Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A"

Transcript

1 M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava

2 PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = x 2 = x 2 = x 2 5 = x x = 5x x 2 = 7x ,4x 2 = ,4x 2 = 1, /5x 3/4x 2 = ,2x 2 = 2/5x... Strana 2 z 41

3 PRACOVNÝ LIST 2 Urč hodnoty koeficientov a, b, c v kvadratickej rovnici : 1. x 2 3x = 0 a = b = c = 2. -4x = 0 a = b = c = x - x 2 =0 a = b = c = 4. 3 = x 2 a = b = c = 5. x 2 = 0 a = b = c = x = x 2 a = b = c = 7. 2x = - 8x 2 a = b = c = 8. x 2 + x + 1 = 0 a = b = c = 9. x 2 + 0,5 = 0 a = b = c = 10. 2,7x - x 2 =0 a = b = c = Strana 3 z 41

4 PRACOVNÝ LIST 3 Rieš kvadratické rovnice rozkladom na súčin: 1. ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 = ( )( ) x 1 =..., x 2 =... Strana 4 z 41

5 PRACOVNÝ LIST 4 Urč nulové body = korene kvadratickej rovnice = priesečníky paraboly s osou x, načrtni na číselnej osi: 1. x 2 9 = 0 x 1 =, x 2 = 2. x = 0 x 1 =, x 2 = 3. x 2 + 3x = 0 x 1 =, x 2 = 4. x x 2 = 0 x 1 =, x 2 = 5. x 2 + 5x = 6 x 1 =, x 2 = 6. x 2 + 2x + 1 = 0 x 1 =, x 2 = 7. x 2 = 8x - 12 x 1 =, x 2 = 8. 9x 2 5x = 4 x 1 =, x 2 = Strana 5 z 41

6 PRACOVNÝ LIST 5 Urč nulové body = korene kvadratickej rovnice = priesečníky paraboly s osou x, načrtni na číselnej osi, urč P nerovnice: 1. x 1 =, x 2 = P = 2. x 1 =, x 2 = P = 3. x 1 =, x 2 = P = 4. x 1 =, x 2 = P = 5. x 1 =, x 2 = P = 6. x 1 =, x 2 = P = 7. x 1 =, x 2 = P = 8. x 1 =, x 2 = Strana 6 z 41

7 PRACOVNÝ LIST 6 Rieš kvadratické rovnice pomocou diskriminantu: 1. 3x x = 32 D = P = { } 2. 15x 2 = 19x -6 D = P = { } 3. (3x 5)(2x + 3) = 4 D = P = { } 4. (5x 2) 2-7(5x 2) = 8 D = P = { } 5. 9 = 24x 16x 2 D = P = { } 6. (2x -7) 2 (3x + 2) 2 = 125 D = P = { } 7. 2x 2 + 5x = -2 D = P = { } 8. 20x 2 =9x - 1 D = P = { } Strana 7 z 41

8 PRACOVNÝ LIST 7 Rieš neúplné kvadratické rovnice: 1. x 2 4x = 0 P = { } 2. 5x 2 + 2x = 0 P = { } 3. 3x - 6x 2 = 0 P = { } 4. 4x 2 25 = 0 P = { } 5. 16x 2 1 = 0 P = { } x 2 = 0 P = { } 7. x 2 3 = 0 P = { } 8. x = 0 P = { } Strana 8 z 41

9 PRACOVNÝ LIST 8 Rieš exponenciálne rovnice vhodnou metódou: 1. = 1 P ={ } 2. P ={ } 3. P ={ } 4. P ={ } 5. P ={ } 6. P ={ } 7. P ={ } 8. P ={ } Strana 9 z 41

10 PRACOVNÝ LIST 9 Rieš exponenciálne rovnice substitúciou: 1. P = { } 2. P = { } 3. P = { } 4. P = { } 5. P = { } 6. P = { } Strana 10 z 41

11 PRACOVNÝ LIST 10 Riešením exponenciálnych rovníc a dosadením písmen do tajničky dostaneš výrok G. Polyu 7/4 1; /4 1; 9 2 6/7 17 1; 9-3; 2 6/ ,5;1, / / /7-1; 1 3/ ; 1 A Á D E I J ( ) ( ) K M N O P R Š T V Strana 11 z 41

12 PRACOVNÝ LIST 11 Rieš exponenciálne nerovnice: 1. P = 2. ( ) P = 3. P = 4. ( ) P = 5. P = Strana 12 z 41

13 PRACOVNÝ LIST 12 Využitím definície logaritmu urč neznámu veličinu: 1. y = 2. y= 3. y = 4. y= 5. a = 6. a= 7. a = 8. a = Strana 13 z 41

14 PRACOVNÝ LIST 13 Urč neznámu veličinu: ( úlohy rieš spamäti ) 1. y = 2. y = 3. y = 4. y = 5. x = 6. x = 7. a = 8. a = 9. a = Strana 14 z 41

15 PRACOVNÝ LIST 14 Zlogaritmuj výraz: 1. log abc= 2. log a 2 bc 3 = 3. log (ab) 2 = 4. log 5. log ab 6. log 7. log (a 2 -b 2 ) = 8. log 9. log 10. log 3-1 a 3 b Strana 15 z 41

16 PRACOVNÝ LIST 15 Napíš ako logaritmus jedného výrazu (základ je rovnaký): 1. log a log b + 2log c = 2. log a + 1/2logb log c = 3. 1/2log a 2/3log b = 4. log (a + b) + log (a - b) = 5. 3log a log b 2log c = 6. 1/2log a 1/2log b + 1/2log c = 7. 2log(a-b) 1/2log (a + b) = Strana 16 z 41

17 PRACOVNÝ LIST 16 Rieš logaritmické rovnice podľa definície: 1. P = { } 2. ( ) P = { } 3. ( ) P = { } 4. ( ) P = { } 5. ( ) ( ) P = { } Strana 17 z 41

18 PRACOVNÝ LIST 17 Rieš logaritmické rovnice úpravou na logaritmus dvoch výrazov: 1. ( ) ( ) P = { } 2. ( ) ( ) ( ) P = { } 3. ( ) ( ) P = { } 4. ( ) ( ) P = { } 5. ( ) ( ) P = { } Strana 18 z 41

19 PRACOVNÝ LIST 18 Rieš logaritmické rovnice substitúciou: 1. P = { } 2. P = { } 3. P = { } 4. P = { } 5. P = { } Strana 19 z 41

20 PRACOVNÝ LIST 19 Rieš logaritmické rovnice, ktoré vedú na exponenciálne: 1. ( ) ( ) P = { } 2. ( ) P = { } 3. ( ) P = { } 4. ( ) P = { } 5. ( ) P = { } Strana 20 z 41

21 PRACOVNÝ LIST 20 Rieš rovnice logaritmovaním: 1. P = { } 2. P = { } 3. P = { } 4. P = { } 5. P = { } 6. P = { } Strana 21 z 41

22 PRACOVNÝ LIST 21 Rieš logaritmické nerovnice: 1. ( ) 2. ( ) ( ) 3. ( ) 4. ( ) 5. ( ) 6. ( ) Strana 22 z 41

23 PRACOVNÝ LIST 22 Logaritmické rovnice, nerovnice. Vyriešením úloh doplň správne písmeno do tajničky: Pamätajte, že je nutnou podmienkou pre vaše úspechy a prácu (I. P. Pavlov) (-2;3) 3-1 (1; ) 16 (-2;3) 0; ) 16 A ( ) ( ) D ( ) ( ) E ( ) I ( ) N ( ) Š ( ) Strana 23 z 41

24 PRACOVNÝ LIST 23 Goniometria Pomenuj grafy funkcií, vyznač nulové body: Strana 24 z 41

25 PRACOVNÝ LIST 24 Goniometria funkcia sínus Načrtni graf funkcie y = sinx x y x Urč vlastnosti funkcie sínus: monotónnosť v I. kv. II. kv. III. kv. IV. kv hodnoty v I. kv. II. kv. III. kv. IV. kv D(f) = Strana 25 z 41

26 PRACOVNÝ LIST 25 Goniometria funkcia sínus Urč ďalšie vlastnosti funkcie sínus: ( načrtni graf ) H(f) = perióda = párnosť, nepárnosť sin(-x) = maximum = v uhle minimum = v uhle Strana 26 z 41

27 PRACOVNÝ LIST 26 Goniometria funkcia kosínus Načrtni graf funkcie y = cosx x y x Urč vlastnosti funkcie kosínus: monotónnosť v I. kv. II. kv. III. kv. IV. kv hodnoty v I. kv. II. kv. III. kv. IV. kv D(f) = Strana 27 z 41

28 PRACOVNÝ LIST 27 Goniometria funkcia kosínus Urč ďalšie vlastnosti funkcie kosínus: ( načrtni graf ) H(f) = perióda párnosť, nepárnosť cos(-x) = maximum = v uhle minimum = v uhle Strana 28 z 41

29 PRACOVNÝ LIST 28 Goniometria funkcia tangens Načrtni graf funkcie y = tgx x y x Urč vlastnosti funkcie tangens: monotónnosť v I. kv. II. kv. III. kv. IV. kv hodnoty v I. kv. II. kv. III. kv. IV. kv D(f) = Strana 29 z 41

30 PRACOVNÝ LIST 29 Goniometria funkcia tangens Urč ďalšie vlastnosti funkcie tangens: ( načrtni graf ) H(f) = perióda párnosť, nepárnosť tg(-x) = maximum = minimum = Strana 30 z 41

31 PRACOVNÝ LIST 30 Goniometria funkcia kotangens Načrtni graf funkcie y = cotgx x y x Urč vlastnosti funkcie kotangens: monotónnosť v I. kv. II. kv. III. kv. IV. kv hodnoty v I. kv. II. kv. III. kv. IV. kv D(f) = Strana 31 z 41

32 PRACOVNÝ LIST 31 Goniometria funkcia kotangens Urč ďalšie vlastnosti funkcie kotangens: ( načrtni graf ) H(f) = perióda párnosť, nepárnosť cotg(-x) = maximum = minimum = Strana 32 z 41

33 PRACOVNÝ LIST 32 Goniometria Zostroj do jedného obrázka grafy funkcií: a) y = sinx, b) y = 2sinx c) y = sin2x d) y = sin(x + π/6) Zdôvodni, čo sa zmení zmenou parametrov, zapíš nové vlastnosti funkcií. Strana 33 z 41

34 PRACOVNÝ LIST 33 Goniometrické funkcie Doplň vzťahy medzi goniometrickými funkciami: sin 2 x = cos 2 x = sin 2 x + cos 2 x = sin2x = cos2x = tgx = cotgx = sinx = cosx = Strana 34 z 41

35 PRACOVNÝ LIST 34 Goniometrické funkcie Rozhodni, aké znamienko bude mať súčin sinx. cosx, ak a) x = 210 b) x = 100 c) x = 20 d) x = 320 e) x = 9π/5 f) x = 3π/5 g) x = 6π/5 h) x = π/5 Strana 35 z 41

36 PRACOVNÝ LIST 35 Goniometrické funkcie Vypočítaj hodnoty ostatných goniometrických funkcií, ak a) xє II. kv. a platí: 1. sinx = 3/5 cosx = tgx = cotgx = 2. cosx = -1/3 sinx = tgx = cotgx = 3. tgx = -2/3 cosx = sinx = cotgx = 4. cotgx = -2 cosx = tgx = sinx = b) x Є (3π/2;2π) a platí: 1. sinx = -0,4 cosx = tgx = cotgx = 2. cosx = 0,25 sinx = tgx = cotgx = Strana 36 z 41

37 PRACOVNÝ LIST 36 Goniometrické rovnice Rieš spamäti: 1. sinx = 1 x = P = { } 2. sinx = -1 x = P = { } 3. sinx = 0 x = P = { } 4. cosx = 1 x = P = { } 5. cosx = -1 x = P = { } 6. cosx = 0 x = P = { } 7. tgx = 1 x = P = { } 8. tgx = 0 x = P = { } 9. cotgx = 1 x = P = { } 10. cotgx = 0 x = P = { } Strana 37 z 41

38 PRACOVNÝ LIST 37 Rieš goniometrické rovnice: Strana 38 z 41

39 PRACOVNÝ LIST 38 Rieš goniometrické rovnice substitúciou: 1. ( ) 2. ( ) 3. ( ) 4. ( ) Strana 39 z 41

40 PRACOVNÝ LIST 39 Sínusová, kosínusová veta Rieš trojuholník ABC, ak je dané: a) a = 52, β =63 14, γ = b) a = 65, b = 46, α = c) b = 79,5, β = 65 20, γ = d) c = 3,54, α = 35 50, γ = e) a = 7, b = 4, γ = 38 f) a = 5, b = 6, c = 7 Strana 40 z 41

41 PRACOVNÝ LIST 40 Sínusová, kosínusová veta 1. V akom zornom uhle sa javí 70 predmet 70m dlhý pozorovateľovi, ktorý je od jedného konca vzdialený x 50m a od druhého konca 80m? 2. Lietadlo letí vo výške 3500m nad pozorovateľňou. x V okamihu prvého merania ho bolo vidieť 3500m pod výškovým uhlom 25, pri druhom meraní pod výškovým uhlom 48. Vypočítajte vzdialenosť, ktorú lietadlo preletelo medzi obidvoma meraniami. 3. Vypočítajte výšku stožiara, x ktorého pätu vidíme v hĺbkovom uhle a vrchol vo výškovom uhle Stožiar je pozorovaný z miesta 10m nad úrovňou päty stožiara. Strana 41 z 41

Goniometrické funkcie

Goniometrické funkcie Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej

Διαβάστε περισσότερα

Goniometrické rovnice riešené substitúciou

Goniometrické rovnice riešené substitúciou Ma-Go-10-T List 1 Goniometrické rovnice riešené substitúciou RNDr. Marián Macko U: Okrem základných goniometrických rovníc, ktorým sme sa už venovali, existujú aj zložitejšie goniometrické rovnice. Metódy

Διαβάστε περισσότερα

Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník

Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník 1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Stredná priemyselná škola Poprad. Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník

Stredná priemyselná škola Poprad. Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník Výkonové štandardy v predmete MATEMATIKA všetky odbory 1. až 4.ročník ÚVOD Vzdelávací štandard z matematiky pre stredné odborné školy so štvorročným štúdiom patrí medzi základné pedagogické dokumenty,

Διαβάστε περισσότερα

Osnovy pre slovensko-francúzske sekcie gymnázií Matematika

Osnovy pre slovensko-francúzske sekcie gymnázií Matematika Osnovy pre slovensko-francúzske sekcie gymnázií Matematika CIELE Ciele matematiky na bilingválnom gymnáziu sa v zásade nelíšia od cieľov klasických slovenských gymnázií. Hlavným rozdielom je získanie schopnosti

Διαβάστε περισσότερα

Základné vzťahy medzi hodnotami goniometrických funkcií

Základné vzťahy medzi hodnotami goniometrických funkcií Ma-Go-2-T List Základné vzťahy medzi hodnotami goniometrických funkcií RNDr. Marián Macko U: Predstav si, že ti zadám hodnotu jednej z goniometrických funkcií. Napríklad sin x = 0,6. Vedel by si určiť

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach

Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan

Διαβάστε περισσότερα

Učebné osnovy. Predmet: Matematika vo francúzskom jazyku. 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník Spolu počet h týždenne.

Učebné osnovy. Predmet: Matematika vo francúzskom jazyku. 1. ročník 2. ročník 3. ročník 4. ročník 5. ročník Spolu počet h týždenne. Gymnázium Ľudovíta Štúra v Trenčíne Učebné osnovy Stupeň vzdelania: ISCED 3A Študijný odbor: 7902 J gymnázium Zameranie školského vzdelávacieho programu: bilingválne štúdium Predmet: Matematika vo francúzskom

Διαβάστε περισσότερα

MIDTERM (A) riešenia a bodovanie

MIDTERM (A) riešenia a bodovanie MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude

Διαβάστε περισσότερα

Príklady k Matematike 1

Príklady k Matematike 1 Príklady k Matematike 1 1. Definícia derivácie 1. Nájdite deriváciu y = + 1) 2 tak, že prejdete od k t = + 1. 2. Zistite z definície, čomu sa rovnajú derivácie funkcií y = 3, y = 1/ 2 a y =. Návod k tretej

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín,

TEÓRIA. Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, TEÓRIA Množiny a operácie s nimi Objasnite pojmy: množina, prvky množiny, podmnožina, prienik, zjednotenie, rozdiel a doplnok množín, Vennove diagramy, disjunktné množiny, konečná a nekonečná množina,

Διαβάστε περισσότερα

1. Trojuholník - definícia

1. Trojuholník - definícia 1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

1.4 Rovnice, nerovnice a ich sústavy

1.4 Rovnice, nerovnice a ich sústavy 1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku

Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku Ma-Go-01-T List 1 Goniometrické funkcie ostrého uhla v pravouhlom trojuholníku RNDr. Marián Macko U: Pojem goniometrické funkcie v preklade z gréčtiny znamená funkcie merajúce uhly. Dajú sa použiť v pravouhlom

Διαβάστε περισσότερα

Goniometrické nerovnice

Goniometrické nerovnice Ma-Go--T List Goniometrické nerovnice RNDr. Marián Macko U: Problematiku, ktorej sa budeme venovať, začneme úlohou. Máme určiť definičný obor funkcie f zadanej predpisom = sin. Máš predstavu, s čím táto

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Grafy funkcií tangens a kotangens

Grafy funkcií tangens a kotangens Ma-Go-8-T List Graf funkcií tangens a kotangens RNDr. Marián Macko U: Dobrú predstavu o grafe funkcie f : = tg získame z jednotkovej kružnice prenesením hodnôt funkcie tangens pre niekoľko zvolených hodnôt

Διαβάστε περισσότερα

2. UHLY. Zapisovanie uhlov 1. spôsob pomocou troch bodov. Pri zápise uhla pomocou troch bodov je VRCHOL VŽDY V STREDE ZÁPISU.

2. UHLY. Zapisovanie uhlov 1. spôsob pomocou troch bodov. Pri zápise uhla pomocou troch bodov je VRCHOL VŽDY V STREDE ZÁPISU. 2. UHLY 2.1 ZÁPIS A OZNAČOVANIE UHLOV Dve polpriamky VA, VB, ktoré majú spoločný začiatok v bode V delia rovinu na dve časti. Tieto časti nazývame uhly. UHOL je časť roviny ohraničená dvoma polpriamkami,

Διαβάστε περισσότερα

Maturitné úlohy. Matematiky. Pre gymnázium

Maturitné úlohy. Matematiky. Pre gymnázium Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s krátkou odpoveďou) OBSAH ÚVOD... 3 1. ZÁKLADY MATEMATIKY... 3 1.1 Logika a množiny... 3 1.2 Čísla, premenné a výrazy... 7 1.3 Teória čísel...

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Tézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty

Tézy matematika. 1. Množiny, základné pojmy a vzťahy. 2. Výroky a ich pravdivostné hodnoty Tézy matematika 1. Množiny, základné pojmy a vzťahy 1. Vysvetlite obsah pojmov množina, prázdna množina, disjunktné množiny, popíšte vzťahy medzi množinami (podmnožina, rovnosť množín) a operácie s množinami

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Tematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ

Tematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ Tematický výchovno-vzdelávací plán z matematiky pre 6.ročník ZŠ (spracovaný v súlade s UO matematiky schválenými Ministerstvom školstva Slovenskej republiky dňa 3. apríla 1997 rozhodnutím číslo 1640/97-151

Διαβάστε περισσότερα

Numerické metódy Zbierka úloh

Numerické metódy Zbierka úloh Blanka Baculíková Ivan Daňo Numerické metódy Zbierka úloh Strana 1 z 37 Predhovor 3 1 Nelineárne rovnice 4 2 Sústavy lineárnych rovníc 7 3 Sústavy nelineárnych rovníc 1 4 Interpolačné polynómy 14 5 Aproximácia

Διαβάστε περισσότερα

Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník

Tematický výchovno - vzdelávací plán. Cvičenia z matematiky. pre 9. ročník výchovno vzdelávací plán Cvičenia z matematiky pre 9. ročník Počet hodín : 1 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok:

Διαβάστε περισσότερα

Maturitné otázky z matematiky

Maturitné otázky z matematiky Gmnázium Pavla Horova Michalovce Maturitné otázk z matematik školský rok 00 / 00 . VÝROKY A MNOŽINY Maturitné otázk a príklad z matematik, Gmnázium Pavla Horova, Michalovce Výrok a jeho negácia. Kvantifikované

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c)

DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) Prírodovedecká fakulta Univerzity P. J. Šafárika v Košiciach Božena Mihalíková, Ivan Mojsej Strana 1 z 43 DIFERENCÁLNE ROVNICE Matematická analýza (MAN 2c) 1 Obyčajné diferenciálne rovnice 3 1.1 Úlohy

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

F1. Goniometria - Esercizi

F1. Goniometria - Esercizi F1. Goniometria - Esercizi TRASFORMARE GRADI IN RADIANTI. 1) [ π 1, 11 π, 1 π, π ) 1 0 1 [ π 1, π, π, 1 1 π ) 0 0 0 [ π, π, 1 π, π ) 1 0 [ π, 11 1 π, 1 1 π, π ) 00 [ π 1, π, π, π ) 1 00 [ π 0, π, 1 π,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY

PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY Strojnícka fakulta Andrea Feňovčíková Gabriela Ižaríková aaaa aaaa Táto

Διαβάστε περισσότερα

Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník

Základná škola Sačurov, Školská 389, Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Základná škola Sačurov, Školská 389, 094 13 Sačurov Tematický výchovno-vzdelávací plán z matematiky pre 9. ročník Vypracované podľa učebných osnov ŠkVP A schválených radou školy dňa 28.8.2008 s platnosťou

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

Kód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!

Kód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU! Kód testu 1203 NEOTVÁRJTE, POČKJTE N POKYN! PREČÍTJTE SI NJPRV POKYNY K TESTU! MTURIT 2015 EXTERNÁ ČSŤ Časť I Vyriešte úlohy 01 až 20 a do odpoveďového hárka zapíšte vždy iba výsledok nemusíte ho zdôvodňovať

Διαβάστε περισσότερα

4 Reálna funkcia reálnej premennej a jej vlastnosti

4 Reálna funkcia reálnej premennej a jej vlastnosti Reálna unkcia reálnej premennej a jej vlastnosti Táto kapitola je venovaná štúdiu reálnej unkcie jednej reálnej premennej. Pojem unkcie patrí medzi základné pojmy v matematike. Je to vlastne matematický

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE Ústav informatizácie, automatizácie a matematiky

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE Ústav informatizácie, automatizácie a matematiky SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE Ústav informatizácie, automatizácie a matematiky Semestrálny projekt E-learning: Proseminár z matematiky a Matematika

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.7 Vzdelávacia

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, BRATISLAVA. VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium

ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, BRATISLAVA. VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 80 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z MATEMATIKY PRE GYMNÁZIUM štvorročné štúdium Vypracoval: RNDr. Marian Hanula Posúdili členovia Ústrednej

Διαβάστε περισσότερα

Matematika test M-1, 2. časť

Matematika test M-1, 2. časť M O N I T O R 001 pilotné testovanie maturantov MONITOR 001 Matematika test M-1,. časť forma A Kód školy: Číslo žiaka A B C F H I K L M O P S Kód A B C F H I triedy: 01 0 03 04 05 06 07 08 09 10 11 1 13

Διαβάστε περισσότερα

Grafy funkcií sínus a kosínus

Grafy funkcií sínus a kosínus Ma-Go-5-T List Graf funkcií sínus a kosínus RNDr. Marián Macko U: Pozoroval si nieked, ako sa správa vodná hladina na jazere, ak tam hodíš kameň? Ž: Vlní sa. U: Svojím tvarom v jednej vbranej línií pripomína

Διαβάστε περισσότερα

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014

Matematika 2. časť: Funkcia viac premenných Letný semester 2013/2014 Matematika 2 časť: Funkcia viac premenných Letný semester 2013/2014 RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

Numerické metódy Učebný text pre bakalárske štúdium

Numerické metódy Učebný text pre bakalárske štúdium Imrich Pokorný Numerické metódy Učebný text pre bakalárske štúdium Strana 1 z 48 1 Nepresnosť numerického riešenia úloh 4 1.1 Zdroje chýb a ich klasifikácia................... 4 1.2 Základné pojmy odhadu

Διαβάστε περισσότερα

Téma Pojmy Spôsobilosti

Téma Pojmy Spôsobilosti OBSAH VZDELÁVANIA 1.ročník (Prima) 4 hod. týždenne + 0,5 RH / 148,5 hod. ročne Tematický celok počet hodín Obsahový štandard Výkonový štandard Prostriedky hodnotenia Téma Pojmy Spôsobilosti Opakovanie

Διαβάστε περισσότερα

Tematický výchovno-vzdelávací plán. z matematiky. pre 9. ročník

Tematický výchovno-vzdelávací plán. z matematiky. pre 9. ročník výchovnovzdelávací plán z matematiky pre 9. ročník Počet hodín : 5 hod. týždenne Plán bol vypracovaný podľa: ŠVP pre 2. stupeň ZŠ ISCED 2 Plán vypracoval/a: Mgr. Viera Obložinská Školský rok: 2014/2015

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia

Διαβάστε περισσότερα

Z O S I L Ň O V A Č FEARLESS SÉRIA D

Z O S I L Ň O V A Č FEARLESS SÉRIA D FEARLESS SÉRIA D FEARLESS SÉRIA D Fearless 5000 D Fearless 2200 D Fearless 4000 D Fearless 1000 D FEARLESS SÉRIA D Vlastnosti: do 2 ohmov Class-D, vysoko výkonný digitálny kanálový subwoofer, 5 kanálový

Διαβάστε περισσότερα

Matematika 1 Elementárny kalkulus

Matematika 1 Elementárny kalkulus Matematika Elementárny kalkulus Úvod Prehl ad. Tieto poznámky obsahujú podklady k prednáške Matematika na špecializácii Aplikovaná informatika: jedná sa o 2 dvojhodinových prednášok doplnených dvojhodinovými

Διαβάστε περισσότερα

MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015

MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 MATEMATIKA 4.OA - 5 h týždenne 165 h ročne školský rok 2014/2015 Mgr. Valeria Godovičová 1. Mesiac 1 Úvodná hodina Telo 2-5 Druhá a tretia mocnina - čo už poznáme - opačné čísla a ich mocniny SEPTEMBER

Διαβάστε περισσότερα

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie,

Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej transformácie, Kapitola Riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie Cieľom cvičenia je zvládnuť riešenie diferenciálnych rovníc pomocou Laplaceovej tranformácie, keď charakteritická rovnica má rôzne

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΔΩΔΕΚΑΤΟ ΜΑΘΗΜΑ Έστω συνάρτηση f ορισμένη σε διάστημα I. Λέμε ότι η F είναι αντιπαράγωγος της f στο I αν ισχύει F = f στο I. ΠΡΟΤΑΣΗ. Αν η F είναι αντιπαράγωγος της f στο

Διαβάστε περισσότερα

M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie"

M8 Model Valcová a kužeľová nádrž v sérií bez interakcie M8 Model "Valcová a kužeľová nádrž v sérií bez interakcie" Úlohy: 1. Zostavte matematický popis modelu M8 2. Vytvorte simulačný model v prostredí: a) Simulink zostavte blokovú schému, pomocou rozkladu

Διαβάστε περισσότερα

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R

Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom

Διαβάστε περισσότερα

Definícia funkcie sínus a kosínus

Definícia funkcie sínus a kosínus a-go-0-t List Definícia funkcie sínus a kosínus RNDr. arián acko U: Dnešnú podobu goniometrickým funkciám dal až v 8. storočí Leonard Euler. Skúmal ich hodnot ako čísla, nie ako úsečk, ako sa to robilo

Διαβάστε περισσότερα

Testy a úlohy z matematiky

Testy a úlohy z matematiky Testy a úlohy z matematiky Spracovala a zostavila: c Mgr. Hedviga Soósová 008 Vydavateľ: Copyright c VARIA PRINT, s. r. o. 008. Prvé vydanie. Kontakt: VARIA PRINT, s. r. o. Mgr. Marta Varsányiová Ul. františkánov

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Výroky, hypotézy, axiómy, definície a matematické vety

Výroky, hypotézy, axiómy, definície a matematické vety Výroky, hypotézy, axiómy, definície a matematické vety Výrok je každá oznamovacia veta (tvrdenie), o ktorej má zmysel uvažovať, či je pravdivá alebo nepravdivá. Výroky označujeme pomocou symbolov: A, B,

Διαβάστε περισσότερα

Ohmov zákon pre uzavretý elektrický obvod

Ohmov zákon pre uzavretý elektrický obvod Ohmov zákon pre uzavretý elektrický obvod Fyzikálny princíp: Každý reálny zdroj napätia (batéria, akumulátor) môžeme považova za sériovú kombináciu ideálneho zdroja s elektromotorickým napätím U e a vnútorným

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές IV

Ηλεκτρονικοί Υπολογιστές IV ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στη βελτιστοποίηση Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Úvod do lineárnej algebry. Monika Molnárová Prednášky

Úvod do lineárnej algebry. Monika Molnárová Prednášky Úvod do lineárnej algebry Monika Molnárová Prednášky 2006 Prednášky: 3 17 marca 2006 4 24 marca 2006 c RNDr Monika Molnárová, PhD Obsah 2 Sústavy lineárnych rovníc 25 21 Riešenie sústavy lineárnych rovníc

Διαβάστε περισσότερα

S ohadom na popis vektorov a matíc napr. v kap. 5.1, majú normálne rovnice tvar

S ohadom na popis vektorov a matíc napr. v kap. 5.1, majú normálne rovnice tvar 6. STREDNÁ ELIPSA CHÝ Na rozdiel od kaitoly 4.4 uebnice itterer L.: Vyrovnávací oet kde ú araetre eliy trednej chyby odvodené alikáciou zákona hroadenia tredných chýb v tejto kaitole odvodíe araetre trednej

Διαβάστε περισσότερα

Derive vo vyučovaní matematiky

Derive vo vyučovaní matematiky Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ PaedDr. Jana Kontuľová Derive vo vyučovaní matematiky Osvedčená pedagogická skúsenosť edukačnej praxe Prešov 2012

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #7

ιαφάνειες παρουσίασης #7 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

ABSORPCIA SVETLA I. SKÚMANIE VLASTNOSTÍ SVETLA. Dátum:

ABSORPCIA SVETLA I. SKÚMANIE VLASTNOSTÍ SVETLA. Dátum: ABSORPCIA SVETLA I. SKÚMANIE VLASTNOSTÍ SVETLA 1. Priraď k optickým prostrediam správnu charakteristiku tak, že ich spojíš čiarami. Ku každému druhu doplň konkrétny príklad. PRIEHĽADNÉ... PRIESVITNÉ...

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

MATEMATIKA I ZBIERKA ÚLOH

MATEMATIKA I ZBIERKA ÚLOH TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

Mgr. Jana Fraasová, Višňová 41, Malinovo. VEC: Sťažnosť k učebnici matematiky pre 9. ročník ZŠ od autorky Viery Kolbaskej

Mgr. Jana Fraasová, Višňová 41, Malinovo. VEC: Sťažnosť k učebnici matematiky pre 9. ročník ZŠ od autorky Viery Kolbaskej Mgr. Jana Fraasová, Višňová 41, 900 45 Malinovo Minister školstva, vedy, výskumu a športu SR Doc. PhDr. Dušan Čaplovič, DrSc. Stromová 1 813 30 Bratislava VEC: Sťažnosť k učebnici matematiky pre 9. ročník

Διαβάστε περισσότερα

Analytická geometria

Analytická geometria Analytická geometria Analytická geometria je oblasť matematiky, v ktorej sa študujú geometrické útvary a vzťahy medzi nimi pomocou ich analytických vyjadrení. Praktický význam analytického vyjadrenia je

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com 1 Τριγωνομετρία Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω ορθογώνιο τρίγωνο ΑΒΓ με Α = 90 ο. Β φ x Α Γ Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ενός ορθογωνίου τριγώνου, που γνωρίζουμε τις πλευρές

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

διακριτοποίηση αριθµητική παραγώγιση

διακριτοποίηση αριθµητική παραγώγιση Ανέκαθεν οι άνθρωποι αντιµετώπιζαν προβλήµατα υπολογισµού µη κανονικών ποσοτήτων όπως είναι για παράδειγµα το εµβαδόν ενός χωραφιού µε ακανόνιστο περίγραµµα, ή ο όγκος µιας δεξαµενής κωνικού σχήµατος κλπ.

Διαβάστε περισσότερα

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky

Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

8. TRANSFORMÁCIA SÚRADNÍC

8. TRANSFORMÁCIA SÚRADNÍC 8. TRANSFORMÁCIA SÚRADNÍC V geodetickej pra je častou úlohou zmeniť súradnice bodov bez toho aby sa zmenila ich poloha na zemskom povrchu. Zmenu súradníc označujeme pojmom transformácia. Transformácia

Διαβάστε περισσότερα