbol jednotky H, základná vlastnosť cievok. V cievke, v ktorej sa

Διαβάστε περισσότερα

MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium

MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium Technicá univerzita v Košiciach FAKLTA ELEKTROTECHKY A FORMATKY Katedra eletrotechniy a mechatroniy MERAE A TRASFORMÁTORE Eletricé stroje / Externé štúdium Meno :........ Supina :...... Šolsý ro :.......

Διαβάστε περισσότερα

Svetelnotechnické veličiny

Svetelnotechnické veličiny ELEKTRICKÉ SVETLO Svetlo Osvetlenie vnútorných i vonkajších priestorov má významný vplyv na bezpečnosť osôb, ich zrakovú pohodu a s tým súvisiaci pracovný výkon, únavu, orientáciu v priestore a celkový

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017

Kompilátory. Cvičenie 6: LLVM. Peter Kostolányi. 21. novembra 2017 Kompilátory Cvičenie 6: LLVM Peter Kostolányi 21. novembra 2017 LLVM V podstate sada nástrojov pre tvorbu kompilátorov LLVM V podstate sada nástrojov pre tvorbu kompilátorov Pôvodne Low Level Virtual Machine

Διαβάστε περισσότερα

Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS:

Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: Názov projektu: CIV Centrum Internetového vzdelávania FMFI Číslo projektu: SOP ĽZ 2005/1-046 ITMS: 11230100112 Václav Koubek Elektrický prúd, Energia v domácnosti, Energia a práca Obsah 3. Elektrický prúd

Διαβάστε περισσότερα

Digitálny multimeter AX-572. Návod na obsluhu

Digitálny multimeter AX-572. Návod na obsluhu Digitálny multimeter AX-572 Návod na obsluhu 1 ÚVOD Model AX-572 je stabilný multimeter so 40 mm LCD displejom a možnosťou napájania z batérie. Umožňuje meranie AC/DC napätia, AC/DC prúdu, odporu, kapacity,

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

POLOVODIČOVÉ DIÓDY. Polovodičové diódy využívajú priechod PN a jeho vlastnosti.

POLOVODIČOVÉ DIÓDY. Polovodičové diódy využívajú priechod PN a jeho vlastnosti. POLOVODIČOVÉ DIÓDY Polovodičové diódy využívajú priechod PN a jeho vlastnosti. Najčastejšie využívanou vlastnosťou je usmerňovací efekt priechodu PN, preto široko používané polovodičové diódy sú usmerňovacie

Διαβάστε περισσότερα

Slovenska poľnohospodárska univerzita v Nitre Technická fakulta

Slovenska poľnohospodárska univerzita v Nitre Technická fakulta Slovenska poľnohospodárska univerzita v Nitre Technická fakulta Katedra elektrotechniky informatika a automatizácie Sieťové napájacie zdroje Zadanie č.1 2009 Zadanie: 1. Pomocou programu MC9 navrhnite

Διαβάστε περισσότερα

Základné pojmy v elektrických obvodoch.

Základné pojmy v elektrických obvodoch. Kapitola Základné pojmy v elektrických obvodoch.. Elektrické napätie a elektrický prúd. Majmenáboj Q,ktorýsanachádzavelektrickompolicharakterizovanomvektoromjehointenzity E.Na takýtonábojpôsobísilapoľa

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

Prevodník pre tenzometrické snímače sily EMS170

Prevodník pre tenzometrické snímače sily EMS170 Charakteristické vlastnosti Technické údaje Napäťové alebo prúdové napájanie snímačov alebo vodičové pripojenie snímačov Pripojenie až snímačov Nastavenie parametrov pomocou DIP prepínačov Prevedenie v

Διαβάστε περισσότερα

2 Kombinacie serioveho a paralelneho zapojenia

2 Kombinacie serioveho a paralelneho zapojenia 2 Kombinacie serioveho a paralelneho zapojenia Priklad 1. Ak dva odpory zapojim seriovo, dostanem odpor 9 Ω, ak paralelne dostnem odpor 2 Ω. Ake su tieto odpory? Priklad 2. Z drotu postavime postavime

Διαβάστε περισσότερα

1 Jednofázový asynchrónny motor

1 Jednofázový asynchrónny motor 1 Jednofázový asynchrónny motor V domácnostiach je často dostupná iba 1f sieť, pretože výkonovo postačuje na napájanie domácich spotrebičov. Preto aj väčšina motorov používaných v domácnostiach musí byť

Διαβάστε περισσότερα

Vzdelávacia oblasť: Človek a príroda 2. STUPEŇ ZŠ - ISCED 2. Základná škola Pavla Horova Michalovce

Vzdelávacia oblasť: Človek a príroda 2. STUPEŇ ZŠ - ISCED 2. Základná škola Pavla Horova Michalovce Základná škola Pavla Horova Michalovce ŠKOLSKÝ ROK: 2016/2017 9. ROČNÍK FYZIKA Vypracovala: Mgr. Gabriela Gombošová Obsah Charakteristika predmetu.... 2 Ciele učebného predmetu.... 3 Kľúčové kompetencie...

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

1. Atómová štruktúra látok, stavba atómu. Elektrické a magnetické pole v elektrotechnike.

1. Atómová štruktúra látok, stavba atómu. Elektrické a magnetické pole v elektrotechnike. 1. Atómová štruktúra látok, stavba atómu. Elektrické a magnetické pole v elektrotechnike. Atóm základná častica všetkých látok. Skladá sa z atómového jadra obsahujúceho protóny a neutróny a obalu obsahujúceho

Διαβάστε περισσότερα