1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year?

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year?"

Transcript

1 3 point problems - θέματα 3 μονάδων 1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year? Κάθε χρόνο, η ημερομηνία του διαγωνισμού Καγκουρό είναι η 3 η Πέμπτη το μήνα Μαρτίου. Ποια είναι η αργότερη δυνατή ημερομηνία του διαγωνισμού σε οποιοδήποτε έτος; (A) 14 th March - 14 Μαρτίου (B) 15 th March - 15 Μαρτίου (C) 20 th March - 20 Μαρτίου (D) 21 st March - 21 Μαρτίου (E) 22 nd March - 22 Μαρτίου 2. How many quadrilaterals of any size are shown in the figure? Πόσα τετράπλευρα οποιουδήποτε μεγέθους φαίνονται στο διάγραμμα ; (A) 0 (B) 1 (C) 2 (D) 4 (E) 5 3. What is the result of:? Ποιο είναι το αποτέλεσμα του ; (A) 0 (B) 1 (C) 2013 (D) 2014 (E) Trees grow on only one side of Park Avenue. There are 60 trees in total. Every second tree is a maple, and every third tree is either a linden or a maple. The remaining trees are birches. How many birches are there? Τα δέντρα μεγαλώνουν μόνο από την μια πλευρά της Park Avenue. Συνολικά υπάρχουν 60 δέντρα. Κάθε δεύτερο δέντρο είναι σφενδάμι, και κάθε τρίτο δέντρο είναι είτε φλαμουριά ή σφενδάμι. Τα υπόλοιπα δέντρα είναι σημύδες. Πόσες σημύδες υπάρχουν; (A) 10 (B) 15 (C) 20 (D) 24 (E) The product of two numbers is 36 and their sum is 37. What is their difference? Το γινόμενο δύο αριθμών είναι 36 και το άθροισμα τους είναι 37. Ποια είναι η διαφορά τους; (A) 1 (B) 4 (C) 10 (D) 26 (E) 35 1

2 6. Wanda has several square pieces of paper of area 4 each. She cuts them into squares and right-angled triangles in the manner shown in the first diagram. She takes some of the pieces and makes the bird shown in the second diagram (without the eye). What is the area of the bird? Η Wanda έχει μερικά τετράγωνα κομμάτια από χαρτί με εμβαδό 4 το καθένα. Τα κόβει σε τετράγωνα και ορθογώνια τρίγωνα όπως φαίνεται στο πρώτο σχήμα. Παίρνει μερικά από τα κομμάτια και κατασκευάζει ένα πουλί όπως φαίνεται στο δεύτερο σχήμα (χωρίς το μάτι). Ποιο είναι το εμβαδό τους πουλιού; (A) 3 (B) 4 (C) 9/2 (D) 5 (E) 6 7. A bucket was half full. A cleaner added 2 litres(lt) of liquid to the bucket. The bucket was then three-quarters full. What is the capacity of the bucket? Ένα κουβάς ήταν μισογεμάτος. Μια καθαρίστρια πρόσθεσε 2 λίτρα(lt) υγρό στον κουβά. Ο κουβάς ήταν μετά τρία-τέταρτα γεμάτος. Ποια είναι η χωρητικότητα του κουβά; (A) 10 Lt (B) 8 Lt (C) 6 Lt (D) 4 Lt (E) 2 Lt 8. George built the shape shown using seven unit cubes. How many such cubes does he have to add to make a cube with edges of length 3? Ο Γιώργος κατασκεύασε το σχήμα που φαίνεται χρησιμοποιώντας κύβους διαστάσεων πλευρών μονάδας. Πόσους τέτοιους κύβους πρέπει να προσθέσει για να κατασκευάσει κύβο με διαστάσεις ακμών μήκους 3; (A) 12 (B) 14 (C) 16 (D) 18 (E) 20 2

3 9. Which of the following calculations gives the largest result? Ποιο από τους πιο κάτω υπολογισμούς δίνει το μεγαλύτερο αποτέλεσμα; (A) (B) (C) (D) (E) 10. The necklace in the picture contains grey beads and white beads. Arno takes one bead after another from the necklace. He always takes a bead from one of the two ends. He stops as soon as he has taken the fifth grey bead. What is the largest number of white beads that Arno can take? Το κολιέ στην εικόνα αποτελείται από γκρίζες και άσπρες χάνδρες.ο Arno παίρνει μια-μία χάνδρα από το κολιέ. Πάντα παίρνει χάνδρα από μια από τις δυο άκρες.σταματά μόλις πάρει την πέμπτη γκρίζα χάνδρα. Ποιος είναι ο μεγαλύτερος αριθμός άσπρων χανδρών που μπορεί να πάρει ο Arno; (A) 4 (B) 5 (C) 6 (D) 7 (E) 8 4 point problems - θέματα 4 μονάδων 11. Jack has a piano lesson twice a week and Hannah has a piano lesson every other week. In a given term, Jack has 15 more lessons than Hannah. How many weeks long is their term? O Jack έχει μάθημα πιάνου δύο φορές τη βδομάδα και η Hannah έχει μάθημα πιάνου κάθε δεύτερη βδομάδα. Σε μια δεδομένη περίοδο μαθημάτων, ο Jack έχει 15 περισσότερα μαθήματα από τη Hannah. Πόσες βδομάδες διαρκεί αυτή η περίοδος; (A) 30 (B) 25 (C) 20 (D) 15 (E) In the diagram, the area of each circle is. The area common to two overlapping circles is. What is the total area of the region covered by the five circles? Στο σχεδιάγραμμα, το εμβαδό του κάθε κύκλου είναι. Το κοινό εμβαδό δύο επικαλυπτόμενων κύκλων είναι. Ποιο είναι το συνολικό εμβαδό του χωρίου που καλύπτεται από τους πέντε κύκλους; (A) (B) (C) (D) (E) 3

4 13. This year a grandmother, her daughter and her granddaughter noticed that the sum of their ages is 100 years. Each of their ages is a power of 2. How old is the granddaughter? Φέτος παρατηρήθηκε ότι μια γιαγιά, η κόρη της και η εγγονή της έχουν μαζί άθροισμα ηλικιών 100 χρόνια. Η ηλικία της κάθε μιας είναι δύναμη του 2. Πόσων χρονών είναι η εγγονή; (A) 1 (B) 2 (C) 4 (D) 8 (E) Five equal rectangles are placed inside a square with side 24 cm, as shown in the diagram. What is the area of one rectangle in? Πέντε ίσα ορθογώνια τοποθετούνται μέσα σε τετράγωνο με πλευρά 24 cm, όπως φαίνεται στο διάγραμμα. Ποιο είναι το εμβαδό ενός ορθογωνίου σε ; (A) 12 (B) 16 (C) 18 (D) 24 (E) The heart and the arrow are in the positions shown in the figure. At the same time the heart and the arrow start moving from one triangle to another. The arrow moves three places clockwise and the heart moves four places anticlockwise and then stop. They continue the same routine move over and over again. After how many routine moves will the heart and the arrow land in the same triangular region for the first time? Η καρδία και το βέλος είναι στις θέσεις που φαίνεται στο σχήμα. Την ίδια στιγμή η καρδία και το βέλος αρχίζουν να κινούνται από ένα τρίγωνο σε άλλο. Το βέλος μετακινείται τρεις θέσεις δεξιόστροφα και η καρδία μετακινείται τέσσερεις θέσεις αριστερόστροφα και μετά σταματούν. Συνεχίζουν την ίδια κίνηση ρουτίνας ξανά και ξανά. Μετά από πόσες κινήσεις ρουτίνας θα καταλήξουν η καρδία και το βέλος μέσα στο ίδιο τρίγωνο για πρώτη φορά; (A) 7 (B) 8 (C) 9 (D) 10 (E) It will never happen(δεν θα συμβεί ποτέ) 4

5 16. The diagram shows the triangle in which is a perpendicular height and is the angle bisector at.the obtuse angle between and is four times the angle (see the diagram). What is the angle? Το διάγραμμα δείχνει το τρίγωνο στο οποίο είναι κάθετο ύψος και η είναι η διχοτόμος της γωνίας. Η αμβλεία γωνία μεταξύ των και είναι τέσσερεις φορές όσο η γωνία (όπως είναι στο σχέδιο). Πόση είναι η γωνία ; (A) (B) (C) (D) (E) 17. Six boys share a flat with two bathrooms which they use every morning beginning at 7:00 o'clock. There is never more than one person in either bathroom at any one time. They spend 8, 10, 12, 17, 21 and 22 minutes at a stretch in the bathroom respectively. What is the earliest time that they can finish using the bathrooms? Έξι αγόρια μοιράζονται ένα διαμέρισμα με δύο μπάνια τα οποία χρησιμοποιούν κάθε πρωί αρχίζοντας στις 7:00 η ώρα. Δεν υπάρχει ποτέ πάνω από ένα άτομο σε κάθε μπάνιο σε οποιαδήποτε στιγμή. Ξοδεύουν 8, 10, 12, 17, 21 και 22 λεπτά για άσκηση μέσα στο μπάνιο αντίστοιχα. Ποιο είναι το πιο σύντομο που θα μπορούσαν να τελειώσουν με τη χρήση του μπάνιου; (A) 7:45 (B) 7:46 (C) 7:47 (D) 7:48 (E) 7: A rectangle has sides of length 6 cm and 11 cm. One long side is selected. The bisectors of the angles at either end of that side are drawn. These bisectors divide the other long side into three parts. What are the lengths of these parts? Ένα ορθογώνιο έχει πλευρές μήκους 6 cm και 11 cm. Επιλέγεται μια από τις μεγάλες πλευρές. Σχεδιάζουμε τις διχοτόμους των γωνιών στα δύο άκρα της πλευράς. Αυτοί οι διχοτόμοι διαιρούν την άλλη μεγάλη πλευρά σε τρία μέρη. Ποια είναι τα μήκη αυτών των μερών; (A) 1 cm, 9 cm, 1 cm (B) 2 cm, 7 cm, 2 cm (C) 3 cm, 5 cm, 3 cm (D) 4 cm, 3 cm, 4 cm (E) 5 cm, 1 cm, 5 cm 19. Captain Sparrow and his pirate crew dug up several gold coins. They divide the coins amongst themselves so that each person gets the same number of coins. If there were four fewer pirates, then each person would get 10 more coins. However, if there were 50 fewer coins, then each person would get 5 fewer coins. How many coins dig they dig up? Ο Καπετάνιος Sparrow και το πειρατικό του προσωπικό ξέθαψαν μερικά χρυσά νομίσματα. Μοιράζουν τα νομίσματα μεταξύ τους ώστε το κάθε άτομο να παίρνει τον ίδιο αριθμό νομισμάτων. Αν υπήρχαν τέσσερεις λιγότεροι πειρατές, τότε το κάθε άτομο θα έπαιρνε 10 περισσότερα νομίσματα. Όμως, αν υπήρχαν 50 λιγότερα νομίσματα, τότε το κάθε άτομο θα έπαιρνε 5 λιγότερα νομίσματα. Πόσα νομίσματα ξέθαψαν αρχικά; (A) 80 (B) 100 (C) 120 (D) 150 (E) 250 5

6 20. The average of two positive numbers is 30% less than one of them. By what percentage is the average greater than the other number? Ο μέσος όρος δύο θετικών αριθμών είναι 30% μικρότερος από ένα από αυτούς. Με τι ποσοστό είναι ο μέσος όρος μεγαλύτερος του άλλου αριθμού; (A) 75% (B) 70% (C) 30% (D) 25% (E) 20% 5 point problems - θέματα 5 μονάδων 21. Andy enters all the digits from 1 to 9 in the cells of a 3x3 table, so that each cell contains one digit. He has already entered 1, 2, 3 and 4, as shown. Two numbers are considered to be 'neighbours' if their cells share an edge. After entering all the numbers he notices that the sum of the neighbours of 9 is 15. What is the sum of the neighbours of 8? O Andy γράφει όλα τα ψηφία από το 1 μέχρι το 9 στα τετραγωνάκια του πίνακα 3x3, ώστε το κάθε τετραγωνάκι να περιέχει ένα ψηφίο. Τοποθέτησε ήδη τα 1, 2, 3 και 4, όπως φαίνεται. Δύο αριθμοί θεωρούνται «γείτονες» αν έχουν κοινή πλευρά. Μετά που τοποθέτησε όλους τους αριθμούς πρόσεξε ότι το άθροισμα των γειτόνων του 9 είναι 15. Ποιο είναι το άθροισμα των γειτόνων του 8 ; (A) 12 (B) 18 (C) 20 (D) 26 (E) An antique scale is not working properly. If something is lighter than 1000 g, the scale shows the correct weight. However, if something is heavier than or equal to 1000 g, the scale can show any number above 1000 g. We have 5 weights g, g, g, g, g each under 1000 g. When they are weighed in pairs, the scale shows the following:,,,,. Which of the weights is the heaviest? Μια παλιά ζυγαριά δεν δουλεύει σωστά. Αν κάτι είναι ελαφρότερο από 1000 g, η ζυγαριά δείχνει το σωστό βάρος. Όμως, αν κάτι είναι 1000 g ή πιο βαρετό τότε η ζυγαριά μπορεί να δείξει οποιοδήποτε βάρος πάνω από 1000 g. Έχουμε 5 βάρη g, g, g, g, g, το καθένα κάτω από 1000 g. Όταν ζυγίζονται σε ζευγάρια η ζυγαριά δείχνει τα εξής:,,,,. Ποιο από τα βάρη είναι το πιο βαρύ; (A) (B) (C) (D) (E) 6

7 23. Quadrilateral has right angles only at vertices and. The numbers show the areas of two of the triangles. What is the area of? Το τετράπλευρο ABCD έχει ορθές γωνίες μόνο στις κορυφές Α και D. Οι αριθμοί δείχνουν τα εμβαδά σε δύο από τα τρίγωνα. Ποιο είναι το εμβαδό του ABCD; (A) 60 (B) 45 (C) 40 (D) 35 (E) Liz and Mary compete in solving problems. Each of them is given the same list of 100 problems. For any problem, the first of them to solve it gets 4 points, while the second to solve it gets 1 point. Liz solved 60 problems, and Mary also solved 60 problems. Together, they got 312 points. How many problems were solved by both of them? Η Liz και η Mary διαγωνίζονται στην επίλυση προβλημάτων. Δόθηκε στην καθεμιά ο ίδιος κατάλογος από 100 προβλήματα. Για οποιοδήποτε πρόβλημα, η πρώτη που θα το λύσει παίρνει 4 μονάδες, ενώ η δεύτερη που θα το λύσει παίρνει 1 μονάδα. Η Liz έλυσε 60 προβλήματα και η Mary έλυσε και αυτή 60 προβλήματα. Μαζί πήραν 312 μονάδες. Πόσα προβλήματα λύθηκαν και από τις δύο; (A) 53 (B) 54 (C) 55 (D) 56 (E) David rides his bicycle from Edinburgh to his croft. He was going to arrive at 15:00, but he spent 2/3 of the planned time covering 3/4 of the distance. After that, he rode more slowly and arrived exactly on time. What is the ratio of the speed for the first part of the journey to the speed for the second part? Ο David οδηγεί το ποδήλατό του από το Εδιμβούργο στον κήπο του. Υπολόγιζε να φτάσει στις 15:00, αλλά ξόδεψε 2/3 του προγραμματισμένου χρόνου καλύπτοντας 3/4 της απόστασης. Μετά από αυτό οδήγησε πιο αργά και έφτασε ακριβώς στην ώρα του. Ποιος είναι ο λόγος της ταχύτητας του πρώτου μέρους του ταξιδίου προς την ταχύτητα του δεύτερου μέρους ; (A) (B) (C) (D) (E) 7

8 26. We have four identical cubes (see picture). They are arranged so that a big black circle appears on one face, as shown in the second picture. What can be seen on the opposite face? Έχουμε τέσσερεις ίδιους κύβους (όπως στην εικόνα). Έχουν σχεδιαστεί ώστε ένας μεγάλος μαύρος κύκλος εμφανίζεται σε μια από τις όψεις, όπως φαίνεται στη δεύτερη εικόνα. Τι μπορούμε να δούμε στην απέναντι όψη; (A) (B) (C) (D) (E) 27. A group of 25 people consists of knights, serfs and damsels. Each knight always tells the truth, each serf always lies, and each damsel alternates between telling the truth and lying. When each of them was asked: "Are you a knight?", 17 of them said "Yes". When each of them was then asked: "Are you a damsel?", 12 of them said "Yes". When each of them was then asked: "Are you a serf?", 8 of them said "Yes". How many knights are in the group? Μια ομάδα 25 ατόμων αποτελείται από πολεμιστές, δουλοπάροικους και νεανίδες. Ο κάθε πολεμιστής λέει πάντα την αλήθεια, ο κάθε δουλοπάροικος πάντα λέει ψέματα και η κάθε νεανίδα λέει εναλλάσσοντας αλήθεια με ψέμα. Όταν ο καθένας ερωτήθηκε : «Είσαι πολεμιστής;», 17 απάντησαν «Ναι». Όταν ο καθένας ερωτήθηκε : «Είσαι νεανίδα;», 12 απάντησαν «Ναι». Όταν ο καθένας ερωτήθηκε : «Είσαι δουλοπάροικος;», 8 απάντησαν «Ναι». Πόσοι πολεμιστές είναι στην ομάδα; (A) 4 (B) 5 (C) 9 (D) 13 (E) Several different positive integers are written on the board. Exactly two of them are divisible by 2 and exactly 13 of them are divisible by 13. Let be the greatest of these numbers. What is the smallest possible value of? Μερικοί διαφορετικοί ακέραιοι αριθμοί γράφονται στον πίνακα. Ακριβώς δύο από αυτούς διαιρούνται με το 2 και ακριβώς 13 από αυτούς διαιρούνται με το 13. Έστω Μ ο μεγαλύτερος από αυτούς τους αριθμούς. Ποια είναι η μικρότερη δυνατή τιμή του Μ; (A) 169 (B) 260 (C) 273 (D) 299 (E) 325 8

9 29. On a pond there are 16 water lily leaves in a 4 by 4 pattern as shown. A frog sits on a leaf in one of the corners. It then jumps from one leaf to another either horizontally or vertically. The frog always jumps over at least one leaf and never lands on the same leaf twice. What is the greatest number of leaves (including the one it sits on) that the frog can reach? Σε μια λιμνούλα υπάρχουν 16 φύλλα κρίνου του νερού σε μια διευθέτηση 4 επί 4 όπως φαίνεται. Ένας βάτραχος κάθεται πάνω σε ένα φύλλο σε μια από τις γωνιές. Μετά πηδά από ένα φύλλο σε άλλο οριζόντια ή κάθετα. Ο βάτραχος πηδά πάνω από ένα φύλλο τουλάχιστο και ποτέ δεν κάθεται στο ίδιο φύλλο ξανά. Ποιος είναι ο μεγαλύτερος αριθμός φύλλων (συμπεριλαμβανομένου αυτού που κάθεται στην αρχή) στα οποία μπορεί να φτάσει ο βάτραχος; (A) 16 (B) 15 (C) 14 (D) 13 (E) A square is made from tiles, all with the same pattern, as shown. Any two adjacent tiles have the same colour along the shared edge. The perimeter of the large square consists of black and white segments of length 1. What is the smallest possible number of such unit black segments? Ένα τετράγωνο 5 Χ 5 κατασκευάζεται από πλακάκια 1 Χ 1, όλα με το ίδιο μοντέλο, όπως φαίνεται. Οποιαδήποτε δύο διπλανά πλακάκια έχουν το ίδιο χρώμα στην κοινή πλευρά. Η περίμετρος του μεγάλου τετραγώνου αποτελείται από μαύρα και άσπρα τμήματα μήκους 1. Ποιος είναι ο μικρότερος δυνατός αριθμός τέτοιων μαύρων τμημάτων μήκους 1; (A) 4 (B) 5 (C) 6 (D) 7 (E) 8 9

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit?

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? 3 point problems - θέματα 3 μονάδων 1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? Η παπαρούνα θα καθίσει σε λουλούδι το οποίο

Διαβάστε περισσότερα

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 3 point problems (προβλήματα 3 μονάδων) 1. The sum of the ages of Tom and John is 23, the sum of the ages of John and Alex is 24 and the sum of the ages of

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 1 2 Α - Β ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-9: 3 points Questions 10-16: 4 points Questions 17-24: 5 points 1 3 points problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 9 10 Γ ΓΥΜΝΑΣΙΟΥ - Α ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα

Διαβάστε περισσότερα

1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition?

1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition? 3 point problems - θέματα 3 μονάδων 1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition? Η ημερομηνία ενός διαγωνισμού είναι η 3

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; (A) (B) (C) (D) (E)

Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; (A) (B) (C) (D) (E) 3 point problems - θέματα 3 μονάδων 1. Which drawing is the central part of the picture with the star? Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; 2. Jacky wants to insert the digit

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 11 12 Β - Γ ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems(προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

(A) 56 (B) 60 (C) 64 (D) 68 (E) 80

(A) 56 (B) 60 (C) 64 (D) 68 (E) 80 3 point problems - θέματα 3 μονάδων 1. If you take a number of cubes out of a cube, you end up with a solid figure consisting of columns of the same height, which stand on the same ground plate (see figure).

Διαβάστε περισσότερα

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013

LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV. 10 December 2013 LESSON 6 (ΜΑΘΗΜΑ ΕΞΙ) REF : 201/045/26-ADV 10 December 2013 I get up/i stand up I wash myself I shave myself I comb myself I dress myself Once (one time) Twice (two times) Three times Salary/wage/pay Alone/only

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

Kangourou Maths 2012 Cadet Level 7-8

Kangourou Maths 2012 Cadet Level 7-8 Kangourou Maths 2012 Cadet Level 7-8 Προβλήματα 3 μονάδων / 3 point problems 1. Τέσσερεις σοκολάτες κοστίζουν 6 ευρώ περισσότερα από μία σοκολάτα. Ποιο είναι το κόστος μιας σοκολάτας; Four chocolate bars

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 3-4

KANGOUROU Mathematics Competition 2016 Level 3-4 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 3-4 (Γ - Δ Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 8 = 3 βαθμοί

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014 LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG 4 March 2014 Family η οικογένεια a/one(fem.) μία a/one(masc.) ένας father ο πατέρας mother η μητέρα man/male/husband ο άντρας letter το γράμμα brother ο

Διαβάστε περισσότερα

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Αναερόβια Φυσική Κατάσταση

Αναερόβια Φυσική Κατάσταση Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 7-8

KANGOUROU Mathematics Competition 2016 Level 7-8 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 7-8 (Α Β Γυμνασίου) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η

Διαβάστε περισσότερα

(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

(A) 4 (B) 5 (C) 6 (D) 7 (E) 8 3 point problems - θέματα 3 μονάδων 1. Arno spelled the word KANGAROO with cards showing one letter at a time. Unfortunately some cards were tipped. Tipping back twice he can correct the letter K and tipping

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 7 8 Α - Β ΓΥΜΝΑΣΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 1-2

KANGOUROU Mathematics Competition 2016 Level 1-2 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 1-2 (A - Β Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 8 = 3 βαθμοί

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Pre-Ecolier (A - Β Δημοτικού) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 8 = 3 μονάδες

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Kadet (Α - Β Γυμνασίου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Student (Β Γ Λυκείου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά

Διαβάστε περισσότερα

Kangourou Maths 2012 Student Level 11-12

Kangourou Maths 2012 Student Level 11-12 Kangourou Maths 2012 Student Level 11-12 Προβλήματα 3 μονάδων - 3 point problems 1. Το επίπεδο του νερού σε μια παραλιακή πόλη αυξάνεται και μειώνεται σε συγκεκριμένη μέρα όπως φαίνεται στο διάγραμμα.

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Junior (Γ Γυμνασίου Α Λυκείου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Περιοχή διαγωνισμού Rethink Athens

Περιοχή διαγωνισμού Rethink Athens Περιοχή διαγωνισμού Rethink Athens Πρόγραμμα : Statistical_Analysis_1.prg Ανάλυση : 28/06/2012 13:05 Κατάλογος : C:\Workspace\Planning\Mst\2010\Statistics\Analysis_5\ Vesrion : 2.8.0, 20-06-2011 Τα κοινά

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α.  Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α 2 ειδήσεις από ελληνικές εφημερίδες: 1. Τα Νέα, 13-4-2010, Σε ανθρώπινο λάθος αποδίδουν τη συντριβή του αεροσκάφους, http://www.tanea.gr/default.asp?pid=2&artid=4569526&ct=2 2. Τα Νέα,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 5 6 Ε - Στ ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Benjamin (Ε - Στ Δημοτικού) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού) Προσδοκώμενα αποτελέσματα Περιεχόμενο Ενδεικτικές δραστηριότητες

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Door Hinge replacement (Rear Left Door)

Door Hinge replacement (Rear Left Door) Door Hinge replacement (Rear Left Door) We will continue the previous article by replacing the hinges of the rear left hand side door. I will use again the same procedure and means I employed during the

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 5-6

KANGOUROU Mathematics Competition 2016 Level 5-6 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 5-6 (Ε - Στ Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί

Διαβάστε περισσότερα

Kangourou Maths 2012 Junior Level 9-10

Kangourou Maths 2012 Junior Level 9-10 Kangourou Maths 2012 Junior Level 9-10 Προβλήματα 3 μονάδων/3 point problems 1. Μ και Ν είναι τα μέσα των ίσων πλευρών ενός ισοσκελούς τριγώνου. M and N are the midpoints of the equal sides of an isosceles

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 0 ΑΠΡΙΛΙΟΥ 0 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Διαστημικό εστιατόριο του (Μ)ΑστροΈκτορα Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά. Μόλις μια παρέα πελατών κάτσει σε ένα

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 Name.. Class. Date. EXERCISE 1 Answer the question. Use: Yes, it is or No, it isn t. Απάντηςε ςτισ ερωτήςεισ. Βάλε: Yes, it is ή No, it isn

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education www.xtremepapers.com UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education *6301456813* GREEK 0543/03 Paper 3 Speaking Role Play Card One 1 March 30

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 3 4 Γ - Δ ΔΗΜΟΤΙΚΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-8: 3 points Questions 9-16: 4 points Questions 17-24: 5 points 1 3 points problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

Συντακτικές λειτουργίες

Συντακτικές λειτουργίες 2 Συντακτικές λειτουργίες (Syntactic functions) A. Πτώσεις και συντακτικές λειτουργίες (Cases and syntactic functions) The subject can be identified by asking ποιος (who) or τι (what) the sentence is about.

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

DETERMINATION OF FRICTION COEFFICIENT

DETERMINATION OF FRICTION COEFFICIENT EXPERIMENT 5 DETERMINATION OF FRICTION COEFFICIENT Purpose: Determine μ k, the kinetic coefficient of friction and μ s, the static friction coefficient by sliding block down that acts as an inclined plane.

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 4: English a Language of Economy Το περιεχόμενο του μαθήματος διατίθεται με άδεια

Διαβάστε περισσότερα

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014 LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV 18 February 2014 Slowly/quietly Clear/clearly Clean Quickly/quick/fast Hurry (in a hurry) Driver Attention/caution/notice/care Dance Σιγά Καθαρά Καθαρός/η/ο

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 11: The Unreal Past Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Candidate Number. General Certificate of Secondary Education Higher Tier November 2013

Candidate Number. General Certificate of Secondary Education Higher Tier November 2013 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Pages Mark General Certificate of Secondary Education Higher Tier November 2013 3 4 5 Mathematics

Διαβάστε περισσότερα

Στεγαστική δήλωση: Σχετικά με τις στεγαστικές υπηρεσίες που λαμβάνετε (Residential statement: About the residential services you get)

Στεγαστική δήλωση: Σχετικά με τις στεγαστικές υπηρεσίες που λαμβάνετε (Residential statement: About the residential services you get) Νόμος περί Αναπηριών 2006 (Disability Act 2006) Στεγαστική δήλωση: Σχετικά με τις στεγαστικές υπηρεσίες που λαμβάνετε (Residential statement: About the residential services you get) Greek Νόμος περί Αναπηριών

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα