Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects *
|
|
- Κρίος Παπαδόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects * David S. Lee UC Berkeley and NBER August 2005 Abstract This paper empirically assesses the wage effects of the Job Corps program, one of the largest federally-funded job training programs in the United States. Even with the aid of a randomized experiment, the impact of a training program on wages is difficult to study because of sample selection, a pervasive problem in applied micro-econometric work. Wage rates are only observed for those who are employed, and employment status itself may be affected by the training program. An intuitive trimming procedure is proposed for bounding average treatment effects in the presence of sample selection. In contrast to existing methods, the procedure requires neither exclusion restrictions nor a bounded support for the outcome of interest. Identification results, estimation, and the asymptotic distribution of the bounds, are developed. The bounds suggest that the program raised wages, consistent with the notion that the Job Corps raises earnings by increasing human capital, rather than solely through encouraging work. The proposed estimator can be applied to any treatment evaluation problem where there is non-random sample selection. * Department of Economics, UC Berkeley, 549 Evans Hall, #3880, Berkeley, CA dslee@econ.berkeley.edu. I thank David Card, Guido Imbens, Enrico Moretti, and Jim Powell for helpful discussions and David Autor, Josh Angrist, John DiNardo, Jonah Gelbach, Alan Krueger, Justin McCrary, Doug Miller, Aviv Nevo, Jack Porter, Ed Vytlacil, Diane Whitmore, and participants of the UC Berkeley Econometrics and Labor Lunches, for useful comments and suggestions.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 Figure I: Impact of Job Corps on Weekly Earnings 250 Weekly Earnings (Dollars) Control Treatment Week Since Random Assignment Figure II: Differences in Log(Hourly Wage), Conditional on Employment ln(hourly wage), levels Control Treatment Difference ln(hourly wage), difference Week Since Random Assignment -0.1
36 Figure III: Impact of Job Corps on Employment Rates Employment Rate Control Treatment Week Since Random Assignment
37 Table I: Summary Statistics, by Treatment Status, National Job Corps Study Control Program Difference Variable Prop. Non- Mean Std. Dev. Prop. Non- Mean Std. Dev. Diff. Std. Err. Missing Missing Female Age at Baseline White, Non-Hispanic Black, Non-Hispanic Hispanic Other Race/Ethnicity Never married Married Living together Separated Has Child Number of children Education Mother's Educ Father's Educ Ever Arrested Household Inc: < > Personal Inc: < > At Baseline: Have Job Mos. Empl. Prev. Yr Had Job, Prev. Yr Earnings, Prev. Yr Usual Hours/Week * Usual Wkly Earnings After Random Assignment: Week 52 Wkly Hours * Week 104 Wkly Hours Week 156 Wkly Hours * Week 208 Wkly Hours * Week 52 Wkly. Earn * Week 104 Wkly Earn Week 156 Wkly Earn * Week 208 Wkly Earn * Total Earn. (4 years) Number of Obs Note: N=9145. * denotes difference is statistically significant from 0 at the 5 percent (or less) level. Computations use design weights. Chi-square test of all coefficients equalling zero,from a logit of the treatment indicator on all baseline characteristics (where mean values were imputed for missing values) yields 24.95; associated p-value from a chi-squared (27 dof) distribution is
38 Table II: Logit of Employment in Week 208 on Baseline Characteristics Variable Estimate Variable Estimate Treatment Status * Household Inc: (0.046) Female * (0.085) (0.051) * Age at Baseline (0.104) (0.014) Black, Non-Hispanic * (0.086) (0.060) > Hispanic * (0.095) (0.077) Personal Inc: Other Race/Ethnicity * (0.099) (0.080) Married (0.175) (0.127) Living together > (0.130) (0.162) Separated At Baseline: (0.165) Have Job * Has Child (0.071) (0.114) Mos. Empl. Prev. Yr * Number of children (0.011) (0.070) Had Job, Prev. Yr * Education * (0.091) (0.019) Earnings, Prev. Yr. (*10000) Mother's Educ (0.120) (0.012) Usual Hours/Week (*10000) Father's Educ (19.508) (0.012) Usual Wkly Earnings (*10000) Ever Arrested * (1.990) (0.055) Constant * (0.285) Note: N=9415. Robust standard errors in parentheses. Table reports are (log-odds) coefficients from a logit of employment (positive hours) in week 208 on treatment status and baseline characteristics. * denotes statistically significance at the 0.05 (or less).
39 Table III: Bounds on Treatment Effects for Week 208 ln(wage) Utilizing Bounds of Support (Horowitz and Manski) (i) Control Group Observations 3599 (ii) Employment Rate (iii) Mean log(wage) (iv) Upper Bound (v) Lower Bound (vi) Treatment Group Observations 5546 (vii) Employment Rate (viii) Mean log(wage) (ix) Upper Bound (x) Lower Bound (xi) Difference Upper Bound: (ix) - (v) (xii) Lower Bound: (x) - (iv) Note:.90 and 2.77 are the lower and upper bounds of the support of ln(hourly wage) in Week 208 after random assignment. (iv) = (ii)*(iii) + [1-(ii)]*2.77. (v) = (ii)*(iii) + [1-(ii)]*(.90). Rows (ix) and (x) are defined analogously.
40 Table IV: Bounds on Treatment Effects for ln(wage) in Week 208 using Trimming Procedure Control (i) Number of Observations 3599 Control Standard Error (ii) Proportion Non-missing Std. Error (iii) Mean ln(wage) for employed Treatment UB Standard Error Treatment (iv) Number of Observations 5546 Component (v) Proportion Non-missing Component (vi) Mean ln(wage) for employed Component Total p = [(v)-(ii)]/(v) (vii) pth quantile Treatment LB Standard Error (viii)trimmed Mean: E[Y Y>y p ] Component Component (ix) (1-p)th quantile Component (x) Trimmed Mean: E[Y Y<y 1-p ] Total Effect Effect (xi) Upper Bound Estimate = (8)-(3) (xiii) UB Std.Err (xii) Lower Bound Estimate = (10)-(3) (xiv) LB Std.Err Confidence Interval 1 = [(xii)-1.96*(xiv),(xi)+1.96*(xiii)] [-0.052,0.117] Confidence Interval 2 (Imbens and Manski) = [(xii)-1.645*(xiv),(xi)+1.645*(xiii)] [-0.046,0.113] Note: After trimming,there are 3148 (3142) observations remaining in the treatment group after trimming the lower p (upper 1-p) of the distribution. These numbers are not indentical due to using the design weights. For the Upper Bound Standard Error,Component 1 is the usual standard error of the mean,using the trimmed sample. Component 2 is the square root of p*(1/3148)*{(viii)-(vii)} 2. Component 3 is the square root of {(1-(v))/(1-.491)- p}*{1/((v)*5546)}*{(viii)-(vii)} 2 where is the (weighted) proportion of the entire sample that is in the treatment group. "Total" refers to the square root of the sum the squared components. The entries for the Treatment LB Standard Error are defined analogously. (xiii) and (xiv) are the square root of the sum of the squared standard errors for the treatment UB (or LB) and control group. For the Imbens and Manski confidence interval satisifies Φ(1.645+((xi)-(xii))/(max((xiii),(xiv))) - Φ(-1.645) = 0.95,where Φ is the standard normal cdf. See Imbens and Manski (2004) for details.
41 Table V: Bounds on Treatment Effects for ln(wage) in Week 208 Trimming Procedure using Baseline Covariates Lower Bound for Treatment Mean Upper Bound for Treatment Mean Group Estimate Std. Error Obs. Estimate Std. Error Obs Total Effect Lower Bound for Effect Upper Bound for Effect Note: Trimming procedure from Table III applied separately to each Group (defined in text). "Total" estimates are means of the 5 groups using the observations as weights. Asymptotic variance for "Total" is computed according to Chamberlain (1993): it is the (observation-weighted) average of the asymptotic variance for each group plus the (observation-weighted) average squared deviation of each group's estimate from the "Total" mean. Control mean,(iii) in Table IV,is then subtracted to obtain bounds on the treatment effect.
42 Table VI: Treatment Effect Estimates and Bounds, by Week Fraction Non-missing Effect Trimming Untrimmed Lower Upper Control Treatment Proportion Bound Bound Week (0.0242) (0.011) (0.014) (0.015) Week (0.0204) (0.011) (0.021) (0.023) Week (0.0168) (0.011) (0.019) (0.014) Week (0.0154) (0.011) (0.017) (0.013) Note: (N=9145 for each row). Standard errors in parentheses. Standard errors for Trimming Proportion computed by the delta method. Bounds computed according to Table IV. See text for details.
43 Appendix Table I: Summary Statistics, by Treatment Status, National Job Corps Study Conditional on Positive Earnings in Week 90 Control Program Difference Variable Prop. Non- Mean Prop. Non- Mean Diff. Std. Err. Missing Missing Female Age at Baseline White, Non-Hispanic Black, Non-Hispanic Hispanic Other Race/Ethnicity Never married Married Living together Separated Has Child Number of children Education Mother's Educ Father's Educ Ever Arrested Household Inc: < > Personal Inc: < > At Baseline: Have Job Mos. Empl. Prev. Yr Had Job, Prev. Yr Earnings, Prev. Yr Usual Hours/Week Usual Wkly Earnings After Random Assignment: Week 90 ln(wage) * Number of Obs Note: N=4224. * denotes difference is statistically significant from 0 at the 5 percent level. Computations use design weights. Chi-square test of all coefficients equalling zero,from a logit of the treatment indicator on all baseline characteristics (where mean values were imputed for missing values) yields 19.50; associated p-value from a chisquared (27 dof) distribution is
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
The Political Economy of Heterogeneity and Conflict
The Political Economy of Heterogeneity and Conflict Enrico Spolaore Tufts University and NBER Romain Wacziarg UCLA and NBER March 2017 Abstract We present a conceptual framework linking cultural heterogeneity
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
τατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ ΔΙΑΤΡΙΒΗ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΔΗΜΗΤΡΙΟΥ Ν. ΠΙΤΕΡΟΥ
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment
Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
CSAE Working Paper WPS/
CSAE Working Paper WPS/2016-04 China sexpansionofhighereducation:thelabourmarket ConsequencesofaSupplyShock JohnKnight 1,DengQuheng 2 andlishi 3 March2016 Centre for the Study of African Economies Department
ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
CSAE WPS/2009-06 Figure 1: Cut Flower Exports from Kenya, 1995-2007 Table 1: Firms in Areas with and w/out Conflict Panel A - Export Records Variable Observations Mean in No-Conflict
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts
/ / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001
.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3
MSM Men who have Sex with Men HIV -
,**, The Japanese Society for AIDS Research The Journal of AIDS Research HIV,0 + + + + +,,, +, : HIV : +322,*** HIV,0,, :., n,0,,. + 2 2, CD. +3-ml n,, AIDS 3 ARC 3 +* 1. A, MSM Men who have Sex with Men
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΙΟΙΚΗΣΗ ΤΗΣ ΥΓΕΙΑΣ ΤΕΙ ΠΕΙΡΑΙΑ ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ
WORKING P A P E R. Learning your Child s Price. Evidence from Data on Projected Dowry in Rural India A. V. CHARI AND ANNEMIE MAERTENS WR-899
WORKING P A P E R Learning your Child s Price Evidence from Data on Projected Dowry in Rural India A. V. CHARI AND ANNEMIE MAERTENS WR-899 November 2011 This product is part of the RAND Labor and Population
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Διδακτορική Διατριβή
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Διδακτορική Διατριβή Η ΕΠΙΔΡΑΣΗ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΑΡΕΜΒΑΣΗΣ ΥΠΟΒΟΗΘΟΥΜΕΝΗΣ ΑΠΟ ΥΠΟΛΟΓΙΣΤΗ ΣΤΗΝ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΚΑΙ ΣΤΗΝ ΑΥΤΟΦΡΟΝΤΙΔΑ ΑΣΘΕΝΩΝ ΜΕ ΚΑΡΔΙΑΚΗ
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.
A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:
Δείγμα (μεγάλο) από οποιαδήποτε κατανομή
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
ΠΑΝΔΠΙΣΗΜΙΟ ΜΑΚΔΓΟΝΙΑ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ ΣΜΗΜΑΣΟ ΔΦΑΡΜΟΜΔΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΑΝΑΠΣΤΞΗ ΓΤΝΑΜΙΚΗ ΙΣΟΔΛΙΓΑ ΓΙΑ ΣΟ ΓΔΝΙΚΟ ΚΑΣΑΣΗΜΑ ΚΡΑΣΗΗ ΓΡΔΒΔΝΧΝ ΜΔ ΣΗ ΒΟΗΘΔΙΑ PHP MYSQL Γηπισκαηηθή Δξγαζία ηνπ Υξήζηνπ
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση
Lampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ Πρόγραμμα Μεταπτυχιακών Σπουδών «Επιστήμη και Τεχνολογία Τροφίμων και Διατροφή του Ανθρώπου» Κατεύθυνση: «Διατροφή, Δημόσια
Εισαγωγή στην Ανάλυση Διακύμανσης
Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Global energy use: Decoupling or convergence?
Crawford School of Public Policy Centre for Climate Economics & Policy Global energy use: Decoupling or convergence? CCEP Working Paper 1419 December 2014 Zsuzsanna Csereklyei Geschwister Scholl Institute
Repeated measures Επαναληπτικές μετρήσεις
ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΘΕΜΕΛΙΩΔΗΣ ΚΛΑΔΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΑΓΟΡΑΣ
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Διπλωματική Εργασία ΘΕΜΕΛΙΩΔΗΣ ΚΛΑΔΙΚΗ ΑΝΑΛΥΣΗ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΑΓΟΡΑΣ Του ΚΩΣΤΟΥΛΗ ΔΗΜΗΤΡΙΟΥ ΤΟΥ ΒΑΣΙΛΕΙΟΥ
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
ΣΔΥΝΟΛΟΓΙΚΟ ΠΑΝΔΠΙΣΗΜΙΟ ΚΤΠΡΟΤ ΥΟΛΗ ΔΠΙΣΗΜΧΝ ΤΓΔΙΑ ΣΜΗΜΑ ΝΟΗΛΔΤΣΙΚΗ. Πηπρηαθή εξγαζία
ΣΔΥΝΟΛΟΓΙΚΟ ΠΑΝΔΠΙΣΗΜΙΟ ΚΤΠΡΟΤ ΥΟΛΗ ΔΠΙΣΗΜΧΝ ΤΓΔΙΑ ΣΜΗΜΑ ΝΟΗΛΔΤΣΙΚΗ Πηπρηαθή εξγαζία ΣΟ ΑΓΥΟ ΠΟΤ ΒΙΧΝΟΤΝ ΓΟΝΔΙ ΣΗΝ ΦΡΟΝΣΙΓΑ ΑΤΣΙΣΙΚΟΤ ΠΑΙΓΙΟΤ 2-18 ΔΣΧΝ Φξεηδεξίθε Νενθιένπο Λεκεζόο, 2014 ΣΔΥΝΟΛΟΓΙΚΟ ΠΑΝΔΠΙΣΗΜΙΟ
Marginal effects in the probit model with a triple dummy variable interaction term
Marginal effects in the probit model with a triple dummy variable interaction term Thomas Cornelißen and Katja Sonderhof Leibniz Universität Hannover, Discussion Paper No. 386 January 2008 ISSN: 0949 9962
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ Socm09008@soc.aegean.gr
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΤΟΠΙΚΗ ΚΟΙΝΩΝΙΚΗ ΑΝΑΠΤΥΞΗ ΚΑΙ ΣΥΝΟΧΗ» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Θέμα: Διερεύνηση των απόψεων
H επίδραση της γονικής παρουσίας και του παιχνιδιού σε επώδυνες διαδικασίες στα παιδιά
ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΝΟΣΗΛΕΥΤΙΚΗ 2008, 47(3):367 373 H επίδραση της γονικής παρουσίας και του παιχνιδιού σε επώδυνες διαδικασίες στα παιδιά Ανθή Χρυσοστόμου Νοσηλεύτρια ΠΕ, ΜSc, Kέντρο Ελέγχου και Πρόληψης
Statistics. hrs1 Number of hours worked last week. educ Highest year of school completed. sibs NUMBER OF BROTHERS AND SISTERS. N Valid
1. Να χρησιμοποιηθεί το gssnet.sav για να υπολογιστούν τα περιγραφικά μέτρα για τον αριθμό αδελφών (sibs), έτη εκπαίδευσης (educ), και ώρες εργασίας την τελευταία εβδομάδα(hrs1). Να δημιουργηθούν επίσης
Investigating the fuzzy areas of accuracy and confidence of muslim pupils- learners of Greek as Second Language in Thrace, Greece
Investigating the fuzzy areas of accuracy and confidence of muslim pupils- learners of Greek as Second Language in Thrace, Greece Polyxeni Intze & Nikolaos Mathioudakis Democritus University of Thrace,
TAMIL NADU PUBLIC SERVICE COMMISSION REVISED SCHEMES
TAMIL NADU PUBLIC SERVICE COMMISSION REVISED SCHEMES *********** COMBINED CIVIL SERVICES - I GROUP - I SERVICES PRELIMINARY EXAMINATION SinglePaper GeneralStudies(DegreeStd.)200items/300marks(Objectivetype)
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
A Finite Precision of Private Information Precision of Private Information Approaching Infinity 0 θ1 * θ Session Cost of Action A First 20 Last 20 Rounds Rounds Information in Stage 2 First 20 Last
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA
ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA Στις ασκήσεις που ακολουθούν χρησιμοποιούμε δεδομένα για 3010 εργαζόμενους άνδρες ηλικίας 24 έως 34 από έρευνα που πραγματοποιήθηκε το
Figure 1: Map of Kagera Region Tables Table 1: Percent of individual reporting illness and injury in the four weeks prior to survey, by age and gender Age Total Male Female 0-2 63.63 64.02 63.17 3-5 48.48
«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»
I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ
LAMPIRAN. Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26
LAMPIRAN Lampiran 1 Uji Chow Test Model Pertama Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs =
ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ονοματεπώνυμο Κεντούλλα Πέτρου Αριθμός Φοιτητικής Ταυτότητας 2008761539 Κύπρος
Principles of Workflow in Data Analysis
IndianaUniversity PrinciplesofWorkflowin DataAnalysis ScottLong 1.Acoordinatedframeworkforconductingdataanalysis 2.WFinvolvescoordinatedproceduresfor: o Planning,organizinganddocumentingresearch o Cleaningdata
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
χ 2 test ανεξαρτησίας
χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science
Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ Πτυχιακή εργασία ΓΝΩΣΕΙΣ ΚΑΙ ΣΤΑΣΕΙΣ ΝΟΣΗΛΕΥΤΩΝ ΠΡΟΣ ΤΟΥΣ ΦΟΡΕΙΣ ΜΕ ΣΥΝΔΡΟΜΟ ΕΠΙΚΤΗΤΗΣ ΑΝΟΣΟΑΝΕΠΑΡΚΕΙΑΣ (AIDS) Αλέξης Δημήτρη Α.Φ.Τ: 20085675385 Λεμεσός
Μελέτη Επαναχωροθέτησης Φαρμακείων στο Κέντρο της Θεσσαλονίκης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΤΕΧΝΙΚΕΣ & ΜΕΘΟΔΟΙ ΣΤΗΝ ΑΝΑΛΥΣΗ, ΣΧΕΔΙΑΣΜΟ & ΔΙΑΧΕΙΡΙΣΗ ΧΩΡΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Επίδραση της Συμβολαιακής Γεωργίας στην Χρηματοοικονομική Διοίκηση των Επιχειρήσεων Τροφίμων. Ιωάννης Γκανάς
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ & ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΟΡΓΑΝΩΣΗ ΚΑΙ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΡΟΦΙΜΩΝ & ΓΕΩΡΓΙΑΣ
1991 US Social Survey.sav
Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth