Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A"

Transcript

1 M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava

2 PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = x 2 = x 2 = x 2 5 = x x = 5x x 2 = 7x ,4x 2 = ,4x 2 = 1, /5x 3/4x 2 = ,2x 2 = 2/5x... Strana 2 z 41

3 PRACOVNÝ LIST 2 Urč hodnoty koeficientov a, b, c v kvadratickej rovnici : 1. x 2 3x = 0 a = b = c = 2. -4x = 0 a = b = c = x - x 2 =0 a = b = c = 4. 3 = x 2 a = b = c = 5. x 2 = 0 a = b = c = x = x 2 a = b = c = 7. 2x = - 8x 2 a = b = c = 8. x 2 + x + 1 = 0 a = b = c = 9. x 2 + 0,5 = 0 a = b = c = 10. 2,7x - x 2 =0 a = b = c = Strana 3 z 41

4 PRACOVNÝ LIST 3 Rieš kvadratické rovnice rozkladom na súčin: 1. ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 =... Strana 4 z 41

5 PRACOVNÝ LIST 4 Urč nulové body = korene kvadratickej rovnice = priesečníky paraboly s osou x, načrtni na číselnej osi: 1. x 2 9 = 0 x 1 =, x 2 = 2. x = 0 x 1 =, x 2 = 3. x 2 + 3x = 0 x 1 =, x 2 = 4. x x 2 = 0 x 1 =, x 2 = 5. x 2 + 5x = 6 x 1 =, x 2 = 6. x 2 + 2x + 1 = 0 x 1 =, x 2 = 7. x 2 = 8x - 12 x 1 =, x 2 = 8. 9x 2 5x = 4 x 1 =, x 2 = Strana 5 z 41

6 PRACOVNÝ LIST 5 Urč nulové body = korene kvadratickej rovnice = priesečníky paraboly s osou x, načrtni na číselnej osi, urč P nerovnice: 1. x 1 =, x 2 = P = 2. x 1 =, x 2 = P = 3. x 1 =, x 2 = P = 4. x 1 =, x 2 = P = 5. x 1 =, x 2 = P = 6. x 1 =, x 2 = P = 7. x 1 =, x 2 = P = 8. x 1 =, x 2 = Strana 6 z 41

7 PRACOVNÝ LIST 6 Rieš kvadratické rovnice pomocou diskriminantu: 1. 3x x = 32 D = P = { } 2. 15x 2 = 19x -6 D = P = { } 3. (3x 5)(2x + 3) = 4 D = P = { } 4. (5x 2) 2-7(5x 2) = 8 D = P = { } 5. 9 = 24x 16x 2 D = P = { } 6. (2x -7) 2 (3x + 2) 2 = 125 D = P = { } 7. 2x 2 + 5x = -2 D = P = { } 8. 20x 2 =9x - 1 D = P = { } Strana 7 z 41

8 PRACOVNÝ LIST 7 Rieš neúplné kvadratické rovnice: 1. x 2 4x = 0 P = { } 2. 5x 2 + 2x = 0 P = { } 3. 3x - 6x 2 = 0 P = { } 4. 4x 2 25 = 0 P = { } 5. 16x 2 1 = 0 P = { } x 2 = 0 P = { } 7. x 2 3 = 0 P = { } 8. x = 0 P = { } Strana 8 z 41

9 PRACOVNÝ LIST 8 Rieš exponenciálne rovnice vhodnou metódou: 1. = 1 P ={ } 2. P ={ } 3. P ={ } 4. P ={ } 5. P ={ } 6. P ={ } 7. P ={ } 8. P ={ } Strana 9 z 41

10 PRACOVNÝ LIST 9 Rieš exponenciálne rovnice substitúciou: 1. P = { } 2. P = { } 3. P = { } 4. P = { } 5. P = { } 6. P = { } Strana 10 z 41

11 PRACOVNÝ LIST 10 Riešením exponenciálnych rovníc a dosadením písmen do tajničky dostaneš výrok G. Polyu 7/4 1; /4 1; 9 2 6/7 17 1; 9-3; 2 6/ ,5;1, / / /7-1; 1 3/ ; 1 A Á D E I J ( ) ( ) K M N O P R Š T V Strana 11 z 41

12 PRACOVNÝ LIST 11 Rieš exponenciálne nerovnice: 1. P = 2. ( ) P = 3. P = 4. ( ) P = 5. P = Strana 12 z 41

13 PRACOVNÝ LIST 12 Využitím definície logaritmu urč neznámu veličinu: 1. y = 2. y= 3. y = 4. y= 5. a = 6. a= 7. a = 8. a = Strana 13 z 41

14 PRACOVNÝ LIST 13 Urč neznámu veličinu: ( úlohy rieš spamäti ) 1. y = 2. y = 3. y = 4. y = 5. x = 6. x = 7. a = 8. a = 9. a = Strana 14 z 41

15 PRACOVNÝ LIST 14 Zlogaritmuj výraz: 1. log abc= 2. log a 2 bc 3 = 3. log (ab) 2 = 4. log 5. log ab 6. log 7. log (a 2 -b 2 ) = 8. log 9. log 10. log 3-1 a 3 b Strana 15 z 41

16 PRACOVNÝ LIST 15 Napíš ako logaritmus jedného výrazu (základ je rovnaký): 1. log a log b + 2log c = 2. log a + 1/2logb log c = 3. 1/2log a 2/3log b = 4. log (a + b) + log (a - b) = 5. 3log a log b 2log c = 6. 1/2log a 1/2log b + 1/2log c = 7. 2log(a-b) 1/2log (a + b) = Strana 16 z 41

17 PRACOVNÝ LIST 16 Rieš logaritmické rovnice podľa definície: 1. P = { } 2. ( ) P = { } 3. ( ) P = { } 4. ( ) P = { } 5. ( ) ( ) P = { } Strana 17 z 41

18 PRACOVNÝ LIST 17 Rieš logaritmické rovnice úpravou na logaritmus dvoch výrazov: 1. ( ) ( ) P = { } 2. ( ) ( ) ( ) P = { } 3. ( ) ( ) P = { } 4. ( ) ( ) P = { } 5. ( ) ( ) P = { } Strana 18 z 41

19 PRACOVNÝ LIST 18 Rieš logaritmické rovnice substitúciou: 1. P = { } 2. P = { } 3. P = { } 4. P = { } 5. P = { } Strana 19 z 41

20 PRACOVNÝ LIST 19 Rieš logaritmické rovnice, ktoré vedú na exponenciálne: 1. ( ) ( ) P = { } 2. ( ) P = { } 3. ( ) P = { } 4. ( ) P = { } 5. ( ) P = { } Strana 20 z 41

21 PRACOVNÝ LIST 20 Rieš rovnice logaritmovaním: 1. P = { } 2. P = { } 3. P = { } 4. P = { } 5. P = { } 6. P = { } Strana 21 z 41

22 PRACOVNÝ LIST 21 Rieš logaritmické nerovnice: 1. ( ) 2. ( ) ( ) 3. ( ) 4. ( ) 5. ( ) 6. ( ) Strana 22 z 41

23 PRACOVNÝ LIST 22 Logaritmické rovnice, nerovnice. Vyriešením úloh doplň správne písmeno do tajničky: Pamätajte, že je nutnou podmienkou pre vaše úspechy a prácu (I. P. Pavlov) (-2;3) 3-1 (1; ) 16 (-2;3) 0; ) 16 A ( ) ( ) D ( ) ( ) E ( ) I ( ) N ( ) Š ( ) Strana 23 z 41

24 PRACOVNÝ LIST 23 Goniometria Pomenuj grafy funkcií, vyznač nulové body: Strana 24 z 41

25 PRACOVNÝ LIST 24 Goniometria funkcia sínus Načrtni graf funkcie y = sinx x y x Urč vlastnosti funkcie sínus: monotónnosť v I. kv. II. kv. III. kv. IV. kv hodnoty v I. kv. II. kv. III. kv. IV. kv D(f) = Strana 25 z 41

26 PRACOVNÝ LIST 25 Goniometria funkcia sínus Urč ďalšie vlastnosti funkcie sínus: ( načrtni graf ) H(f) = perióda = párnosť, nepárnosť sin(-x) = maximum = v uhle minimum = v uhle Strana 26 z 41

27 PRACOVNÝ LIST 26 Goniometria funkcia kosínus Načrtni graf funkcie y = cosx x y x Urč vlastnosti funkcie kosínus: monotónnosť v I. kv. II. kv. III. kv. IV. kv hodnoty v I. kv. II. kv. III. kv. IV. kv D(f) = Strana 27 z 41

28 PRACOVNÝ LIST 27 Goniometria funkcia kosínus Urč ďalšie vlastnosti funkcie kosínus: ( načrtni graf ) H(f) = perióda párnosť, nepárnosť cos(-x) = maximum = v uhle minimum = v uhle Strana 28 z 41

29 PRACOVNÝ LIST 28 Goniometria funkcia tangens Načrtni graf funkcie y = tgx x y x Urč vlastnosti funkcie tangens: monotónnosť v I. kv. II. kv. III. kv. IV. kv hodnoty v I. kv. II. kv. III. kv. IV. kv D(f) = Strana 29 z 41

30 PRACOVNÝ LIST 29 Goniometria funkcia tangens Urč ďalšie vlastnosti funkcie tangens: ( načrtni graf ) H(f) = perióda párnosť, nepárnosť tg(-x) = maximum = minimum = Strana 30 z 41

31 PRACOVNÝ LIST 30 Goniometria funkcia kotangens Načrtni graf funkcie y = cotgx x y x Urč vlastnosti funkcie kotangens: monotónnosť v I. kv. II. kv. III. kv. IV. kv hodnoty v I. kv. II. kv. III. kv. IV. kv D(f) = Strana 31 z 41

32 PRACOVNÝ LIST 31 Goniometria funkcia kotangens Urč ďalšie vlastnosti funkcie kotangens: ( načrtni graf ) H(f) = perióda párnosť, nepárnosť cotg(-x) = maximum = minimum = Strana 32 z 41

33 PRACOVNÝ LIST 32 Goniometria Zostroj do jedného obrázka grafy funkcií: a) y = sinx, b) y = 2sinx c) y = sin2x d) y = sin(x + π/6) Zdôvodni, čo sa zmení zmenou parametrov, zapíš nové vlastnosti funkcií. Strana 33 z 41

34 PRACOVNÝ LIST 33 Goniometrické funkcie Doplň vzťahy medzi goniometrickými funkciami: sin 2 x = cos 2 x = sin 2 x + cos 2 x = sin2x = cos2x = tgx = cotgx = sinx = cosx = Strana 34 z 41

35 PRACOVNÝ LIST 34 Goniometrické funkcie Rozhodni, aké znamienko bude mať súčin sinx. cosx, ak a) x = 210 b) x = 100 c) x = 20 d) x = 320 e) x = 9π/5 f) x = 3π/5 g) x = 6π/5 h) x = π/5 Strana 35 z 41

36 PRACOVNÝ LIST 35 Goniometrické funkcie Vypočítaj hodnoty ostatných goniometrických funkcií, ak a) xє II. kv. a platí: 1. sinx = 3/5 cosx = tgx = cotgx = 2. cosx = -1/3 sinx = tgx = cotgx = 3. tgx = -2/3 cosx = sinx = cotgx = 4. cotgx = -2 cosx = tgx = sinx = b) x Є (3π/2;2π) a platí: 1. sinx = -0,4 cosx = tgx = cotgx = 2. cosx = 0,25 sinx = tgx = cotgx = Strana 36 z 41

37 PRACOVNÝ LIST 36 Goniometrické rovnice Rieš spamäti: 1. sinx = 1 x = P = { } 2. sinx = -1 x = P = { } 3. sinx = 0 x = P = { } 4. cosx = 1 x = P = { } 5. cosx = -1 x = P = { } 6. cosx = 0 x = P = { } 7. tgx = 1 x = P = { } 8. tgx = 0 x = P = { } 9. cotgx = 1 x = P = { } 10. cotgx = 0 x = P = { } Strana 37 z 41

38 PRACOVNÝ LIST 37 Rieš goniometrické rovnice: Strana 38 z 41

39 PRACOVNÝ LIST 38 Rieš goniometrické rovnice substitúciou: 1. ( ) 2. ( ) 3. ( ) 4. ( ) Strana 39 z 41

40 PRACOVNÝ LIST 39 Sínusová, kosínusová veta Rieš trojuholník ABC, ak je dané: a) a = 52, β =63 14, γ = b) a = 65, b = 46, α = c) b = 79,5, β = 65 20, γ = d) c = 3,54, α = 35 50, γ = e) a = 7, b = 4, γ = 38 f) a = 5, b = 6, c = 7 Strana 40 z 41

41 PRACOVNÝ LIST 40 Sínusová, kosínusová veta 1. V akom zornom uhle sa javí 70 predmet 70m dlhý pozorovateľovi, ktorý je od jedného konca vzdialený x 50m a od druhého konca 80m? 2. Lietadlo letí vo výške 3500m nad pozorovateľňou. x V okamihu prvého merania ho bolo vidieť 3500m pod výškovým uhlom 25, pri druhom meraní pod výškovým uhlom 48. Vypočítajte vzdialenosť, ktorú lietadlo preletelo medzi obidvoma meraniami. 3. Vypočítajte výšku stožiara, x ktorého pätu vidíme v hĺbkovom uhle a vrchol vo výškovom uhle Stožiar je pozorovaný z miesta 10m nad úrovňou päty stožiara. Strana 41 z 41

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz

PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY. Pomôcka pre prípravný kurz KATEDRA APLIKOVANEJ MATEMATIKY A INFORMATIKY STROJNÍCKA FAKULTA TU KOŠICE PREHĽAD ZÁKLADNÝCH VZORCOV A VZŤAHOV ZO STREDOŠKOLSKEJ MATEMATIKY Pomôcka pre prípravný kurz 8 ZÁKLADNÉ ALGEBRAICKÉ VZORCE ) (a±b)

Διαβάστε περισσότερα

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =.

Súčtové vzorce. cos (α + β) = cos α.cos β sin α.sin β cos (α β) = cos α.cos β + sin α.sin β. tg (α β) = cotg (α β) =. Súčtové vzorce Súčtové vzorce sú goniometrické hodnoty súčtov a rozdielov dvoch uhlov Sem patria aj goniometrické hodnoty dvojnásobného a polovičného uhla a pridám aj súčet a rozdiel goniometrických funkcií

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Goniometrické funkcie

Goniometrické funkcie Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

Goniometrické substitúcie

Goniometrické substitúcie Goniometrické substitúcie Marta Kossaczká S goniometrickými funkciami ste sa už určite stretli, pravdepodobne predovšetkým v geometrii. Ich použitie tam ale zďaleka nekončí. Nazačiatoksizhrňme,čoonichvieme.Funkciesínusakosínussadajúdefinovať

Διαβάστε περισσότερα

Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník

Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník 1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5

Διαβάστε περισσότερα

Goniometrické rovnice riešené substitúciou

Goniometrické rovnice riešené substitúciou Ma-Go-10-T List 1 Goniometrické rovnice riešené substitúciou RNDr. Marián Macko U: Okrem základných goniometrických rovníc, ktorým sme sa už venovali, existujú aj zložitejšie goniometrické rovnice. Metódy

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Stredná priemyselná škola Poprad. Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník

Stredná priemyselná škola Poprad. Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník ÚVOD Vzdelávací štandard z matematiky pre stredné odborné školy so štvorročným štúdiom patrí medzi základné pedagogické dokumenty,

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Základné vzťahy medzi hodnotami goniometrických funkcií

Základné vzťahy medzi hodnotami goniometrických funkcií Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Osnovy pre slovensko-francúzske sekcie gymnázií Matematika

Osnovy pre slovensko-francúzske sekcie gymnázií Matematika Osnovy pre slovensko-francúzske sekcie gymnázií Matematika CIELE Ciele matematiky na bilingválnom gymnáziu sa v zásade nelíšia od cieľov klasických slovenských gymnázií. Hlavným rozdielom je získanie schopnosti

Διαβάστε περισσότερα

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre

TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT. k predmetu Matematika pre TREDNÁ ODBORNÁ ŠKOLA STRÁŽSKE PRACOVNÝ ZOŠIT k predmetu Matematika pre 2. ročník SOŠ v Strážskom, študijný odbor 3760 6 00 prevádzka a ekonomika dopravy Operačný program: Vzdelávanie Programové obdobie:

Διαβάστε περισσότερα

Učebné osnovy. Predmet: Matematika vo francúzskom jazyku. 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník Spolu počet h týždenne.

Učebné osnovy. Predmet: Matematika vo francúzskom jazyku. 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník Spolu počet h týždenne. Gymnázium Ľudovíta Štúra v Trenčíne Učebné osnovy Stupeň vzdelania: ISCED 3A Študijný odbor: 7902 J gymnázium Zameranie školského vzdelávacieho programu: bilingválne štúdium Predmet: Matematika vo francúzskom

Διαβάστε περισσότερα

Integrovanie racionálnych funkcií

Integrovanie racionálnych funkcií Integrovanie racionálnych funkcií Tomáš Madaras 2009-20 Z teórie funkcií už vieme, že každá racionálna funkcia (t.j. podiel dvoch polynomických funkcií) sa dá zapísať ako súčet polynomickej funkcie a funkcie

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín,

TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, TEÓRIA Množiny a operácie s nimi Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, Vennove diagramy, disjunktné množiny, konečná a nekonečná množina,

Διαβάστε περισσότερα

1. Trojuholník - definícia

1. Trojuholník - definícia 1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

1 Logika a dôkazy. 2 Množiny. 3 Teória čísel. 4 Premenné a výrazy. 5 Rovnice, nerovnice a ich sústavy. Pojmy:

1 Logika a dôkazy. 2 Množiny. 3 Teória čísel. 4 Premenné a výrazy. 5 Rovnice, nerovnice a ich sústavy. Pojmy: 1 Logika a dôkazy výrok, axióma, definícia, úsudok, hypotéza, tvrdenie, pravdivostná hodnota, logické spojky, negácia výroku, konjunkcia, disjunkcia, implikácia, ekvivalencia, vyplýva, je ekvivalentné,

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

MATEMATIKA I. Základy diferenciálneho počtu. Návody k cvičeniam pre odbory VSVH a STOP. Andrea Stupňanová, Alexandra Šipošová

MATEMATIKA I. Základy diferenciálneho počtu. Návody k cvičeniam pre odbory VSVH a STOP. Andrea Stupňanová, Alexandra Šipošová MATEMATIKA I. Základy diferenciálneho počtu Návody k cvičeniam pre odbory VSVH a STOP Andrea Stupňanová, Alexandra Šipošová MATEMATIKA I. Základy diferenciálneho počtu Návody k cvičeniam pre odbory VSVH

Διαβάστε περισσότερα

1.4 Rovnice, nerovnice a ich sústavy

1.4 Rovnice, nerovnice a ich sústavy 1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,

Διαβάστε περισσότερα

Príklady k Matematike 1

Príklady k Matematike 1 Príklady k Matematike 1 1. Definícia derivácie 1. Nájdite deriváciu y = + 1) 2 tak, že prejdete od k t = + 1. 2. Zistite z definície, čomu sa rovnajú derivácie funkcií y = 3, y = 1/ 2 a y =. Návod k tretej

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Goniometrické nerovnice

Goniometrické nerovnice Ma-Go--T List Goniometrické nerovnice RNDr. Marián Macko U: Problematiku, ktorej sa budeme venovať, začneme úlohou. Máme určiť definičný obor funkcie f zadanej predpisom = sin. Máš predstavu, s čím táto

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

Numerické metódy Zbierka úloh

Numerické metódy Zbierka úloh Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Téma c. 1. Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu

Téma c. 1. Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu Téma c. 1 Výroková logika a logika výrokových foriem (predikátovej logiky). Množinovo-logický rozbor slovného textu A) Výrok a jeho vlastnosti. Výroky tvorené z jednoduchých výrokov pomocou logických operátorov.

Διαβάστε περισσότερα

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Tézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty

Tézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty Tézy matematika 1. Množiny, základné pojmy a vzťahy 1. Vysvetlite obsah pojmov množina, prázdna množina, disjunktné množiny, popíšte vzťahy medzi množinami (podmnožina, rovnosť množín) a operácie s množinami

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku

Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku Ma-Go-01-T List 1 Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku RNDr. Marián Macko U: Pojem goniometrické funkcie v preklade z gréčtiny znamená funkcie merajúce uhly. Dajú sa použiť v pravouhlom

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

2. UHLY. Zapisovanie uhlov 1. spôsob pomocou troch bodov. Pri zápise uhla pomocou troch bodov je VRCHOL VŽDY V STREDE ZÁPISU.

2. UHLY. Zapisovanie uhlov 1. spôsob pomocou troch bodov. Pri zápise uhla pomocou troch bodov je VRCHOL VŽDY V STREDE ZÁPISU. 2. UHLY 2.1 ZÁPIS A OZNAČOVANIE UHLOV Dve polpriamky VA, VB, ktoré majú spoločný začiatok v bode V delia rovinu na dve časti. Tieto časti nazývame uhly. UHOL je časť roviny ohraničená dvoma polpriamkami,

Διαβάστε περισσότερα

Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník

Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok:

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

Súradnicová sústava (karteziánska)

Súradnicová sústava (karteziánska) Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme

Διαβάστε περισσότερα

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

tretej odmocniny ( x ), mocniny čísla 10, n-tá mocnina ľubovoľného čísla (a n ) pre konkrétne hodnoty n, n je prirodzené číslo.

tretej odmocniny ( x ), mocniny čísla 10, n-tá mocnina ľubovoľného čísla (a n ) pre konkrétne hodnoty n, n je prirodzené číslo. Mocniny a odmocniny, zápis veľkých čísel Školský vzdelávací program matematika 9. ročník 1. Obsah vzdelávania učebného predmetu v 9. ročníku (rozšírený počet hodín ) Tematický celok Témy Druhá a tretia

Διαβάστε περισσότερα

22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte

22 Špeciálne substitúcie, postupy a vzorce používané pri výpočte Špeciálne substitúcie, postupy vzorce používné pri výpočte niektorých ďlších typov neurčitých integrálov. Pomocou vhodnej substitúcie tvru t = n + b (potom = tn b, = n tn dt) vypočítjte neurčitý integrál

Διαβάστε περισσότερα

F1. Goniometria - Esercizi

F1. Goniometria - Esercizi F1. Goniometria - Esercizi TRASFORMARE GRADI IN RADIANTI. 1) [ π 1, 11 π, 1 π, π ) 1 0 1 [ π 1, π, π, 1 1 π ) 0 0 0 [ π, π, 1 π, π ) 1 0 [ π, 11 1 π, 1 1 π, π ) 00 [ π 1, π, π, π ) 1 00 [ π 0, π, 1 π,

Διαβάστε περισσότερα

CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY

CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY BRATISLAVA 2016 Schválilo Ministerstvo školstva, vedy, výskum a športu Slovenskej republiky dňa 21. 12. 2016 pod číslom 2016-25786/49974:1-10B0

Διαβάστε περισσότερα

Tematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ

Tematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ Tematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ (spracovaný v súlade s UO matematiky schválenými Ministerstvom školstva Slovenskej republiky dňa 3. apríla 1997 rozhodnutím číslo 1640/97-151

Διαβάστε περισσότερα

Maturitné úlohy. Matematiky. Pre gymnázium

Maturitné úlohy. Matematiky. Pre gymnázium Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s krátkou odpoveďou) OBSAH ÚVOD... 3 1. ZÁKLADY MATEMATIKY... 3 1.1 Logika a množiny... 3 1.2 Čísla, premenné a výrazy... 7 1.3 Teória čísel...

Διαβάστε περισσότερα

% APPM$1235$Final$Exam$$Fall$2016$

% APPM$1235$Final$Exam$$Fall$2016$ Name Section APPM$1235$Final$Exam$$Fall$2016$ Page Score December13,2016 ATTHETOPOFTHEPAGEpleasewriteyournameandyoursectionnumber.The followingitemsarenotpermittedtobeusedduringthisexam:textbooks,class

Διαβάστε περισσότερα

Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník

Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Základná škola Sačurov, Školská 389, 094 13 Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Vypracované podľa učebných osnov ŠkVP A schválených radou školy dňa 28.8.2008 s platnosťou

Διαβάστε περισσότερα

Maturitné otázky z matematiky

Maturitné otázky z matematiky Gmnázium Pavla Horova Michalovce Maturitné otázk z matematik školský rok 00 / 00 . VÝROKY A MNOŽINY Maturitné otázk a príklad z matematik, Gmnázium Pavla Horova, Michalovce Výrok a jeho negácia. Kvantifikované

Διαβάστε περισσότερα

PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY

PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY Strojnícka fakulta Andrea Feňovčíková Gabriela Ižaríková aaaa aaaa Táto

Διαβάστε περισσότερα

Kód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!

Kód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU! Kód testu 1203 NEOTVÁRJTE, POČKJTE N POKYN! PREČÍTJTE SI NJPRV POKYNY K TESTU! MTURIT 2015 EXTERNÁ ČSŤ Časť I Vyriešte úlohy 01 až 20 a do odpoveďového hárka zapíšte vždy iba výsledok nemusíte ho zdôvodňovať

Διαβάστε περισσότερα

TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet

TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef

Διαβάστε περισσότερα

Homework#13 Trigonometry Honors Study Guide for Final Test#3

Homework#13 Trigonometry Honors Study Guide for Final Test#3 Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.

Διαβάστε περισσότερα

Grafy funkcií tangens a kotangens

Grafy funkcií tangens a kotangens Ma-Go-8-T List Graf funkcií tangens a kotangens RNDr. Marián Macko U: Dobrú predstavu o grafe funkcie f : = tg získame z jednotkovej kružnice prenesením hodnôt funkcie tangens pre niekoľko zvolených hodnôt

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU

ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU V teste, ktorý máš vyriešiť, je 20 úloh. Na prácu je určených 120 minút. Úlohy nemusíš

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013

Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013 Individuálny študijný plán M A T E M A T I K A - KVARTA 2012/2013 ( Číslovanie kapitol je kvôli lepšej prehľadnosti podľa učebníc. ) Odporúčam: www.oskole.sk cez učivá, predmety a ročník navštíviť príslušné

Διαβάστε περισσότερα

Gymnázium v Košiciach, Opatovská 7 MATEMATIKA

Gymnázium v Košiciach, Opatovská 7 MATEMATIKA Gymnázium v Košiciach, Opatovská 7 MATEMATIKA ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM (štvorročné štúdium) Vypracoval:

Διαβάστε περισσότερα

Matematika test M-1, 2. časť

Matematika test M-1, 2. časť M O N I T O R 001 pilotné testovanie maturantov MONITOR 001 Matematika test M-1,. časť forma A Kód školy: Číslo žiaka A B C F H I K L M O P S Kód A B C F H I triedy: 01 0 03 04 05 06 07 08 09 10 11 1 13

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Štátny pedagogický ústav, Pluhová 8, Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY

Štátny pedagogický ústav, Pluhová 8, Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY Štátny pedagogický ústav, Pluhová 8, 830 00 Bratislava CIEĽOVÉ POŽIADAVKY NA VEDOMOSTI A ZRUČNOSTI MATURANTOV Z MATEMATIKY Bratislava 2008 ÚVOD Cieľové požiadavky z matematiky sú rozdelené vo väčšine kapitol

Διαβάστε περισσότερα

1. Trigonometrijske funkcije

1. Trigonometrijske funkcije . Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα