LAMPIRAN. Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26
|
|
- Κλωθώ Βουρδουμπάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 LAMPIRAN Lampiran 1 Uji Chow Test Model Pertama Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 F(2,336) = corr(u_i, Xb) = Prob > F = lnpdrb_l Coef. Std. Err. t P> t [95% Conf. Interval] lnmodal_l lnhumcap_l _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(25, 336) = Prob > F = a
2 Lampiran 2 LM Test Model Pertama Hipotesis: Ho: Pooled Least Square Ha: Random Effect Method Decision Rule: Tolak Ho apabila P-value < α Random-effects GLS regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 Random effects u_i ~ Gaussian Wald chi2(2) = corr(u_i, X) = 0 (assumed) Prob > chi2 = lnpdrb_l Coef. Std. Err. z P> z [95% Conf. Interval] lnmodal_l lnhumcap_l _cons sigma_u sigma_e rho (fraction of variance due to u_i). xttest0 Breusch and Pagan Lagrangian multiplier test for random effects: lnpdrb_l[kode,t] = Xb + u[kode] + e[kode,t] Estimated results: Var sd = sqrt(var) lnpdrb_l e u Test: Var(u) = 0 chi2(1) = Prob > chi2 = b
3 Lampiran 3 Hausman Test Model Pertama Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 F(2,336) = corr(u_i, Xb) = Prob > F = lnpdrb_l Coef. Std. Err. t P> t [95% Conf. Interval] lnmodal_l lnhumcap_l _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(25, 336) = Prob > F = est store fixed. xtreg lnpdrb_l lnmodal_l lnhumcap_l, re Random-effects GLS regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 Random effects u_i ~ Gaussian Wald chi2(2) = corr(u_i, X) = 0 (assumed) Prob > chi2 = lnpdrb_l Coef. Std. Err. z P> z [95% Conf. Interval] lnmodal_l lnhumcap_l _cons sigma_u sigma_e rho (fraction of variance due to u_i). est store random c
4 . hausman fixed random ---- Coefficients ---- (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. lnmodal_l lnhumcap_l b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(2) = (b-b)'[(v_b-v_b)^(-1)](b-b) = 1.61 Prob>chi2 = d
5 Lampiran 4 Uji Chow Test Model Ketiga Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 307 Group variable (i): thn Number of groups = 14 R-sq: within = Obs per group: min = 17 between = avg = 21.9 overall = max = 26 F(5,288) = corr(u_i, Xb) = Prob > F = lnhd Coef. Std. Err. t P> t [95% Conf. Interval] lninhumcap lngdp_cap lnopenness gini educ_gdp _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(13, 288) = 2.52 Prob > F = e
6 Lampiran 5 LM Test Model Ketiga Hipotesis: Ho: Pooled Least Square Ha: Random Effect Method Decision Rule: Tolak Ho apabila P-value < α Random-effects GLS regression Number of obs = 307 Group variable (i): kode Number of groups = 14 R-sq: within = Obs per group: min = 17 between = avg = 21.9 overall = max = 26 Random effects u_i ~ Gaussian Wald chi2(5) = corr(u_i, X) = 0 (assumed) Prob > chi2 = lnhd Coef. Std. Err. z P> z [95% Conf. Interval] lninhumcap lngdp_cap lnopenness gini educ_gdp _cons sigma_u 0 sigma_e rho 0 (fraction of variance due to u_i) Breusch and Pagan Lagrangian multiplier test for random effects: lnhd[kode,t] = Xb + u[kode] + e[kode,t] Estimated results: Var sd = sqrt(var) lnhd e u Test: Var(u) = 0 chi2(1) = Prob > chi2 = f
7 Lampiran 6 Hausman Test Model Ketiga Hipotesis: Ho: Random Effect Method Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 307 Group variable (i): thn Number of groups = 14 R-sq: within = Obs per group: min = 17 between = avg = 21.9 overall = max = 26 F(5,288) = corr(u_i, Xb) = Prob > F = lnhd Coef. Std. Err. t P> t [95% Conf. Interval] lninhumcap lngdp_cap lnopenness gini educ_gdp _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(13, 288) = 2.52 Prob > F = Random-effects GLS regression Number of obs = 307 Group variable (i): kode Number of groups = 14 R-sq: within = Obs per group: min = 17 between = avg = 21.9 overall = max = 26 Random effects u_i ~ Gaussian Wald chi2(5) = corr(u_i, X) = 0 (assumed) Prob > chi2 = lnhd Coef. Std. Err. z P> z [95% Conf. Interval] g
8 lninhumcap lngdp_cap lnopenness gini educ_gdp _cons sigma_u 0 sigma_e rho 0 (fraction of variance due to u_i) ---- Coefficients ---- (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. lninhumcap lngdp_cap lnopenness gini educ_gdp b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(5) = (b-b)'[(v_b-v_b)^(-1)](b-b) = Prob>chi2 = h
9 Lampiran 7 Uji Chow Test Model Keempat Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 F(3,335) = corr(u_i, Xb) = Prob > F = kota_pop Coef. Std. Err. t P> t [95% Conf. Interval] se_pop co_pop em_pop _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(25, 335) = Prob > F = i
10 Lampiran 8 LM Test Model Keempat Hipotesis: Ho: Pooled Least Square Ha: Random Effect Method Decision Rule: Tolak Ho apabila P-value < α Random-effects GLS regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 Random effects u_i ~ Gaussian Wald chi2(3) = corr(u_i, X) = 0 (assumed) Prob > chi2 = kota_pop Coef. Std. Err. z P> z [95% Conf. Interval] se_pop co_pop em_pop _cons sigma_u sigma_e rho (fraction of variance due to u_i). xttest0 Breusch and Pagan Lagrangian multiplier test for random effects: kota_pop[kode,t] = Xb + u[kode] + e[kode,t] Estimated results: Var sd = sqrt(var) kota_pop e u Test: Var(u) = 0 chi2(1) = Prob > chi2 = j
11 Lampiran 9 Metode Robust untuk Menghilangkan Pelanggaran Asumsi Heteroskedastisitas dan Autokorelasi Regression with robust standard errors Number of obs = 364 F( 3, 360) = Prob > F = R-squared = Root MSE = Robust kota_pop Coef. Std. Err. t P> t [95% Conf. Interval] se_pop co_pop em_pop _cons k
12 Lampiran 10 Hasil Regresi Hubungan Tingkat Output dengan Tingkat Modal, Tenaga Kerja, dan Kemajuan Teknologi. (a) R 2, adjusted R 2, Probabilitas, F-Stat, dan keterangan-keterangan lain Fixed Effect GLS Regressions Number of obs 364 Group variable (i): thn Number of groups 26 R-Square Within: Between: Overall: per group: min 12 avg 13.9 max 14 Fixed effects u_i ~ Gaussian F(2,336) corr(u_i, Xb) Prob > chi (b) Koefisien-koefisien, Standard Error, t-stat, P-value, dan Confidence Interval lnpdrb Coef. Std. Err. t P> t [95% Conf. Interval] lnhumcap lnmodal *** _cons *** Lampiran 11 Matrik Pengujian Asumsi BLUE Model Pertama Multikolinieritas lnmodal lnhumcap lnmodal lnhumcap Homoskedastisitas/Heteroskedastisitas (Breusch-Pagan/Cook-Weisberg) chi2(1) Prob > chi Autokorelasi (Wooldridge Test) F(25, 336) Prob > F l
13 Lampiran 12 Arah dan Signifikansi Analisa Hubungan Tingkat Output dengan Tingkat Modal, Tenaga Kerja, dan Kemajuan Teknologi Variabel Estimasi Arah Arah Pada Hasil Regresi Keterangan lnhumcap Positif Positif Signifikan (α = 1%), arah sama lnmodal Positif Positif Signifikan (α = 1%), lnlabor Positif Positif arah sama _cons Positif Positif Signifikan (α = 1%), arah sama m
14 Lampiran 13 Hasil Regresi Model Ketiga (a) R 2, adjusted R 2, Probabilitas, F-Stat, dan keterangan-keterangan lain Fixed-effects (within) Number of obs 307 regression Group variable (i): thn Number of groups 14 R-Square Within: per group: min Between: avg 21.9 Overall: max F(5,288) corr(u_i, Xb) Prob > F (b) Koefisien-koefisien, Standard Error, t-stat, P-value, dan Confidence Interval lnpop Coef. Std. Err. t P> t [95% Conf. Interval] lninhumcap lngdp_cap lnopenness gini educ_gdp cons n
15 Lampiran 14 Matrik Pengujian Multikolinieritas Model Kedua lninhumcap lngdp_cap lnopenness gini educ_gdp lninhumcap lngdp_cap lnopenness gini educ_gdp Homoskedastisitas/Heteroskedastisitas (Breusch-Pagan/Cook-Weisberg) chi2(1) Prob > chi Autokorelasi (Wooldridge Test) F(13, 288) 2.52 Prob > F Lampiran 15 Arah dan Signifikansi Analisa Hubungan Perkembangan dengan Faktor-Faktor Determinasinya Variabel Estimasi Arah Arah Pada Hasil Keterangan Regresi lninhumcap Negatif Positif Signifikan ( pada α = 1%), arah tidak sama lngdp_cap Positif Positif Tidak signifikan, arah sama lnopenness Positif Positif Signifikan (pada α = 1%), arah sama gini Negatif Negatif Signifikan ( pada α = 10%), arah sama educ_gdp Positif Positif Tidak signifikan, arah sama _cons Positif Positif signifikan, arah sama o
16 Lampiran 16 Hasil Regresi Hubungan City Size dengan Human Capital dan Spillover Effect Tenaga Kerja Sektor Manufaktur (a) R 2, adjusted R 2, Probabilitas, F-Stat, dan keterangan-keterangan lain Robust Method Number of obs 364 Group variable (i): thn Number of groups - R-Square Within: - per group: - min Between: - avg - Overall: max - F( 3, 360) Root MSE Prob > F (b) Koefisien-koefisien, Standard Error, t-stat, P-value, dan Confidence Interval kota_pop Coef. Std. Err. t P> t [95% Conf. Interval] se_pop co_pop em_pop _cons p
17 Lampiran 17 Matrik Pengujian Multikolinieritas Model Keempat (Fixed Effect dan Random Effect) se_pop se_pop1 co_pop1 lnem_pop co_pop em_pop Homoskedastisitas/Heteroskedastisitas (Breusch-Pagan/Cook-Weisberg) chi2(1) Prob > chi Autokorelasi (Wooldridge Test) F(25, 335) Prob > F Lampiran 18 Arah dan Signifikansi Analisa Hubungan Human capital dan Spillover Effect terhadap City Size (Robust Method) Variabel Estimasi Arah Arah Pada Hasil Keterangan Regresi se_pop1 Positif Positif Signifikan ( pada α = 5%), arah sama co_pop1 Positif Positif Tidak signifikan, arah sama em_pop Positif Positif Tidak signifikan, arah sama _cons Positif Positif Signifikan ( pada α = 1%), arah sama q
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111
MATHACHij = γ00 + u0j + rij
Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Stata Session 3. Tarjei Havnes. University of Oslo. Statistics Norway. ECON 4136, UiO, 2012
Stata Session 3 Tarjei Havnes 1 ESOP and Department of Economics University of Oslo 2 Research department Statistics Norway ECON 4136, UiO, 2012 Tarjei Havnes (University of Oslo) Stata Session 3 ECON
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΣΤΡΑΤΗΓΙΚΗ Η ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΗΣ ΤΗΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΓΕΙΟΝΟΜΙΚΗΣ ΠΕΡΙΘΑΛΨΗΣ
ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA
ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA Στις ασκήσεις που ακολουθούν χρησιμοποιούμε δεδομένα για 3010 εργαζόμενους άνδρες ηλικίας 24 έως 34 από έρευνα που πραγματοποιήθηκε το
artinya vektor nilai rata-rata dari kelompok ternak pertama sama dengan kelompok ternak kedua artinya kedua vektor nilai-rata berbeda
LAMPIRAN 48 Lampiran 1. Perhitungan Manual Statistik T 2 -Hotelling pada Garut Jantan dan Ekor Tipis Jantan Hipotesis: H 0 : U 1 = U 2 H 1 : U 1 U 2 Rumus T 2 -Hotelling: artinya vektor nilai rata-rata
1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm
HASIL PENELITIAN 1. Hasil Pengukuran Kadar TNF-α DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm NO KADAR ( pg/ml) ABSORBANSI 1. 0 0.055 2. 15.6 0.207 3. 31.5 0.368 4. 62.5 0.624
Estimation of gasoline demand function
Seminar paper in Panel Analysis Estimation of gasoline demand function Markus Pock Matr.Nr. 8900483 June 2005 Abstract The objective of this seminar paper in the course of the lecture by R. Kunst Paneldata,
ΔPersediaan = Persediaan t+1 - Persediaan t
Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)
Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 27/6/2016
Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 27/6/2016 Πρόβλημα 1. Σε μια μελέτη συγκεντρώθηκαν δεδομένα σχετικά με το μέγεθος του πληθυσμού (σε ζεύγη πτηνών) ενός είδους
LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.
LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA
Προβλέψεις ισοτιμιών στο EViews
Προβλέψεις ισοτιμιών στο EViews Θεωρητικό πλαίσιο προβλέψεων σημείου Σημαντικές επιλογές πλαισίου: Τί θα κάνουμε με την πρόβλεψη; Θα την μοιραστούμε με πολλούς πελάτες, που θα την χρησιμοποιήσουν με διαφορετικό
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΥΒΕΡΝΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΣΤΡΑΤΗΓΙΚΗ ΚΥΒΕΡΝΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ Η ΠΕΡΙΠΤΩΣΗ 12 ΧΩΡΩΝ ΖΕΡΒΑ ΚΩΝΣΤΑΝΤΙΝΑ
ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας
ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια
Lampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
Analisis Sidik Ragam Tinggi Tanaman Wortel pada Umur 30 HST. Tabel Tinggi Tanaman (cm) Wortel pada Umur 30 HST Ulangan Jumlah Purata
LAMPIRAN 24 Lampiran 1 Analisis Sidik Ragam Tinggi Tanaman Wortel pada Umur 30 HST Tabel Tinggi Tanaman (cm) Wortel pada Umur 30 HST 0 7,4 8,0 9,0 24,40 8,13 2,5 8,8 8,2 9,0 26,00 8,67 5 9,2 9,0 9,0 27,20
Akaike Information Criteria. Best Linear Unbiased Estimator. Census and Economic Information Centre. Durbin Watson statistics
DAFTAR ISTILAH ADF AIC BLUE BOP CAD CEIC CF DW EO FDI FEDV FPE GDP HQ IED IFS IHSG IOR IRF IRP IRU LM LR NFDI Augmented Dicky Fuller Statistic Akaike Information Criteria Best Linear Unbiased Estimator
A Finite Precision of Private Information Precision of Private Information Approaching Infinity 0 θ1 * θ Session Cost of Action A First 20 Last 20 Rounds Rounds Information in Stage 2 First 20 Last
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
Multilevel models for analyzing people s daily moving behaviour
Multilevel models for analyzing people s daily moving behaviour Matteo BOTTAI 1 Nicola SALVATI 2 Nicola ORSINI 3 13th European Colloquium on Theoretical and Quantitative Geography Lucca 5th - 9th September,
Σηµαντικές µεταβλητές για την άσκηση οικονοµικής ολιτικής µίας χώρας. Καθοριστικοί αράγοντες για την οικονοµική ανά τυξη.
ΑΜΕΣΕΣ ΞΕΝΕΣ ΕΠΕΝΔΥΣΕΙΣ, ΑΕΠ, ΕΞΑΓΩΓΕΣ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΕΛΛΑΔΑ- ΙΣΠΑΝΙΑ-ΠΟΡΤΟΓΑΛΙΑΠΟΡΤΟΓΑΛΙΑ Επιβλέπων καθηγητής: Δριτσάκης Νικόλαος Εκπονήθηκε από: Τέμπου Αικατερίνη (11/37) ΕΙΣΑΓΩΓΙΚΑ Μελέτη
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών
Εισαγωγή στην Ανάλυση Διακύμανσης
Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα
ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση
CSAE WPS/2009-06 Figure 1: Cut Flower Exports from Kenya, 1995-2007 Table 1: Firms in Areas with and w/out Conflict Panel A - Export Records Variable Observations Mean in No-Conflict
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
/
: 2014 2010 2015/2014 : 2014 2010 2015/2014 I II الملخص The aim of this study is to know the effect of the number of the financial indicators on the prices of organizations shares in Dubai s stock exchange,
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square
Appendix A3 Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS F Value Pr > F Model 107 374.68 3.50 8573.07
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους
OLS. University of New South Wales, Australia
1997 2007 5 OLS Abstract An understanding of the macro-level relationship between fertility and female employment is relevant and important to current policy-making. The objective of this study is to empirically
KONSEP ASAS & PENGUJIAN HIPOTESIS
KONSEP ASAS & PENGUJIAN HIPOTESIS HIPOTESIS Hipotesis = Tekaan atau jangkaan terhadap penyelesaian atau jawapan kepada masalah kajian Contoh: Mengapakah suhu bilik kuliah panas? Tekaan atau Hipotesis???
Hairunnizam Wahid Jaffary Awang Kamaruddin Salleh Rozmi Ismail Universiti Kebangsaan Malaysia
Hairunnizam Wahid Jaffary Awang Kamaruddin Salleh Rozmi Ismail Universiti Kebangsaan Malaysia Jadual 1: Sekolah yang dijadikan Sampel kajian Bil Nama Sekolah 1 SAM Sg. Merab Luar, Sepang 2 SAM Hulu Langat
Απλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
Νίκος Πανταζής Βιοστατιστικός, PhD ΕΔΙΠ Ιατρικής Σχολής ΕΚΠΑ Εργαστήριο Υγιεινής, Επιδημιολογίας & Ιατρικής Στατιστικής
Νίκος Πανταζής Βιοστατιστικός, PhD ΕΔΙΠ Ιατρικής Σχολής ΕΚΠΑ Εργαστήριο Υγιεινής, Επιδημιολογίας & Ιατρικής Στατιστικής Η έννοια της στατιστικής για τον απλό άνθρωπο: Πολιτικές δημοσκοπήσεις (π.χ. το Χ
Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
Εισαγωγή στην Ανάλυση Συνδιακύμανσης (Analysis of Covariance, ANCOVA)
Εισαγωγή στην Ανάλυση Συνδιακύμανσης (nalysis of Covariance, NCOV) Βασίλης Παυλόπουλος Λέκτορας Διαπολιτισμικής Ψυχολογίας Τομέας Ψυχολογίας, Πανεπιστήμιο Αθηνών vpavlop@psych.uoa.gr http://www.psych.uoa.gr/~vpavlop
ο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x
η &, ε ε 007!# # # ι, ι, η ιι ι ι ι ι η (.. ι, η ι η, ι & ι!ι η 50, ι ηιη 000 ι, ι, ',!,! )!η. (, ηι, ι ι ι ι "!η. #, ι "ι!η ι, ηι, ι ι ι η. ι, ι ι, ' ι ι ι η ι ι ι ι # ι ι ι ι ι 7. ο),,),--,ο< $ι ιι!η
PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari
PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα
Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:
Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
Ciri-ciri Taburan Normal
1 Taburan Normal Ciri-ciri Taburan Normal Ia adalah taburan selanjar Ia adalah taburan simetri Ia adalah asimtot kepada paksi Ia adalah uni-modal Ia adalah keluarga kepada keluk Keluasan di bawah keluk
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio
Statistical Tools for SWGTOX Method Validation of 11 Benzodiazepines in Whole Blood by SPE and GC/MS Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio Disclaimer Neither I nor any member of my immediate
KANDUNGAN BAB PERKARA HALAMAN PENGESAHAN STATUS TESIS PENGESAHAN PENYELIA HALAMAN JUDUL PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT
vii KANDUNGAN BAB PERKARA HALAMAN PENGESAHAN STATUS TESIS PENGESAHAN PENYELIA HALAMAN JUDUL i PENGAKUAN ii DEDIKASI iii PENGHARGAAN iv ABSTRAK v ABSTRACT vi KANDUNGAN vii SENARAI JADUAL xiv SENARAI RAJAH
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Γενικές οδηγίες για την εργασία Τέταρτη Γραπτή Εργασία Όλες οι ερωτήσεις
Lecture 8: Serial Correlation. Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II
Lecture 8: Serial Correlation Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II Midterm Review Most people did very well Good use of graphics Good writeups of results A few technical
BAB V PENUTUP , maka diperoleh kesimpulan yang dapat diuraikan sebagai berikut:
BAB V PENUTUP 5.1. Kesimpulan Berdasarkan hasil penelitian dan analisis tentang peran pertumbuhan ekonomi dalam menurunkan kemiskinan di tingkat provinsi di Indonesia tahun 2004 2012, maka diperoleh kesimpulan
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL3 1 5 5 4 4 4 3 4 3 4 3 4 5 2 4 4 3 5 4 4 4 4 5 4 3 4 3 2 2 3 2 3 3 3 3 4 2 3 2 4 4 4 5 3 4 4 4 3 4 4 5 4 5 5 5 4 2 3 3 3 4 3
τατιςτική ςτην Εκπαίδευςη II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν
LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR
TNR 1 space 1.15 LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL III TNR 1 Space.0 STATISTIK
Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans
S1 of S11 Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans Eveline Dirinck, Alin C. Dirtu, Govindan Malarvannan, Adrian
ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration )
ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ (TEST: Unit Root-Cointegration ) ΦΑΙΝΟΜΕΝΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η στασιμότητα των δεδομένων (χρονοσειρών) είναι θεωρητική προϋπόθεση για την παλινδρόμηση, δηλ. την εκτίμηση
Transformasi Koordinat 2 Dimensi
Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Επαναληπτικό μάθημα GLM
Επαναληπτικό μάθημα GLM GLM: Πιθανοφάνεια, εκθετική οικογένεια κατανομών (1) Ο αριθμός των ατυχημάτων το έτος 2001 για 5 οδηγούς ήταν αντίστοιχα: 3, 1, 5, 0 και 2. Γράψτε τη likelihood των δεδομένων Υπολογίστε
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 5: ΠΡΟΥΠΟΛΟΓΙΣΜΟΙ ΚΑΙ ΠΡΟΒΛΕΨΕΙΣ ΠΩΛΗΣΕΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων
Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11
ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,
1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
Simon et al. Supplemental Data Page 1
Simon et al. Supplemental Data Page 1 Supplemental Data Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction Short
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών
Supplementary figures
A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών
Political Science 552. Qualitative Variables. Dichotomous Predictor. Dummy Variables-Gender. Qualitative Variables March 3, 2004
Qualtatve Varables Marh, Poltal See 55 Qualtatve Varables Dhotomous Predtor Y PID Geder ( male, female) Y ( ) Y Y Y Y Dummy Varables-Geder. FT-BUSH PID GENDER. ge geder(v9). regress v6 v5 geder v6 Coef.
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς
Λυμένες Ασκήσεις για το μάθημα:
Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Lampiran 1. Urutan basa dari 4 primer SSR. Nama Primer Sekuen (5 3 )
45 Lampiran 1. Urutan basa dari 4 primer SSR Nama Primer Sekuen (5 3 ) 1 FR 0783 2 FR 0779 3 FR 3663 4 FR 3745 F: 5 - GAATGTGGCTGTAAATGCTGAGTG -3 R: 5 - AAGCCGCATGGACAACTCTAGTAA -3 F: 5 - AATGCAGACCAAGCTAATCATATAC
ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA ABSTRAK
ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA Agung M Alamsyah NRP : 9521037 NIRM : 41077011950298 Pembimbing : Dr. Ir. Agung Bagiawan
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Επίλυση: Oneway Anova Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν
5. Partial Autocorrelation Function of MA(1) Process:
54 5. Partial Autocorrelation Function of MA() Process: φ, = ρ() = θ + θ 2 0 ( ρ() ) ( φ2, ) ( φ() ) = ρ() φ 2,2 φ(2) ρ() ρ() ρ(2) = φ 2,2 = ρ() = ρ() ρ() ρ() 0 ρ() ρ() = ρ()2 ρ() 2 = θ 2 + θ 2 + θ4 0
Marginal effects in the probit model with a triple dummy variable interaction term
Marginal effects in the probit model with a triple dummy variable interaction term Thomas Cornelißen and Katja Sonderhof Leibniz Universität Hannover, Discussion Paper No. 386 January 2008 ISSN: 0949 9962
τατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το
Περιγραφή των εργαλείων ρουτινών του στατιστικού
Κεφάλαιο 5 ο Περιγραφή των εργαλείων ρουτινών του στατιστικού πακέτου SPSS που χρησιµοποιήθηκαν. 5.1 Γενικά Το στατιστικό πακέτο SPSS είναι ένα λογισµικό που χρησιµοποιείται ευρέως ανά τον κόσµο από επιχειρήσεις
DAFTAR ISI HALAMAN JUDUL
DAFTAR ISI HALAMAN JUDUL i HALAMAN PENGESAHAN ii HALAMAN PERNYATAAN iii NASKAH SOAL TUGAS AKHIR iv HALAMAN PERSEMBAHAN v KATA PENGANTAR vi UCAPAN TERIMA KASIH vii INTISARI ix ABSTRACT x DAFTAR ISI xi DAFTAR
Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science
Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις
Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις Οι παρούσες σημειώσεις επιχειρούν να αποτελέσουν μια βοήθεια τόσο στην παρακολούθηση της διάλεξης όσο και στη μελέτη κάποιων εκ των θεμάτων της Γραμμικής