LAMPIRAN. Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "LAMPIRAN. Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26"

Transcript

1 LAMPIRAN Lampiran 1 Uji Chow Test Model Pertama Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 F(2,336) = corr(u_i, Xb) = Prob > F = lnpdrb_l Coef. Std. Err. t P> t [95% Conf. Interval] lnmodal_l lnhumcap_l _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(25, 336) = Prob > F = a

2 Lampiran 2 LM Test Model Pertama Hipotesis: Ho: Pooled Least Square Ha: Random Effect Method Decision Rule: Tolak Ho apabila P-value < α Random-effects GLS regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 Random effects u_i ~ Gaussian Wald chi2(2) = corr(u_i, X) = 0 (assumed) Prob > chi2 = lnpdrb_l Coef. Std. Err. z P> z [95% Conf. Interval] lnmodal_l lnhumcap_l _cons sigma_u sigma_e rho (fraction of variance due to u_i). xttest0 Breusch and Pagan Lagrangian multiplier test for random effects: lnpdrb_l[kode,t] = Xb + u[kode] + e[kode,t] Estimated results: Var sd = sqrt(var) lnpdrb_l e u Test: Var(u) = 0 chi2(1) = Prob > chi2 = b

3 Lampiran 3 Hausman Test Model Pertama Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 F(2,336) = corr(u_i, Xb) = Prob > F = lnpdrb_l Coef. Std. Err. t P> t [95% Conf. Interval] lnmodal_l lnhumcap_l _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(25, 336) = Prob > F = est store fixed. xtreg lnpdrb_l lnmodal_l lnhumcap_l, re Random-effects GLS regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 Random effects u_i ~ Gaussian Wald chi2(2) = corr(u_i, X) = 0 (assumed) Prob > chi2 = lnpdrb_l Coef. Std. Err. z P> z [95% Conf. Interval] lnmodal_l lnhumcap_l _cons sigma_u sigma_e rho (fraction of variance due to u_i). est store random c

4 . hausman fixed random ---- Coefficients ---- (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. lnmodal_l lnhumcap_l b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(2) = (b-b)'[(v_b-v_b)^(-1)](b-b) = 1.61 Prob>chi2 = d

5 Lampiran 4 Uji Chow Test Model Ketiga Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 307 Group variable (i): thn Number of groups = 14 R-sq: within = Obs per group: min = 17 between = avg = 21.9 overall = max = 26 F(5,288) = corr(u_i, Xb) = Prob > F = lnhd Coef. Std. Err. t P> t [95% Conf. Interval] lninhumcap lngdp_cap lnopenness gini educ_gdp _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(13, 288) = 2.52 Prob > F = e

6 Lampiran 5 LM Test Model Ketiga Hipotesis: Ho: Pooled Least Square Ha: Random Effect Method Decision Rule: Tolak Ho apabila P-value < α Random-effects GLS regression Number of obs = 307 Group variable (i): kode Number of groups = 14 R-sq: within = Obs per group: min = 17 between = avg = 21.9 overall = max = 26 Random effects u_i ~ Gaussian Wald chi2(5) = corr(u_i, X) = 0 (assumed) Prob > chi2 = lnhd Coef. Std. Err. z P> z [95% Conf. Interval] lninhumcap lngdp_cap lnopenness gini educ_gdp _cons sigma_u 0 sigma_e rho 0 (fraction of variance due to u_i) Breusch and Pagan Lagrangian multiplier test for random effects: lnhd[kode,t] = Xb + u[kode] + e[kode,t] Estimated results: Var sd = sqrt(var) lnhd e u Test: Var(u) = 0 chi2(1) = Prob > chi2 = f

7 Lampiran 6 Hausman Test Model Ketiga Hipotesis: Ho: Random Effect Method Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 307 Group variable (i): thn Number of groups = 14 R-sq: within = Obs per group: min = 17 between = avg = 21.9 overall = max = 26 F(5,288) = corr(u_i, Xb) = Prob > F = lnhd Coef. Std. Err. t P> t [95% Conf. Interval] lninhumcap lngdp_cap lnopenness gini educ_gdp _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(13, 288) = 2.52 Prob > F = Random-effects GLS regression Number of obs = 307 Group variable (i): kode Number of groups = 14 R-sq: within = Obs per group: min = 17 between = avg = 21.9 overall = max = 26 Random effects u_i ~ Gaussian Wald chi2(5) = corr(u_i, X) = 0 (assumed) Prob > chi2 = lnhd Coef. Std. Err. z P> z [95% Conf. Interval] g

8 lninhumcap lngdp_cap lnopenness gini educ_gdp _cons sigma_u 0 sigma_e rho 0 (fraction of variance due to u_i) ---- Coefficients ---- (b) (B) (b-b) sqrt(diag(v_b-v_b)) fixed random Difference S.E. lninhumcap lngdp_cap lnopenness gini educ_gdp b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(5) = (b-b)'[(v_b-v_b)^(-1)](b-b) = Prob>chi2 = h

9 Lampiran 7 Uji Chow Test Model Keempat Hipotesis: Ho: Pooled Least Square Ha: Fixed Effect Method Decision Rule: Tolak Ho apabila P-value < α Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 F(3,335) = corr(u_i, Xb) = Prob > F = kota_pop Coef. Std. Err. t P> t [95% Conf. Interval] se_pop co_pop em_pop _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(25, 335) = Prob > F = i

10 Lampiran 8 LM Test Model Keempat Hipotesis: Ho: Pooled Least Square Ha: Random Effect Method Decision Rule: Tolak Ho apabila P-value < α Random-effects GLS regression Number of obs = 364 Group variable (i): kode Number of groups = 26 R-sq: within = Obs per group: min = 14 between = avg = 14.0 overall = max = 14 Random effects u_i ~ Gaussian Wald chi2(3) = corr(u_i, X) = 0 (assumed) Prob > chi2 = kota_pop Coef. Std. Err. z P> z [95% Conf. Interval] se_pop co_pop em_pop _cons sigma_u sigma_e rho (fraction of variance due to u_i). xttest0 Breusch and Pagan Lagrangian multiplier test for random effects: kota_pop[kode,t] = Xb + u[kode] + e[kode,t] Estimated results: Var sd = sqrt(var) kota_pop e u Test: Var(u) = 0 chi2(1) = Prob > chi2 = j

11 Lampiran 9 Metode Robust untuk Menghilangkan Pelanggaran Asumsi Heteroskedastisitas dan Autokorelasi Regression with robust standard errors Number of obs = 364 F( 3, 360) = Prob > F = R-squared = Root MSE = Robust kota_pop Coef. Std. Err. t P> t [95% Conf. Interval] se_pop co_pop em_pop _cons k

12 Lampiran 10 Hasil Regresi Hubungan Tingkat Output dengan Tingkat Modal, Tenaga Kerja, dan Kemajuan Teknologi. (a) R 2, adjusted R 2, Probabilitas, F-Stat, dan keterangan-keterangan lain Fixed Effect GLS Regressions Number of obs 364 Group variable (i): thn Number of groups 26 R-Square Within: Between: Overall: per group: min 12 avg 13.9 max 14 Fixed effects u_i ~ Gaussian F(2,336) corr(u_i, Xb) Prob > chi (b) Koefisien-koefisien, Standard Error, t-stat, P-value, dan Confidence Interval lnpdrb Coef. Std. Err. t P> t [95% Conf. Interval] lnhumcap lnmodal *** _cons *** Lampiran 11 Matrik Pengujian Asumsi BLUE Model Pertama Multikolinieritas lnmodal lnhumcap lnmodal lnhumcap Homoskedastisitas/Heteroskedastisitas (Breusch-Pagan/Cook-Weisberg) chi2(1) Prob > chi Autokorelasi (Wooldridge Test) F(25, 336) Prob > F l

13 Lampiran 12 Arah dan Signifikansi Analisa Hubungan Tingkat Output dengan Tingkat Modal, Tenaga Kerja, dan Kemajuan Teknologi Variabel Estimasi Arah Arah Pada Hasil Regresi Keterangan lnhumcap Positif Positif Signifikan (α = 1%), arah sama lnmodal Positif Positif Signifikan (α = 1%), lnlabor Positif Positif arah sama _cons Positif Positif Signifikan (α = 1%), arah sama m

14 Lampiran 13 Hasil Regresi Model Ketiga (a) R 2, adjusted R 2, Probabilitas, F-Stat, dan keterangan-keterangan lain Fixed-effects (within) Number of obs 307 regression Group variable (i): thn Number of groups 14 R-Square Within: per group: min Between: avg 21.9 Overall: max F(5,288) corr(u_i, Xb) Prob > F (b) Koefisien-koefisien, Standard Error, t-stat, P-value, dan Confidence Interval lnpop Coef. Std. Err. t P> t [95% Conf. Interval] lninhumcap lngdp_cap lnopenness gini educ_gdp cons n

15 Lampiran 14 Matrik Pengujian Multikolinieritas Model Kedua lninhumcap lngdp_cap lnopenness gini educ_gdp lninhumcap lngdp_cap lnopenness gini educ_gdp Homoskedastisitas/Heteroskedastisitas (Breusch-Pagan/Cook-Weisberg) chi2(1) Prob > chi Autokorelasi (Wooldridge Test) F(13, 288) 2.52 Prob > F Lampiran 15 Arah dan Signifikansi Analisa Hubungan Perkembangan dengan Faktor-Faktor Determinasinya Variabel Estimasi Arah Arah Pada Hasil Keterangan Regresi lninhumcap Negatif Positif Signifikan ( pada α = 1%), arah tidak sama lngdp_cap Positif Positif Tidak signifikan, arah sama lnopenness Positif Positif Signifikan (pada α = 1%), arah sama gini Negatif Negatif Signifikan ( pada α = 10%), arah sama educ_gdp Positif Positif Tidak signifikan, arah sama _cons Positif Positif signifikan, arah sama o

16 Lampiran 16 Hasil Regresi Hubungan City Size dengan Human Capital dan Spillover Effect Tenaga Kerja Sektor Manufaktur (a) R 2, adjusted R 2, Probabilitas, F-Stat, dan keterangan-keterangan lain Robust Method Number of obs 364 Group variable (i): thn Number of groups - R-Square Within: - per group: - min Between: - avg - Overall: max - F( 3, 360) Root MSE Prob > F (b) Koefisien-koefisien, Standard Error, t-stat, P-value, dan Confidence Interval kota_pop Coef. Std. Err. t P> t [95% Conf. Interval] se_pop co_pop em_pop _cons p

17 Lampiran 17 Matrik Pengujian Multikolinieritas Model Keempat (Fixed Effect dan Random Effect) se_pop se_pop1 co_pop1 lnem_pop co_pop em_pop Homoskedastisitas/Heteroskedastisitas (Breusch-Pagan/Cook-Weisberg) chi2(1) Prob > chi Autokorelasi (Wooldridge Test) F(25, 335) Prob > F Lampiran 18 Arah dan Signifikansi Analisa Hubungan Human capital dan Spillover Effect terhadap City Size (Robust Method) Variabel Estimasi Arah Arah Pada Hasil Keterangan Regresi se_pop1 Positif Positif Signifikan ( pada α = 5%), arah sama co_pop1 Positif Positif Tidak signifikan, arah sama em_pop Positif Positif Tidak signifikan, arah sama _cons Positif Positif Signifikan ( pada α = 1%), arah sama q

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

!!!!# $ # % # & # '##' #!( #)*(+&#!', & - #% '##' #( &2(!%#(345# 6##7 !"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111

Διαβάστε περισσότερα

MATHACHij = γ00 + u0j + rij

MATHACHij = γ00 + u0j + rij Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed

Διαβάστε περισσότερα

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI 155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia

Διαβάστε περισσότερα

Stata Session 3. Tarjei Havnes. University of Oslo. Statistics Norway. ECON 4136, UiO, 2012

Stata Session 3. Tarjei Havnes. University of Oslo. Statistics Norway. ECON 4136, UiO, 2012 Stata Session 3 Tarjei Havnes 1 ESOP and Department of Economics University of Oslo 2 Research department Statistics Norway ECON 4136, UiO, 2012 Tarjei Havnes (University of Oslo) Stata Session 3 ECON

Διαβάστε περισσότερα

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026

Διαβάστε περισσότερα

SECTION II: PROBABILITY MODELS

SECTION II: PROBABILITY MODELS SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΣΤΡΑΤΗΓΙΚΗ Η ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΗΣ ΤΗΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΥΓΕΙΟΝΟΜΙΚΗΣ ΠΕΡΙΘΑΛΨΗΣ

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA

ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA ΟΙΚΟΝΟΜΕΤΡΙΑ 2 ΦΡΟΝΤΙΣΤΗΡΙΟ 2 BASICS OF IV ESTIMATION USING STATA Στις ασκήσεις που ακολουθούν χρησιμοποιούμε δεδομένα για 3010 εργαζόμενους άνδρες ηλικίας 24 έως 34 από έρευνα που πραγματοποιήθηκε το

Διαβάστε περισσότερα

artinya vektor nilai rata-rata dari kelompok ternak pertama sama dengan kelompok ternak kedua artinya kedua vektor nilai-rata berbeda

artinya vektor nilai rata-rata dari kelompok ternak pertama sama dengan kelompok ternak kedua artinya kedua vektor nilai-rata berbeda LAMPIRAN 48 Lampiran 1. Perhitungan Manual Statistik T 2 -Hotelling pada Garut Jantan dan Ekor Tipis Jantan Hipotesis: H 0 : U 1 = U 2 H 1 : U 1 U 2 Rumus T 2 -Hotelling: artinya vektor nilai rata-rata

Διαβάστε περισσότερα

1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm

1. Hasil Pengukuran Kadar TNF-α. DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm HASIL PENELITIAN 1. Hasil Pengukuran Kadar TNF-α DATA PENGAMATAN ABSORBANSI STANDAR TNF α PADA PANJANG GELOMBANG 450 nm NO KADAR ( pg/ml) ABSORBANSI 1. 0 0.055 2. 15.6 0.207 3. 31.5 0.368 4. 62.5 0.624

Διαβάστε περισσότερα

Estimation of gasoline demand function

Estimation of gasoline demand function Seminar paper in Panel Analysis Estimation of gasoline demand function Markus Pock Matr.Nr. 8900483 June 2005 Abstract The objective of this seminar paper in the course of the lecture by R. Kunst Paneldata,

Διαβάστε περισσότερα

ΔPersediaan = Persediaan t+1 - Persediaan t

ΔPersediaan = Persediaan t+1 - Persediaan t Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)

Διαβάστε περισσότερα

Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 27/6/2016

Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 27/6/2016 Π.Μ.Σ. ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΙΑΣΠΟΡΑΣ ΚΑΙ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 27/6/2016 Πρόβλημα 1. Σε μια μελέτη συγκεντρώθηκαν δεδομένα σχετικά με το μέγεθος του πληθυσμού (σε ζεύγη πτηνών) ενός είδους

Διαβάστε περισσότερα

LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.

LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA

Διαβάστε περισσότερα

Προβλέψεις ισοτιμιών στο EViews

Προβλέψεις ισοτιμιών στο EViews Προβλέψεις ισοτιμιών στο EViews Θεωρητικό πλαίσιο προβλέψεων σημείου Σημαντικές επιλογές πλαισίου: Τί θα κάνουμε με την πρόβλεψη; Θα την μοιραστούμε με πολλούς πελάτες, που θα την χρησιμοποιήσουν με διαφορετικό

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΥΒΕΡΝΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΥΒΕΡΝΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΣΤΡΑΤΗΓΙΚΗ ΚΥΒΕΡΝΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΜΕΓΕΘΥΝΣΗ Η ΠΕΡΙΠΤΩΣΗ 12 ΧΩΡΩΝ ΖΕΡΒΑ ΚΩΝΣΤΑΝΤΙΝΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι

Διαβάστε περισσότερα

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας

ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΔΕΙΓΜΑ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι (3ο Εξάμηνο) Όνομα εξεταζόμενου: Α.Α. Οικονομικό Πανεπιστήμιο Αθήνας -- Τμήμα ΔΕΟΣ Καθηγητής: Γιάννης Μπίλιας ΟΔΗΓΙΕΣ: Απαντήστε σε όλα τα θέματα. Απαντήστε με ακρίβεια

Διαβάστε περισσότερα

Lampiran 1 Output SPSS MODEL I

Lampiran 1 Output SPSS MODEL I 67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables

Διαβάστε περισσότερα

Analisis Sidik Ragam Tinggi Tanaman Wortel pada Umur 30 HST. Tabel Tinggi Tanaman (cm) Wortel pada Umur 30 HST Ulangan Jumlah Purata

Analisis Sidik Ragam Tinggi Tanaman Wortel pada Umur 30 HST. Tabel Tinggi Tanaman (cm) Wortel pada Umur 30 HST Ulangan Jumlah Purata LAMPIRAN 24 Lampiran 1 Analisis Sidik Ragam Tinggi Tanaman Wortel pada Umur 30 HST Tabel Tinggi Tanaman (cm) Wortel pada Umur 30 HST 0 7,4 8,0 9,0 24,40 8,13 2,5 8,8 8,2 9,0 26,00 8,67 5 9,2 9,0 9,0 27,20

Διαβάστε περισσότερα

Akaike Information Criteria. Best Linear Unbiased Estimator. Census and Economic Information Centre. Durbin Watson statistics

Akaike Information Criteria. Best Linear Unbiased Estimator. Census and Economic Information Centre. Durbin Watson statistics DAFTAR ISTILAH ADF AIC BLUE BOP CAD CEIC CF DW EO FDI FEDV FPE GDP HQ IED IFS IHSG IOR IRF IRP IRU LM LR NFDI Augmented Dicky Fuller Statistic Akaike Information Criteria Best Linear Unbiased Estimator

Διαβάστε περισσότερα

A Finite Precision of Private Information Precision of Private Information Approaching Infinity 0 θ1 * θ Session Cost of Action A First 20 Last 20 Rounds Rounds Information in Stage 2 First 20 Last

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008 .. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.

Διαβάστε περισσότερα

Multilevel models for analyzing people s daily moving behaviour

Multilevel models for analyzing people s daily moving behaviour Multilevel models for analyzing people s daily moving behaviour Matteo BOTTAI 1 Nicola SALVATI 2 Nicola ORSINI 3 13th European Colloquium on Theoretical and Quantitative Geography Lucca 5th - 9th September,

Διαβάστε περισσότερα

Σηµαντικές µεταβλητές για την άσκηση οικονοµικής ολιτικής µίας χώρας. Καθοριστικοί αράγοντες για την οικονοµική ανά τυξη.

Σηµαντικές µεταβλητές για την άσκηση οικονοµικής ολιτικής µίας χώρας. Καθοριστικοί αράγοντες για την οικονοµική ανά τυξη. ΑΜΕΣΕΣ ΞΕΝΕΣ ΕΠΕΝΔΥΣΕΙΣ, ΑΕΠ, ΕΞΑΓΩΓΕΣ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΕΛΛΑΔΑ- ΙΣΠΑΝΙΑ-ΠΟΡΤΟΓΑΛΙΑΠΟΡΤΟΓΑΛΙΑ Επιβλέπων καθηγητής: Δριτσάκης Νικόλαος Εκπονήθηκε από: Τέμπου Αικατερίνη (11/37) ΕΙΣΑΓΩΓΙΚΑ Μελέτη

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Διακύμανσης

Εισαγωγή στην Ανάλυση Διακύμανσης Εισαγωγή στην Ανάλυση Διακύμανσης 1 Η Ανάλυση Διακύμανσης Από τα πιο συχνά χρησιμοποιούμενα στατιστικά κριτήρια στην κοινωνική έρευνα Γιατί; 1. Ενώ αναφέρεται σε διαφορές μέσων όρων, όπως και το κριτήριο

Διαβάστε περισσότερα

Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata

Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση

Διαβάστε περισσότερα

CSAE WPS/2009-06 Figure 1: Cut Flower Exports from Kenya, 1995-2007 Table 1: Firms in Areas with and w/out Conflict Panel A - Export Records Variable Observations Mean in No-Conflict

Διαβάστε περισσότερα

1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5

Διαβάστε περισσότερα

/

/ : 2014 2010 2015/2014 : 2014 2010 2015/2014 I II الملخص The aim of this study is to know the effect of the number of the financial indicators on the prices of organizations shares in Dubai s stock exchange,

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square Appendix A3 Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS F Value Pr > F Model 107 374.68 3.50 8573.07

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους

Διαβάστε περισσότερα

OLS. University of New South Wales, Australia

OLS. University of New South Wales, Australia 1997 2007 5 OLS Abstract An understanding of the macro-level relationship between fertility and female employment is relevant and important to current policy-making. The objective of this study is to empirically

Διαβάστε περισσότερα

KONSEP ASAS & PENGUJIAN HIPOTESIS

KONSEP ASAS & PENGUJIAN HIPOTESIS KONSEP ASAS & PENGUJIAN HIPOTESIS HIPOTESIS Hipotesis = Tekaan atau jangkaan terhadap penyelesaian atau jawapan kepada masalah kajian Contoh: Mengapakah suhu bilik kuliah panas? Tekaan atau Hipotesis???

Διαβάστε περισσότερα

Hairunnizam Wahid Jaffary Awang Kamaruddin Salleh Rozmi Ismail Universiti Kebangsaan Malaysia

Hairunnizam Wahid Jaffary Awang Kamaruddin Salleh Rozmi Ismail Universiti Kebangsaan Malaysia Hairunnizam Wahid Jaffary Awang Kamaruddin Salleh Rozmi Ismail Universiti Kebangsaan Malaysia Jadual 1: Sekolah yang dijadikan Sampel kajian Bil Nama Sekolah 1 SAM Sg. Merab Luar, Sepang 2 SAM Hulu Langat

Διαβάστε περισσότερα

Απλή Ευθύγραµµη Συµµεταβολή

Απλή Ευθύγραµµη Συµµεταβολή Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή

Διαβάστε περισσότερα

Νίκος Πανταζής Βιοστατιστικός, PhD ΕΔΙΠ Ιατρικής Σχολής ΕΚΠΑ Εργαστήριο Υγιεινής, Επιδημιολογίας & Ιατρικής Στατιστικής

Νίκος Πανταζής Βιοστατιστικός, PhD ΕΔΙΠ Ιατρικής Σχολής ΕΚΠΑ Εργαστήριο Υγιεινής, Επιδημιολογίας & Ιατρικής Στατιστικής Νίκος Πανταζής Βιοστατιστικός, PhD ΕΔΙΠ Ιατρικής Σχολής ΕΚΠΑ Εργαστήριο Υγιεινής, Επιδημιολογίας & Ιατρικής Στατιστικής Η έννοια της στατιστικής για τον απλό άνθρωπο: Πολιτικές δημοσκοπήσεις (π.χ. το Χ

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

Summary of the model specified

Summary of the model specified Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Συνδιακύμανσης (Analysis of Covariance, ANCOVA)

Εισαγωγή στην Ανάλυση Συνδιακύμανσης (Analysis of Covariance, ANCOVA) Εισαγωγή στην Ανάλυση Συνδιακύμανσης (nalysis of Covariance, NCOV) Βασίλης Παυλόπουλος Λέκτορας Διαπολιτισμικής Ψυχολογίας Τομέας Ψυχολογίας, Πανεπιστήμιο Αθηνών vpavlop@psych.uoa.gr http://www.psych.uoa.gr/~vpavlop

Διαβάστε περισσότερα

ο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x

ο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x η &, ε ε 007!# # # ι, ι, η ιι ι ι ι ι η (.. ι, η ι η, ι & ι!ι η 50, ι ηιη 000 ι, ι, ',!,! )!η. (, ηι, ι ι ι ι "!η. #, ι "ι!η ι, ηι, ι ι ι η. ι, ι ι, ' ι ι ι η ι ι ι ι # ι ι ι ι ι 7. ο),,),--,ο< $ι ιι!η

Διαβάστε περισσότερα

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-

Διαβάστε περισσότερα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα

Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Ερμηνεία αποτελεσμάτων Ανάλυση διακύμανσης κατά ένα παράγοντα Αρχείο δεδομένων school.sav Στον πίνακα Descriptives, μας δίνονται για την Επίδοση ως προς τις πέντε διαφορετικές μεθόδους διδασκαλίας, το

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1 Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative

Διαβάστε περισσότερα

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις:

Άσκηση 11. Δίνονται οι παρακάτω παρατηρήσεις: Άσκηση. Δίνονται οι παρακάτω παρατηρήσεις: X X X X Y 7 50 6 7 6 6 96 7 0 5 55 9 5 59 6 8 8 5 0 59 7 7 8 8 5 5 0 7 69 9 6 6 7 6 9 5 7 6 8 5 6 69 8 0 50 66 0 0 50 8 59 76 8 7 60 7 87 6 5 7 88 9 8 50 0 5

Διαβάστε περισσότερα

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

Ciri-ciri Taburan Normal

Ciri-ciri Taburan Normal 1 Taburan Normal Ciri-ciri Taburan Normal Ia adalah taburan selanjar Ia adalah taburan simetri Ia adalah asimtot kepada paksi Ia adalah uni-modal Ia adalah keluarga kepada keluk Keluasan di bawah keluk

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio

Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio Statistical Tools for SWGTOX Method Validation of 11 Benzodiazepines in Whole Blood by SPE and GC/MS Szabolcs Sofalvi, M.S., D-ABFT-FT Cleveland, Ohio Disclaimer Neither I nor any member of my immediate

Διαβάστε περισσότερα

KANDUNGAN BAB PERKARA HALAMAN PENGESAHAN STATUS TESIS PENGESAHAN PENYELIA HALAMAN JUDUL PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT

KANDUNGAN BAB PERKARA HALAMAN PENGESAHAN STATUS TESIS PENGESAHAN PENYELIA HALAMAN JUDUL PENGAKUAN PENGHARGAAN ABSTRAK ABSTRACT vii KANDUNGAN BAB PERKARA HALAMAN PENGESAHAN STATUS TESIS PENGESAHAN PENYELIA HALAMAN JUDUL i PENGAKUAN ii DEDIKASI iii PENGHARGAAN iv ABSTRAK v ABSTRACT vi KANDUNGAN vii SENARAI JADUAL xiv SENARAI RAJAH

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεματική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδημαϊκό Έτος: 2013-2014 Γενικές οδηγίες για την εργασία Τέταρτη Γραπτή Εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

Lecture 8: Serial Correlation. Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II

Lecture 8: Serial Correlation. Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II Lecture 8: Serial Correlation Prof. Sharyn O Halloran Sustainable Development U9611 Econometrics II Midterm Review Most people did very well Good use of graphics Good writeups of results A few technical

Διαβάστε περισσότερα

BAB V PENUTUP , maka diperoleh kesimpulan yang dapat diuraikan sebagai berikut:

BAB V PENUTUP , maka diperoleh kesimpulan yang dapat diuraikan sebagai berikut: BAB V PENUTUP 5.1. Kesimpulan Berdasarkan hasil penelitian dan analisis tentang peran pertumbuhan ekonomi dalam menurunkan kemiskinan di tingkat provinsi di Indonesia tahun 2004 2012, maka diperoleh kesimpulan

Διαβάστε περισσότερα

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1 Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative

Διαβάστε περισσότερα

Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL

Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL3 1 5 5 4 4 4 3 4 3 4 3 4 5 2 4 4 3 5 4 4 4 4 5 4 3 4 3 2 2 3 2 3 3 3 3 4 2 3 2 4 4 4 5 3 4 4 4 3 4 4 5 4 5 5 5 4 2 3 3 3 4 3

Διαβάστε περισσότερα

τατιςτική ςτην Εκπαίδευςη II

τατιςτική ςτην Εκπαίδευςη II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιςτική ςτην Εκπαίδευςη II Αρχείο αποτελεςμάτων Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR

LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR TNR 1 space 1.15 LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL III TNR 1 Space.0 STATISTIK

Διαβάστε περισσότερα

Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans

Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans S1 of S11 Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans Eveline Dirinck, Alin C. Dirtu, Govindan Malarvannan, Adrian

Διαβάστε περισσότερα

ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration )

ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration ) ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ (TEST: Unit Root-Cointegration ) ΦΑΙΝΟΜΕΝΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η στασιμότητα των δεδομένων (χρονοσειρών) είναι θεωρητική προϋπόθεση για την παλινδρόμηση, δηλ. την εκτίμηση

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

Επαναληπτικό μάθημα GLM

Επαναληπτικό μάθημα GLM Επαναληπτικό μάθημα GLM GLM: Πιθανοφάνεια, εκθετική οικογένεια κατανομών (1) Ο αριθμός των ατυχημάτων το έτος 2001 για 5 οδηγούς ήταν αντίστοιχα: 3, 1, 5, 0 και 2. Γράψτε τη likelihood των δεδομένων Υπολογίστε

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ

ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 5: ΠΡΟΥΠΟΛΟΓΙΣΜΟΙ ΚΑΙ ΠΡΟΒΛΕΨΕΙΣ ΠΩΛΗΣΕΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων

Ασκήσεις Εξετάσεων. Μεταπτυχιακό Πρόγραμμα Σπουδών στη. Διοίκηση των Επιχειρήσεων Ασκήσεις Εξετάσεων Μεταπτυχιακό Πρόγραμμα Σπουδών στη Διοίκηση των Επιχειρήσεων ΑΣΚΗΣΗ 1: Έλεγχος για τη μέση τιμή ενός πληθυσμού Η αντικαπνιστική νομοθεσία υποχρεώνει τους καπνιστές που εργάζονται σε

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου και ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως προς δύο παράγοντες,

Διαβάστε περισσότερα

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά

1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά 1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs

Διαβάστε περισσότερα

Simon et al. Supplemental Data Page 1

Simon et al. Supplemental Data Page 1 Simon et al. Supplemental Data Page 1 Supplemental Data Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction Short

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;

Διαβάστε περισσότερα

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα: ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

Supplementary figures

Supplementary figures A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών

Διαβάστε περισσότερα

Political Science 552. Qualitative Variables. Dichotomous Predictor. Dummy Variables-Gender. Qualitative Variables March 3, 2004

Political Science 552. Qualitative Variables. Dichotomous Predictor. Dummy Variables-Gender. Qualitative Variables March 3, 2004 Qualtatve Varables Marh, Poltal See 55 Qualtatve Varables Dhotomous Predtor Y PID Geder ( male, female) Y ( ) Y Y Y Y Dummy Varables-Geder. FT-BUSH PID GENDER. ge geder(v9). regress v6 v5 geder v6 Coef.

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α. Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο ανεξάρτητων δειγμάτων, που διαχωρίζονται βάσει ενός ανεξάρτητου παράγοντα (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς

Διαβάστε περισσότερα

Λυμένες Ασκήσεις για το μάθημα:

Λυμένες Ασκήσεις για το μάθημα: Λυμένες Ασκήσεις για το μάθημα: ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ ΚΩΝΣΤΑΝΤΙΝΟΣ ΖΑΦΕΙΡΟΠΟΥΛΟΣ Τμήμα: ΔΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΣΠΟΥΔΩΝ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Lampiran 1. Urutan basa dari 4 primer SSR. Nama Primer Sekuen (5 3 )

Lampiran 1. Urutan basa dari 4 primer SSR. Nama Primer Sekuen (5 3 ) 45 Lampiran 1. Urutan basa dari 4 primer SSR Nama Primer Sekuen (5 3 ) 1 FR 0783 2 FR 0779 3 FR 3663 4 FR 3745 F: 5 - GAATGTGGCTGTAAATGCTGAGTG -3 R: 5 - AAGCCGCATGGACAACTCTAGTAA -3 F: 5 - AATGCAGACCAAGCTAATCATATAC

Διαβάστε περισσότερα

ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA ABSTRAK

ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA ABSTRAK ANALISIS KORELASI DEBIT BANJIR RENCANA UNTUK BERBAGAI KONDISI KETERSEDIAAN DATA DI DAERAH KHUSUS IBUKOTA JAKARTA Agung M Alamsyah NRP : 9521037 NIRM : 41077011950298 Pembimbing : Dr. Ir. Agung Bagiawan

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Επίλυση: Oneway Anova Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

5. Partial Autocorrelation Function of MA(1) Process:

5. Partial Autocorrelation Function of MA(1) Process: 54 5. Partial Autocorrelation Function of MA() Process: φ, = ρ() = θ + θ 2 0 ( ρ() ) ( φ2, ) ( φ() ) = ρ() φ 2,2 φ(2) ρ() ρ() ρ(2) = φ 2,2 = ρ() = ρ() ρ() ρ() 0 ρ() ρ() = ρ()2 ρ() 2 = θ 2 + θ 2 + θ4 0

Διαβάστε περισσότερα

Marginal effects in the probit model with a triple dummy variable interaction term

Marginal effects in the probit model with a triple dummy variable interaction term Marginal effects in the probit model with a triple dummy variable interaction term Thomas Cornelißen and Katja Sonderhof Leibniz Universität Hannover, Discussion Paper No. 386 January 2008 ISSN: 0949 9962

Διαβάστε περισσότερα

τατιστική στην Εκπαίδευση II

τατιστική στην Εκπαίδευση II ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το

Διαβάστε περισσότερα

Περιγραφή των εργαλείων ρουτινών του στατιστικού

Περιγραφή των εργαλείων ρουτινών του στατιστικού Κεφάλαιο 5 ο Περιγραφή των εργαλείων ρουτινών του στατιστικού πακέτου SPSS που χρησιµοποιήθηκαν. 5.1 Γενικά Το στατιστικό πακέτο SPSS είναι ένα λογισµικό που χρησιµοποιείται ευρέως ανά τον κόσµο από επιχειρήσεις

Διαβάστε περισσότερα

DAFTAR ISI HALAMAN JUDUL

DAFTAR ISI HALAMAN JUDUL DAFTAR ISI HALAMAN JUDUL i HALAMAN PENGESAHAN ii HALAMAN PERNYATAAN iii NASKAH SOAL TUGAS AKHIR iv HALAMAN PERSEMBAHAN v KATA PENGANTAR vi UCAPAN TERIMA KASIH vii INTISARI ix ABSTRACT x DAFTAR ISI xi DAFTAR

Διαβάστε περισσότερα

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores

Διαβάστε περισσότερα

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.

Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ. Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο εξαρτημένων δειγμάτων, που διαχωρίζονται βάσει ενός επαναλαμβανόμενου παράγοντα (Ανάλυση διακύμανσης για εξαρτημένα δείγματα ως

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Άσκηση 1 η Ένας παραγωγός σταφυλιών ισχυρίζεται ότι τα κιβώτια σταφυλιών που συσκευάζει

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις

Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις Α. Μπατσίδης Πρόχειρες βοηθητικές διδακτικές σημειώσεις Οι παρούσες σημειώσεις επιχειρούν να αποτελέσουν μια βοήθεια τόσο στην παρακολούθηση της διάλεξης όσο και στη μελέτη κάποιων εκ των θεμάτων της Γραμμικής

Διαβάστε περισσότερα