1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition?

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition?"

Transcript

1 3 point problems - θέματα 3 μονάδων 1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition? Η ημερομηνία ενός διαγωνισμού είναι η 3 η Πέμπτη του Μάρτη κάθε χρόνο. Ποια είναι η πρώτη δυνατή ημερομηνία του διαγωνισμού; (A) 14 (B) 15 (C) 20 (D) 21 (E) The MSC Fabiola holds a record as being the largest container ship to enter San Francisco Bay. It carries containers which if placed end to end would stretch about 75 km. Roughly, what is the length of one container? To MSC Fabiola έχει το ρεκόρ ως το μεγαλύτερο πλοίο μεταφοράς εμπορευματοκιβωτίων που στάθμευσε στο κόλπο του Αγίου Φραγκίσκου. Μεταφέρει εμπορευματοκιβώτια, τα οποία αν τοποθετηθούν το ένα κατά μήκος του άλλου συμπληρώνουν 75 km. Περίπου πόσο είναι το μήκος ενός εμπορευματοκιβωτίου; (A) 6 m (B) 16 m (C) 60 m (D) 160 m (E) 600 m 3. If, and denote the lengths of the lines in the picture, then which of the following is correct? Αν, και συμβολίζουν τα μήκη των γραμμών στην εικόνα, ποιο από τα πιο κάτω είναι το σωστό; (A) (B) (C) (D) (E) 4. Which number is in the middle of and? Ποιος αριθμός είναι στο μέσο των και? 5. In the number 2014 the last digit is bigger then the sum of the other three digits. How many years ago did this last occur? Στον αριθμό 2014 το τελευταίο ψηφίο είναι μεγαλύτερο από το άθροισμα των άλλων τριών ψηφίων. Πριν πόσα χρόνια έχει ξανασυμβεί αυτό πιο πρόσφατα; (A) 1 (B) 3 (C) 5 (D) 7 (E) 11 1

2 6. The length of the edges of the big regular hexagon is two times the length of the edges of the small regular hexagon. The small hexagon has an area of 4. What is the area of the big hexagon? Το μήκος των πλευρών του μεγάλου κανονικού εξαγώνου είναι διπλάσιο από το μήκος των πλευρών του μικρού κανονικού εξαγώνου. Το μικρό εξάγωνο έχει εμβαδό 4. Ποιο είναι το εμβαδό του μεγάλου εξαγώνου; (A) 16 (B) 14 (C) 12 (D) 10 (E) 8 7. What is the negation of the following statement ''Everybody solved more than 20 problems''? Ποια είναι η άρνηση της πρότασης «Όλοι έλυσαν περισσότερα από 20 προβλήματα»; (A) Nobody solved more than 20 problems Κανείς δεν έλυσε περισσότερα από 20 προβλήματα (B) Somebody solved less than 21 problems Κάποιος έλυσε λιγότερα από 21 προβλήματα (C) Everybody solved less than 21 problems Όλοι έλυσαν λιγότερα από 21 προβλήματα (D) Somebody solved exactly 20 problems Κάποιος έλυσε ακριβώς 20 προβλήματα (E) Somebody solved more than 20 problems Κάποιος έλυσε περισσότερα από 20 προβλήματα 8. In a coordinate system Tom drew a square. One of its diagonals lies on the -axis. The coordinates of the two vertices on the -axis are and. Which of the following are the coordinates of another vertex of this square? Σε ένα σύστημα συντεταγμένων ο Tom σχεδίασε ένα τετράγωνο. Η μια από τις διαγώνιους του βρίσκεται πάνω στον άξονα x. Οι συντεταγμένες των δύο κορυφών πάνω στον άξονα x είναι και. Ποιά από τις πιο κάτω είναι οι συντεταγμένες μιας άλλης κορυφής αυτού του τετραγώνου; 9. In a certain village, the ratio between adult men and adult women is and the ratio between adult women and children is. What is the ratio between adults (men and women) and children? Σε ένα χωριό, ο λόγος μεταξύ ενήλικων ανδρών και ενήλικων γυναικών είναι 2:3 και ο λόγος μεταξύ ενήλικων γυναικών και παιδιών είναι 8:1. Ποιος είναι ο λόγος μεταξύ ενήλικων (ανδρών και γυναικών) και παιδιών; 2

3 10. The big wheel of this bicycle has perimeter 4,2 metres. The small wheel has perimeter 0.9 metres. At a certain moment, the valve of both wheels are at their lowest point. The bicycle rolls. After how many metres will both valves first be at their lowest point together again? Ο μεγάλος τροχός αυτού του ποδήλατου έχει περίμετρο 4,2 μέτρα. Ο μικρός τροχός έχει περίμετρο 0.9 μέτρα. Σε κάποια στιγμή, οι βαλβίδες των δύο τροχών είναι στο χαμηλότερο σημείο. Το ποδήλατο κινείται. Μετά από πόσα μέτρα οι δύο βαλβίδες θα βρίσκονται και πάλιν στο χαμηλότερο σημείο; (A) 4,2 (B) 6,3 (C) 12,6 (D) 25,2 (E) 37,8 4 point problems - θέματα 4 μονάδων 11. A grandmother, her daughter and her granddaughter can say that in this year the sum of their ages is 100. In which year was the granddaughter born if each age is a power of 2? Μια γιαγιά, η κόρη της και η εγγονή της μπορούν να πουν ότι αυτή τη χρονιά το άθροισμα των ηλικιών τους είναι 100. Σε ποια χρονιά γεννήθηκε η εγγονή αν κάθε ηλικία είναι δύναμη του 2; (A) 1998 (B) 2006 (C) 2010 (D) 2012 (E) Paul put some rectangular pictures on the wall. For each picture he put one nail into the wall 2,5 m above the floor and attached a 2 m long string at the two upper corners. Which of the following pictures is closest to the floor (format: width in cm height in cm)? O Παύλος τοποθετεί μερικές ορθογώνιες φωτογραφίες στον τοίχο. Για κάθε φωτογραφία βάζει ένα καρφί στον τοίχο στα 2,5 m πάνω από το πάτωμα και ενώνει σύρμα μήκους 2 m στις δύο άνω κορυφές. Ποια από τις πιο κάτω φωτογραφίες είναι πιο κοντά στο πάτωμα (διαστάσεις: πλάτος σε cm X ύψος σε cm) ; (A) (B) (C) (D) (E) 3

4 13. Six girls share a flat with two bathrooms which they use every morning beginning at 7:00 o'clock. They use the bathroom one at a time, and sit down to eat breakfast together as soon as the last girl has finished. They spend 9, 11, 13, 18, 22 and 23 minutes in the bathroom respectively. Being well organized, what is the earliest they can start their breakfast together? Έξι κορίτσια μοιράζονται ένα διαμέρισμα με δύο μπάνια, τα οποία χρησιμοποιούν κάθε πρωί από η ώρα 7:00. Χρησιμοποιούν το μπάνιο μια κάθε φορά και κάθονται μαζί να πάρουν το πρωινό τους αμέσως όταν το τελευταίο κορίτσι τελειώσει από το μπάνιο. Ξοδεύουν 9, 11, 13, 18, 22 και 23 λεπτά στο μπάνιο αντίστοιχα. Αν οργανωθούν καλά, ποιο είναι το συντομότερο που μπορούν να αρχίσουν το πρόγευμα τους; (A) 7:48 (B) 7:49 (C) 7:50 (D) 7:51 (E) 8: In the following figure there is a regular octagon. The shaded area measures 3. Find the area of the octagon in. Στο πιο κάτω σχήμα υπάρχει ένα κανονικό οκτάγωνο. Το σκιαγραφημένο εμβαδό έχει τιμή 3. Να βρεθεί το εμβαδό του οκταγώνου σε. (A) (B) 9 (C) (D) 12 (E) A new kind of crocodile has been discovered in Africa. The length of his tail is a third of his entire length. His head is 93 cm long and its length is a quarter of the crocodile`s length without his tail. How long is this crocodile in cm? Ένα νέο είδος κροκόδειλου έχει ανακαλυφθεί στην Αφρική. Το μήκος της ουράς του είναι ένα τρίτο του συνολικού μήκους του. Η κεφαλή του έχει μήκος 93 cm και το μήκος της είναι ένα τέταρτο του μήκους του κροκόδειλου χωρίς την ουρά του. Πόσο είναι το μήκος του κροκόδειλου σε cm; (A) 558 (B) 496 (C) 490 (D) 372 (E) In the picture there is a special dice. Numbers on the opposite faces always make the same sum. The numbers that we cannot see in the picture are all prime numbers. Which number is opposite of 14? Στην εικόνα υπάρχει ένα ειδικό ζάρι. Οι αριθμοί των απέναντι εδρών έχουν το ίδιο άθροισμα. Οι αριθμοί που δεν μπορούμε να δούμε στην εικόνα είναι όλοι πρώτοι αριθμοί. Ποιος αριθμός είναι στην απέναντι έδρα του 14; (A) 11 (B) 13 (C) 17 (D) 19 (E) 23 4

5 17. Ann has walked 8 km with a velocity of 4 km/h. Now she will run some time with a velocity of 8 km/h. How long does she have to run in order to have an overall average velocity of 5 km/h? Η Άννα περπάτησε 8 km με ταχύτητα 4 km/h. Τώρα θα τρέξει για κάποιο χρόνο με ταχύτητα 8 km/h. Πόσο χρόνο πρέπει να τρέξει ώστε να έχει μέσο όρο ταχύτητας 5 km/h; (A) 15 min (B) 20 min (C) 30 min (D) 35 min (E) 40 min 18. A chess player played 40 matches and scored 25 points (a win counts as one point, a draw counts as half a point, and a loss counts as zero points). How many more matches did he win than lose? Ένας παίχτης σκακιού έπαιξε 40 παιχνίδια και πήρε 25 βαθμούς (η νίκη μετρά ως ένα βαθμό, η ισοπαλία μετρά ως μισό βαθμό, και η ήττα ως μηδέν βαθμούς). Πόσα περισσότερα παιχνίδια νίκησε από αυτά που ηττήθηκε; (A) 5 (B) 7 (C) 10 (D) 12 (E) Triplets Jane, Danielle and Hannah wanted to buy identical hats. However, Jane lacked a third of their price, Danielle a quarter and Hanna a fifth. When the hats became 9,40 EUR cheaper, the sisters joined their savings and each of them bought a hat. Not a cent was left. What was the price of a hat before the price reduction? Τα τρίδυμα Jane, Danielle και Hannah ήθελαν να αγοράσουν τα ίδια καπέλα. Όμως η Jane της έλειπε το ένα τρίτο της τιμής, η Danielle το ένα τέταρτο και η Hanna το ένα πέμπτο. Όταν τα καπέλα έγιναν 9,40 EUR φτηνότερα, οι αδελφές ένωσαν τις οικονομίες τους και η κάθε μια αγόρασε ένα καπέλο. Ποια ήταν η τιμή του καπέλου πριν τη μείωση της τιμής; (A) 12 EUR (B) 16 EUR (C) 28 EUR (D) 36 EUR (E) 112 EUR 20. Let,, be positive integers and. Which of the following is equal to? Έστω,, είναι θετικοί ακέραιοι και. Ποιο από τα πιο κάτω ισούται με (A) 6 (B) 10 (C) 18 (D) 36 (E) 42 5

6 5 point problems - θέματα 5 μονάδων 21. In the equation,, each letter stands for a different digit (0, 1, 2,..., 9). How many different ways are there to choose the values of the letters? Στην εξίσωση,, το κάθε γράμμα εκπροσωπεί διαφορετικό ψηφίο (0, 1, 2,..., 9). Πόσοι διαφορετικοί τρόποι υπάρχουν για να επιλέξουμε τις τιμές των γραμμάτων; (A) 12 (B) 24 (C) 30 (D) 48 (E) On the picture shown Kaan wants to add some line segments such that each of the seven points has the same number of connections to the other points. What is the least number of line segments Kaan must draw? Στο δεδομένο σχεδιάγραμμα ο Kaan θέλει να προσθέσει μερικά ευθύγραμμα τμήματα ώστε το καθένα από τα 7 σημεία να έχει τον ίδιο αριθμό ενώσεων προς τα άλλα σημεία. Ποιος είναι ο ελάχιστος αριθμός ευθυγράμμων τμημάτων που πρέπει να σχεδιάσει ο Kann. (A) 4 (B) 5 (C) 6 (D) 9 (E) The picture shows the same cube from two different views. It is built from 27 small cubes, some of them are black and some are white. What is the largest possible number of black cubes in the large cube? Η εικόνα δείχνει τον ίδιο κύβο από δύο διαφορετικές γωνίες όψης. Έχει κατασκευαστεί από 27 μικρούς κύβους, με μερικούς να είναι άσπρου και μερικούς μαύρου χρώματος. Ποιος είναι ο μεγαλύτερος δυνατός αριθμός μαύρων κύβων στον μεγάλο κύβο; (A) 5 (B) 7 (C) 8 (D) 9 (E) 10 6

7 24. On an island, frogs are always either green or blue in some initial ratio of blue to green frogs. The number of blue frogs increased by 60% while the number of green frogs decreased by 60%. It turns out that the new ratio of blue frogs to green frogs is the same as the previous ratio in the opposite order (green frogs to blue frogs). By what percentage did the overall number of frogs change? Σε ένα νησί, οι βάτραχοι είναι πάντα πράσινοι ή μπλε με ένα αρχικό λόγο των μπλε προς τους πράσινους βατράχους. Ο αριθμός των μπλε βατράχων αυξήθηκε κατά 60% ενώ ο αριθμός των πράσινων βατράχων μειώθηκε κατά 60%. Τότε ο νέος λόγος των μπλε προς τους πράσινους βατράχους είναι ο ίδιος με τον προηγούμενο λόγο με αντίστροφη σειρά (πράσινοι προς μπλε βάτραχοι). Ποιο είναι το ποσοστό αλλαγής του συνoλικού αριθμού των βατράχων; (A) 0% (B) 20% (C) 30% (D) 40% (E) 50% 25. Tom wrote down several distinct positive integers, not exceeding. Their product was not divisible by. At most how many numbers could he have written? Ο Tom έγραψε μερικούς διαφορετικούς θετικούς ακέραιους, που δεν ξεπερνούν το 100. Το γινόμενο τους δεν διαιρείται με το 18. Το πολύ πόσους αριθμούς θα μπορούσε να είχε γράψει; 26. Any three vertices of a cube form a triangle. What is the number of all such triangles whose vertices are not all in the same face of the cube? Οποιεσδήποτε τρείς κορυφές ενός κύβου σχηματίζουν ένα τρίγωνο. Ποιος είναι ο αριθμός τέτοιων τριγώνων που οι κορυφές τους δεν βρίσκονται στην ίδια έδρα ενός κύβου ; 27. In the picture, is tangent to a circumference with center and bisects the angle. Calculate the angle. Στο πιο κάτω σχήμα, η είναι εφαπτόμενη στην περιφέρεια με κέντρο το και η διχοτομεί την γωνία. Να υπολογιστεί η γωνία. (A) (B) (C) (D) (E) It depends on the position of point - εξαρτάται από τη θέση του σημείου 7

8 28. Consider the set of all the 7-digit numbers that can be obtained using, for each number, all the digits 1, 2, 3,..., 7. If you list the numbers of the set in increasing order and split the list exactly at the middle into two parts of the same size, what is the last number of the first half? Θεωρείστε το σύνολο όλων των επταψήφιων αριθμών οι οποίοι μπορούν να σχηματιστούν χρησιμοποιώντας, για κάθε αριθμό, όλα τα ψηφία 1, 2, 3,..., 7. Αν γράψετε τους αριθμούς σε αύξουσα ακολουθία και μοιράσετε την ακολουθία ακριβώς στην μέση σε δύο ακολουθίες του ιδίου πλήθους όρων, ποιος είναι ο τελευταίος αριθμός της πρώτης μισής ακολουθίας; (A) (B) (C) (D) (E) Let be a triangle such that cm, cm and cm and be the midpoint of. is a square, and intersects at point. Find the area of quadrilateral in. Έστω τρίγωνο ώστε cm, cm και cm και το μέσο της. είναι τετράγωνο, και τέμνει την στο σημείο. Να βρεθεί το εμβαδό του τετραπλεύρου σε. (A) (B) (C) (D) (E) 30. There are 2014 persons in a row. Each of them is either a liar (who always lies) or a knight (who always tells the truth). Each person says 'There are more liars to my left than knights to my right'. How many liars are there in the row? Υπάρχουν 2014 άτομα σε μια σειρά. Ο καθένας είναι είτε ψεύτης (λέει πάντα ψέματα), είτε ιππότης (λέει πάντα την αλήθεια). Ο καθένας λέει «Υπάρχουν περισσότεροι ψεύτες στα αριστερά μου από ιππότες στα δεξιά μου». Πόσοι ψεύτες υπάρχουν στη σειρά; (A) 0 (B) 1 (C) 1007 (D) 1008 (E)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 3 point problems (προβλήματα 3 μονάδων) 1. The sum of the ages of Tom and John is 23, the sum of the ages of John and Alex is 24 and the sum of the ages of

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit?

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? 3 point problems - θέματα 3 μονάδων 1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? Η παπαρούνα θα καθίσει σε λουλούδι το οποίο

Διαβάστε περισσότερα

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014 LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG 4 March 2014 Family η οικογένεια a/one(fem.) μία a/one(masc.) ένας father ο πατέρας mother η μητέρα man/male/husband ο άντρας letter το γράμμα brother ο

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

(A) 56 (B) 60 (C) 64 (D) 68 (E) 80

(A) 56 (B) 60 (C) 64 (D) 68 (E) 80 3 point problems - θέματα 3 μονάδων 1. If you take a number of cubes out of a cube, you end up with a solid figure consisting of columns of the same height, which stand on the same ground plate (see figure).

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 9 10 Γ ΓΥΜΝΑΣΙΟΥ - Α ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 11 12 Β - Γ ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems(προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Kangourou Mathematics Competition Level 11 12

Kangourou Mathematics Competition Level 11 12 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 11 12 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 1 2 Α - Β ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-9: 3 points Questions 10-16: 4 points Questions 17-24: 5 points 1 3 points problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live.

Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live. Topic 1: Describe yourself Write your name, your nationality, your hobby, your pet. Write where you live. Χρησιμοποίησε το and. WRITE your paragraph in 40-60 words... 1 Topic 2: Describe your room Χρησιμοποίησε

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ. 7. How much money do you plan to spend on Kos per person? (Excluding tickets)

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ. 7. How much money do you plan to spend on Kos per person? (Excluding tickets) ΤΟΥΡΙΣΜΟΣ Στο συγκεκριμένο project μελετήσαμε τον τουρισμό και κυρίως αυτόν στο νησί μας. Πιο συγκεκριμένα, κατά πόσο αυτός είναι σωστά ανεπτυγμένος και οργανωμένος. Για την ουσιαστικότερη προσέγγιση του

Διαβάστε περισσότερα

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT

10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT Date: 22 October 2016 Time: 09:00 hrs Subject: BULLETIN No 5 Document No: 1.6 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year?

1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year? 3 point problems - θέματα 3 μονάδων 1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year? Κάθε χρόνο, η ημερομηνία

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 5 6 Ε - Στ ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

Kangourou Maths 2012 Junior Level 9-10

Kangourou Maths 2012 Junior Level 9-10 Kangourou Maths 2012 Junior Level 9-10 Προβλήματα 3 μονάδων/3 point problems 1. Μ και Ν είναι τα μέσα των ίσων πλευρών ενός ισοσκελούς τριγώνου. M and N are the midpoints of the equal sides of an isosceles

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Kangourou Maths 2012 Cadet Level 7-8

Kangourou Maths 2012 Cadet Level 7-8 Kangourou Maths 2012 Cadet Level 7-8 Προβλήματα 3 μονάδων / 3 point problems 1. Τέσσερεις σοκολάτες κοστίζουν 6 ευρώ περισσότερα από μία σοκολάτα. Ποιο είναι το κόστος μιας σοκολάτας; Four chocolate bars

Διαβάστε περισσότερα

Συντακτικές λειτουργίες

Συντακτικές λειτουργίες 2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013 LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV 10 December 2013 I get up/i stand up I wash myself I shave myself I comb myself I dress myself Once (one time) Twice (two times) Three times Salary/wage/pay Alone/only

Διαβάστε περισσότερα

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes

Paper Reference. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing. Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Centre No. Candidate No. Paper Reference(s) 1776/04 Edexcel GCSE Modern Greek Paper 4 Writing Thursday 21 May 2009 Afternoon Time: 1 hour 15 minutes Materials required for examination Nil Paper Reference

Διαβάστε περισσότερα

FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17

FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17 FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17 Name: Surname: Date: Class: 1. Write these words in the correct order. /Γράψε αυτέσ τισ λέξεισ ςτη ςωςτή ςειρά. 1) playing / his / not /

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣTΑΣΗΣ ΓΙΑ ΠΑΤΩΜΑ WPC INSTALLATION GUIDE FOR WPC DECKING

ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣTΑΣΗΣ ΓΙΑ ΠΑΤΩΜΑ WPC INSTALLATION GUIDE FOR WPC DECKING 1/12 ΟΔΗΓΙΕΣ ΕΓΚΑΤΑΣTΑΣΗΣ ΓΙΑ ΠΑΤΩΜΑ WPC INSTALLATION GUIDE FOR WPC DECKING Ανοίγουμε τρύπες Ø8 x 80mm στο σημείο κατασκευής, με τρυπάνι. To προτεινόμενο πλάτος και μήκος μεταξύ των 2 οπών να είναι 30-35εκ.,

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ. Πείραμα: Μία φυσική διαδικασία με ένα αριθμό παρατηρήσιμων αποτελεσμάτων.

ΣΥΝΔΥΑΣΤΙΚΗ. Πείραμα: Μία φυσική διαδικασία με ένα αριθμό παρατηρήσιμων αποτελεσμάτων. ΣΥΝΔΥΑΣΤΙΚΗ Πείραμα: Μία φυσική διαδικασία με ένα αριθμό παρατηρήσιμων αποτελεσμάτων. Παραδείγματα πειραμάτων και αντίστοιχα πιθανά αποτελέσματα: Πιθανά αποτελέσματα ρίψης νομίσματος={κ, Γ} Πιθανά αποτελέσματα

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

Kangourou Maths 2012 Student Level 11-12

Kangourou Maths 2012 Student Level 11-12 Kangourou Maths 2012 Student Level 11-12 Προβλήματα 3 μονάδων - 3 point problems 1. Το επίπεδο του νερού σε μια παραλιακή πόλη αυξάνεται και μειώνεται σε συγκεκριμένη μέρα όπως φαίνεται στο διάγραμμα.

Διαβάστε περισσότερα

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization)

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization) Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization) Προσδιορισμός της Τιμής όταν η Ομολογία Αγοράζεται μεταξύ δύο Τοκοφόρων Περιόδων Για να υπολογίσουμε την τιμή της ομολογίας πρέπει: Υπολογίζουμε

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG. 14 January 2013

LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG. 14 January 2013 LESSON 9 (ΜΑΘΗΜΑ ΕΝΝΙΑ) REF : 101/011/9-BEG 14 January 2013 Up πάνω Down κάτω In μέσα Out/outside έξω (exo) In front μπροστά (brosta) Behind πίσω (piso) Put! Βάλε! (vale) From *** από Few λίγα (liga) Many

Διαβάστε περισσότερα

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 Name.. Class. Date. EXERCISE 1 Answer the question. Use: Yes, it is or No, it isn t. Απάντηςε ςτισ ερωτήςεισ. Βάλε: Yes, it is ή No, it isn

Διαβάστε περισσότερα

@ BY AVENUES PRIVATE INSTITUTE JUNE 2014

@ BY AVENUES PRIVATE INSTITUTE JUNE 2014 1 Εκεί που η ποιότητα συναντά την επιτυχία Λεωφ. Αρχ. Μακαρίου 7, Αρεδιού Τηλ. 22874368/9 2 ENGLISH INSTITUTE A Place where quality meets success 7, Makarios Avenue, Arediou, Tel. 22874368/9 99606442 Anglia

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony Ελληνικά Ι English 1/7 Δημιουργία Λογαριασμού Διαχείρισης Επιχειρηματικής Τηλεφωνίας μέσω της ιστοσελίδας

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

How to register an account with the Hellenic Community of Sheffield.

How to register an account with the Hellenic Community of Sheffield. How to register an account with the Hellenic Community of Sheffield. (1) EN: Go to address GR: Πηγαίνετε στη διεύθυνση: http://www.helleniccommunityofsheffield.com (2) EN: At the bottom of the page, click

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus. Level 7 8

Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus. Level 7 8 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 7 8 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points

Διαβάστε περισσότερα

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων

Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Student (Β Γ Λυκείου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 7 8 Α - Β ΓΥΜΝΑΣΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014 LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV 4 February 2014 Somewhere κάπου (kapoo) Nowhere πουθενά (poothena) Elsewhere αλλού (aloo) Drawer το συρτάρι (sirtari) Page η σελίδα (selida) News τα νέα (nea)

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 3-4

KANGOUROU Mathematics Competition 2016 Level 3-4 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 3-4 (Γ - Δ Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 8 = 3 βαθμοί

Διαβάστε περισσότερα

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες

Διαβάστε περισσότερα