KANGOUROU MATHEMATICS

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KANGOUROU MATHEMATICS"

Transcript

1 KANGOUROU MATHEMATICS LEVEL 9 10 Γ ΓΥΜΝΑΣΙΟΥ - Α ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH :00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1

2 3 point problems (προβλήματα 3 μονάδων) 1. The number is not divisible by Ο αριθμός δεν διαιρείται με (A). (B). (C). (D). (E). 2. Mary drew six identical squares, each containing a shaded region. How many of the regions have perimeter equal in length to the perimeter of one of the squares? Η Mary σχεδίασε έξι πανομοιότυπα τετράγωνα, το καθένα έχοντας σκιαγραφημένο κομμάτι. Πόσα από τα σκιαγραφημένα κομμάτια έχουν περίμετρο ίση με την περίμετρο ενός τετραγώνου; 3. Mrs. Margareth bought 4 cobs of corn for each person in her family, which has four members. She got the discount shown in the sign. How much did she pay? Η κυρία Margareth αγόρασε 4 στάχυα από καλαμπόκι για κάθε άτομο στην οικογένεια της, η οποία αποτελείται από τέσσερα μέλη. Πήρε έκπτωση όση φαίνεται στην πινακίδα. Πόσα πλήρωσε; Ξεπούλημα Καλαμπόκι 1 στάχυ 20 σεντς Το έκτο στάχυ δωρεάν (A) 0,80 EURΟ (B) 1,20 EURΟ (C) 2,80 EURΟ (D) 3,20 EURΟ (E) 80 EURΟ 4. Three of the numbers 2, 4, 16, 25, 50, 125 have product What is the sum of those three numbers? Τρεις από τους αριθμούς 2, 4, 16, 25, 50, 125 έχουν γινόμενο Ποιο είναι το άθροισμα αυτών των τριών αριθμών; (A) 70 (B) 77 (C) 131 (D) 143 (E) 145 2

3 5. Six points are marked on a square grid with cells of size, as shown. Kanga wants to choose three of the marked points to be the vertices of a triangle. What is the smallest possible area of such a triangle? Έξι σημεία έχουν σημειωθεί σε τετράγωνο πλαίσιο με τετραγωνάκια μεγέθους 1 Χ 1, όπως φαίνεται. Η Kanga θέλει να επιλέξει τρία από τα σημειωμένα σημεία για να είναι κορυφές τριγώνου. Ποιο είναι το ελάχιστο δυνατό εμβαδό τέτοιου τριγώνου; (A) (B) (C) (D) 1 (E) 2 6. Which of the following is equal to? Ποιο από τα πιο κάτω ισούται με ; 7. The outside of a cube is painted with grey and white squares in such a way that it appears as if it was built using smaller grey cubes and white cubes, as shown. Which of the following could be a net of the painted cube? Η επιφάνεια ενός κύβου χρωματίζεται με γκρίζα και άσπρα τετράγωνα ώστε να φαίνεται ότι φτιάχτηκε χρησιμοποιώντας μικρότερούς γκρίζους κύβους και άσπρους κύβους, όπως φαίνεται. Ποιο από τα πιο κάτω μπορεί να είναι το πλαίσιο του χρωματισμένου κύβου; (A) (B) (C) (D) (E) 3

4 8. The number is the largest positive integer for which is a 3-digit number, and is the smallest positive integer for which is a 3-digit number. What is the value of? Ο αριθμός είναι ο μεγαλύτερος θετικός ακέραιος για τον οποίο o είναι τριψήφιος αριθμός, και ο είναι ο μικρότερος θετικός ακέραιος για τον οποίο o είναι τριψήφιος αριθμός. Ποια η τιμή του ; (A) 900 (B) 899 (C) 896 (D) 225 (E) The three-quarter circle shown, with center and orientation arrow, is first rotated anticlockwise by around and then reflected in the -axis. Ο τρία-τέταρτα κύκλος όπως φαίνεται, με κέντρο Μ και με θέση όπως καθορίζεται από το τόξο, πρώτα περιστρέφεται αριστερόστροφα για γύρω από το Μ και μετά αντανακλάτε στον άξονα X. Which of the following shows the end result of these transformations? Ποιο από τα πιο κάτω δείχνει το τελικό αποτέλεσμα μετά τον μετασχηματισμό; 10. Which of the following has the largest value? Ποιο από τα πιο κάτω έχει την μεγαλύτερη τιμή; 4 point problems (προβλήματα 4 μονάδων) 11. Triangle is the image of the equilateral triangle upon rotation by clockwise around.what is the size of the angle? Το τρίγωνο είναι το είδωλο του ισόπλευρου τριγώνου μετά από δεξιόστροφη περιστροφή γύρω από το. Ποια η τιμή της γωνίας? 4

5 12. The diagram shows a shape made from six squares, each measuring 1 cm by 1 cm. The shape has perimeter of length 14 cm. The zigzag shape is continued until it has 2013 squares. What is the length of the perimeter of the new shape? Το διάγραμμα δείχνει ένα σχήμα κατασκευασμένο από έξι τετράγωνα, τα καθένα με διαστάσεις 1 cm επί 1 cm. Το σχήμα έχει περίμετρο 14 cm. Το ΖικΖακ σχήμα συνεχίζει μέχρι να έχει 2013 τετράγωνα. Ποια είναι η περίμετρος του νέου σχήματος; (A) 2022 (B) 4028 (C) 4032 (D) 6038 (E) The points and are opposite vertices of a regular hexagon and the points and are midpoints of opposite edges, as shown. The area of the hexagon is 60 cm 2. What is the product of the lengths of and? Τα σημεία και είναι απέναντι κορυφές ενός κανονικού εξαγώνου και τα σημεία και είναι τα μέσα απέναντι πλευρών, όπως φαίνεται. Το εμβαδόν του εξαγώνου είναι 60 cm 2. Ποιο είναι το γινόμενο των τμημάτων και ; (A) 40 cm 2 (B) 50 cm 2 (C) 60 cm 2 (D) 80 cm 2 (E) 100 cm A class of students had a test. If each boy had got 3 points more for the test, then the average result of the class would had been 1,2 points higher. What percentage of the class are girls? Μια τάξη από μαθητές είχε ένα διαγώνισμα. Αν το κάθε αγόρι είχε πάρει 3 μονάδες περισσότερες στο διαγώνισμα, τότε ο μέσος όρος της τάξης θα ήταν 1,2 μονάδες μεγαλύτερος. Ποιο ποσοστό της τάξης είναι κορίτσια; (A) 20 (B) 30 (C) 40 (D) 50 (E) 60 5

6 15. The rectangle lies below the -axis, and to the left of the -axis. The edges of the rectangle are parallel to the coordinate axes. For each point,,,, the -coordinate is divided by the - coordinate. Which of the points yields the smallest value from this calculation? Το ορθογώνιο βρίσκεται κάτω από τον άξονα, και στα αριστερά του άξονα. Οι πλευρές του ορθογωνίου είναι παράλληλες προς τους άξονες συντεταγμένων. Για κάθε σημείο,,,, η συντεταγμένη διαιρείται με τη συντεταγμένη. Ποιο από τα σημεία δίνει το μικρότερο αποτέλεσμα από αυτό τον υπολογισμό ; (A) A (B) B (C) C (D) D (E) It depends on the size of the rectangle(εξαρτάται από το μέγεθος του ορθογωνίου). 16. On John's birthday this year, he multiplied his age by his son's age and correctly obtained the answer In which year was John born? Στα γενέθλια του ο John φέτος πολλαπλασίασε την ηλικία του με την ηλικία του γιού του και βρήκε το σωστό αποτέλεσμα Ποιο έτος γεννήθηκε ο John; (A) 1981 (B) 1982 (C) 1953 (D) 1952 (E) More information is needed(χρειάζονται περισσότερες πληροφορίες). 17. In triangle, angle and angle. In triangle, angle and angle, as shown. Which of the following line segments is the longest? Στο τρίγωνο, η γωνία και η γωνία. Στο τρίγωνο, η γωνία και η γωνία, όπως φαίνεται. Ποιο από τα πιο κάτω ευθύγραμμα τμήματα είναι το μεγαλύτερο; 6

7 18. Ivana wants to write down a set of five consecutive integers with the property that three of them have the same sum as the other two. How many different sets of five numbers can she write down? H Ivana θέλει να γράψει ένα σύνολο πέντε διαδοχικών ακεραίων αριθμών με την ιδιότητα ότι τρεις από αυτούς έχουν το ίδιο άθροισμα όπως οι άλλοι δύο. Πόσα διαφορετικά σύνολα πέντε αριθμών μπορεί να γράψει; (A) 0 (B) 1 (C) 2 (D) 3 (E) How many different paths are there between points and, only travelling along the edges in the direction of the arrows shown? Πόσες διαφορετικές διαδρομές υπάρχουν μεταξύ των σημείων Α και Β, με μετακίνηση μόνο πάνω στις ακμές στην κατεύθυνση των βελών όπως φαίνεται; 20. Roo wants to find a six-digit number, the sum of whose digits is even, and the product of whose digits is odd. Which of the following statements about such a number is correct? (A) Either two or four of the digits are even. (B) Such a number cannot exist. (C) There is an odd number of odd digits. (D) All six digits can be different. (E) None of A to D is correct. Ο Roo θέλει να βρει ένα εξαψήφιο αριθμό, που το άθροισμα των ψηφίων του να είναι άρτιος αριθμός, και το γινόμενο των ψηφίων του να είναι περιττός αριθμός. Ποιά από τις πιο κάτω προτάσεις για ένα τέτοιο αριθμό είναι σωστή; (A) Δύο ή τέσσερα από τα ψηφία του είναι άρτιοι αριθμοί. (B) Τέτοιος αριθμός δεν μπορεί να υπάρξει. (C) Υπάρχει ένας περιττός αριθμός περιττών ψηφίων. (D) Όλα τα έξι ψηφία μπορούν να είναι διαφορετικά. (E) Κανένα από τα Α μέχρι D είναι σωστό. 7

8 5 point problems (προβλήματα 5 μονάδων) 21. The number is written as a decimal with the smallest possible number of digits. How many digits appear after the decimal point? Ο αριθμός γράφεται ως δεκαδικός με τον μικρότερο δυνατό αριθμό ψηφίων. Πόσα ψηφία εμφανίζονται μετά την υποδιαστολή; (A) 10 (B) 12 (C) 13 (D) 14 (E) How many positive integers are multiples of 2013 and have exactly 2013 divisors (including 1 and the number itself)? Πόσοι θετικοί ακέραιοι αριθμοί είναι πολλαπλάσιοι του 2013 και έχουν ακριβώς 2013 διαιρέτες (συμπεριλαμβανομένου του 1 και του εαυτού του); (A) 0 (B) 1 (C) 3 (D) 6 (E) other(άλλο) 23. Several non-overlapping isosceles triangles have vertex in common. Every triangle shares an edge with each immediate neighbour. The smallest angle of a triangle at has size, where is a positive integer. The other triangles have angles at O of size,,, and so on. The diagram shows an arrangement of five such triangles. What is the smallest value of for which such a set of triangles exists? Μερικά ισοσκελή τρίγωνα χωρίς επικάλυψη έχουν κοινή κορυφή. Κάθε τρίγωνο έχει κοινή ακμή με κάθε διπλανό του τρίγωνο. Η μικρότερη γωνία του τριγώνου στο έχει μέγεθος, όπου το είναι θετικός ακέραιος αριθμός. Τα άλλα τρίγωνα έχουν γωνίες στο O μεγέθους,,, και ούτω καθεξής. Το διάγραμμα δείχνει μια διάταξη πέντε τέτοιων τριγώνων. Ποιά είναι η μικρότερη τιμή του για το οποίο τέτοιο σύνολο τριγώνων υπάρχει; (A) 1 (B) 2 (C) 3 (D) 6 (E) 8 8

9 24. Julio creates a procedure for turning a set of three numbers into a new set of three numbers: each number is replaced by the sum of the other two. For example, becomes. How many times must Julio apply this procedure to the set before he first obtains a set containing the number 2013? Ο Julio δημιουργεί μια διαδικασία για να μετατρέπει ένα σύνολο τριών αριθμών σε ένα νέο σύνολο τριών αριθμών : ο κάθε αριθμός αντικαθίσταται με το άθροισμα των άλλων δύο. Για παράδειγμα, μετατρέπεται σε. Πόσες φορές θα πρέπει ο Julio να εφαρμόσει αυτή τη διαδικασία στο σύνολο μέχρι να πάρει για πρώτη φορά ένα σύνολο που να περιέχει τον αριθμό 2013; (A) 8 (B) 9 (C) 10 (D) more than 10 (E) 2013 will never appear (δεν θα εμφανιστεί ποτέ) 25. The numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 are to be written around a circle in some order. Then each number will be added to its two immediate neighbours to obtain ten new numbers. What is the largest possible value of the smallest of these new numbers? Οι αριθμοί 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 θα γραφούν γύρω από κύκλο σε μια σειρά. Μετά ο κάθε αριθμός θα προστεθεί στους δύο άμεσους γειτονικούς αριθμούς για να πάρει δέκα νέους αριθμούς. Ποια είναι η μεγαλύτερη δυνατή τιμή του μικρότερου από αυτούς τους νέους αριθμούς; (A) 14 (B) 15 (C) 16 (D) 17 (E) Using the integer numbers from 1 to 22 inclusive, Horatio wants to form eleven fractions by choosing one number as the numerator, and one number as the denominator. Every number will be used exactly once. What is the maximum number of Horatio's fractions that could have an integer value? Χρησιμοποιώντας ακέραιους αριθμούς από το 1 μέχρι το 22 συμπεριλαμβανομένων, ο Horatio θέλει να κατασκευάσει έντεκα κλάσματα επιλέγοντας ένα αριθμό στον αριθμητή και ένα αριθμό στον παρονομαστή. Ο κάθε αριθμός θα χρησιμοποιηθεί ακριβώς μια φορά. Ποιος είναι ο μεγαλύτερος αριθμός κλασμάτων του Horatio τα οποία θα έχουν ακέραια τιμή; (A) 7 (B) 8 (C) 9 (D) 10 (E) A regular 13-sided polygon is inscribed in a circle with centre. Triangles can be formed by choosing three vertices of this polygon to be the vertices of the triangle. How many of the triangles that can be formed in this way have the point O inside? Ένα κανονικό πολύγωνο με 13 πλευρές είναι εγγεγραμμένο σε κύκλο με κέντρο το. Τρίγωνα μπορούν να κατασκευαστούν επιλέγοντας τρεις κορυφές αυτού του πολύγωνου ώστε να είναι κορυφές του τριγώνου. Πόσα τέτοια τρίγωνα μπορούν να κατασκευαστούν με αυτό τον τρόπο περιέχοντας το σημείο O ; (A) 72 (B) 85 (C) 91 (D) 100 (E) other value 9

10 28. A car left point and drove along a straight road at a speed of 50 km/h. Then every hour another car left ; each car was 1 km/h faster than the previous one. The last car (at a speed of 100 km/h) left 50 hours after the first one. What was the speed of the car which was in front of all the other cars 100 hours after the first car left? Ένα αυτοκίνητο ξεκίνησε από το σημείο και κινήθηκε κατά μήκος ευθύγραμμου δρόμου με ταχύτητα 50 km/h. Μετά, κάθε μια ώρα ακόμη ένα αυτοκίνητο ξεκινούσε από το σημείο ; το κάθε αυτοκίνητο ήταν γρηγορότερο κατά 1 km/h από το προηγούμενο. Το τελευταίο αυτοκίνητο (με ταχύτητα 100 km/h) έφυγε 50 ώρες μετά το πρώτο. Ποια ήταν η ταχύτητα του αυτοκινήτου το οποίο ξεπέρασε όλα τα άλλα αυτοκίνητα 100 ώρες μετά που ξεκίνησε το πρώτο αυτοκίνητο από το σημείο? (A) 50 km/h (B) 66 km/h (C) 75 km/h (D) 84 km/h (E) 100 km/h 29. A gardener wants to plant 100 trees (oaks and birches) along an avenue in the park. The number of trees between any two oaks must not be equal to five. Of these 100 trees, what is the greatest number of oaks that the gardener can plant? Ένα κηπουρός θέλει να φυτέψει 100 δέντρα ( λεμονιές και πορτοκαλιές) κατά μήκος της λεωφόρου σε ένα πάρκο. Ο αριθμός των δέντρων μεταξύ οποιωνδήποτε δύο λεμονιών δεν πρέπει να ισούται με πέντε. Από αυτά τα 100 δέντρα, ποιος είναι ο μεγαλύτερος αριθμός λεμονιών που μπορεί ο κηπουρός να φυτέψει; (A) 48 (B) 50 (C) 52 (D) 60 (E) Yurko saw a tractor slowly pulling a long pipe down the road. Yurko walked along beside the pipe in the same direction as the tractor, and counted 140 paces to get from one end to the other. He then turned around and walked back to the other end, taking only 20 paces. The tractor and Yurko kept to a uniform speed, and Yurko's paces were all 1 m long. How long was the pipe? Ο Yurko είδε ένα τρακτέρ στο δρόμο να τραβά μια μεγάλη σωλήνα.ο Yurko περπάτησε δίπλα από τη σωλήνα στην ίδια κατεύθυνση με το τρακτέρ, και μέτρησε 140 βήματα για να πάει από ένα άκρο στο άλλο. Μετά έστριψε περπατώντας προς τα πίσω και μέτρησε 20 βήματα. Το τρακτέρ και ο Yurko κινήθηκαν με σταθερή ταχύτητα, και τα βήματα του Yurko ήταν 1 m το καθένα. Πόσο ήταν το μήκος της σωλήνας; (A) 30 m (B) 35 m (C) 40 m (D) 48 m (E) 80 m 10

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 7 8 Α - Β ΓΥΜΝΑΣΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems (προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12

MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 MATHEMATIC KANGOUROU 2016 Student-Levels 11-12 3 point problems (προβλήματα 3 μονάδων) 1. The sum of the ages of Tom and John is 23, the sum of the ages of John and Alex is 24 and the sum of the ages of

Διαβάστε περισσότερα

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς; ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

KANGOUROU MATHEMATICS

KANGOUROU MATHEMATICS KANGOUROU MATHEMATICS LEVEL 11 12 Β - Γ ΛΥΚΕΙΟΥ 23 ΜΑΡΤΙΟΥ / MARCH 2013 10:00-11:15 Questions 1-10: 3 points Questions 11-20: 4 points Questions 21-30: 5 points 1 3 point problems(προβλήματα 3 μονάδων)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit?

1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? 3 point problems - θέματα 3 μονάδων 1. Ladybird will sit on a flower that has five petals and three leaves. On which of the following flowers will ladybird sit? Η παπαρούνα θα καθίσει σε λουλούδι το οποίο

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Kangourou Maths 2012 Student Level 11-12

Kangourou Maths 2012 Student Level 11-12 Kangourou Maths 2012 Student Level 11-12 Προβλήματα 3 μονάδων - 3 point problems 1. Το επίπεδο του νερού σε μια παραλιακή πόλη αυξάνεται και μειώνεται σε συγκεκριμένη μέρα όπως φαίνεται στο διάγραμμα.

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2014 6 ΑΠΡΙΛΙΟΥ 2014 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Α & Β ΓΥΜΝΑΣΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus. Level 7 8

Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus. Level 7 8 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 7 8 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT

10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT Date: 22 October 2016 Time: 09:00 hrs Subject: BULLETIN No 5 Document No: 1.6 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Kadet (Α - Β Γυμνασίου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά

Διαβάστε περισσότερα

Kangourou Maths 2012 Cadet Level 7-8

Kangourou Maths 2012 Cadet Level 7-8 Kangourou Maths 2012 Cadet Level 7-8 Προβλήματα 3 μονάδων / 3 point problems 1. Τέσσερεις σοκολάτες κοστίζουν 6 ευρώ περισσότερα από μία σοκολάτα. Ποιο είναι το κόστος μιας σοκολάτας; Four chocolate bars

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Α & Β ΓΥΜΝΑΣΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2017 Α & Β ΓΥΜΝΑΣΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΗ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2017 30 ΑΠΡΙΛΙΟΥ 2017 Α & Β ΓΥΜΝΑΣΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition?

1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition? 3 point problems - θέματα 3 μονάδων 1. The date of a competition is the third Thursday in March in each year. What is the first possible date of the competition? Η ημερομηνία ενός διαγωνισμού είναι η 3

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Kangourou Mathematics Competition Level 11 12

Kangourou Mathematics Competition Level 11 12 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 11 12 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points

Διαβάστε περισσότερα

(A) 56 (B) 60 (C) 64 (D) 68 (E) 80

(A) 56 (B) 60 (C) 64 (D) 68 (E) 80 3 point problems - θέματα 3 μονάδων 1. If you take a number of cubes out of a cube, you end up with a solid figure consisting of columns of the same height, which stand on the same ground plate (see figure).

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 0 ΑΠΡΙΛΙΟΥ 0 Ε & ΣΤ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2014 Β & Γ ΛΥΚΕΙΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2014 Β & Γ ΛΥΚΕΙΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΕ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 014 6 ΑΠΡΙΛΙΟΥ 014 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

Kangourou Maths 2012 Junior Level 9-10

Kangourou Maths 2012 Junior Level 9-10 Kangourou Maths 2012 Junior Level 9-10 Προβλήματα 3 μονάδων/3 point problems 1. Μ και Ν είναι τα μέσα των ίσων πλευρών ενός ισοσκελούς τριγώνου. M and N are the midpoints of the equal sides of an isosceles

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ.

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Benjamin (Ε - Στ Δημοτικού) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί

Διαβάστε περισσότερα

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18 Name.. Class. Date. EXERCISE 1 Answer the question. Use: Yes, it is or No, it isn t. Απάντηςε ςτισ ερωτήςεισ. Βάλε: Yes, it is ή No, it isn

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Student (Β Γ Λυκείου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί η καθεμιά

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; (A) (B) (C) (D) (E)

Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; (A) (B) (C) (D) (E) 3 point problems - θέματα 3 μονάδων 1. Which drawing is the central part of the picture with the star? Ποιο σχέδιο αποτελεί το κεντρικό μέρος της εικόνας με το αστέρι; 2. Jacky wants to insert the digit

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 3-4

KANGOUROU Mathematics Competition 2016 Level 3-4 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 3-4 (Γ - Δ Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 8 = 3 βαθμοί

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΣΤ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2015 26 ΑΠΡΙΛΙΟΥ 2015 Γ & Δ ΔΗΜΟΤΙΚΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year?

1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year? 3 point problems - θέματα 3 μονάδων 1. Each year, the date of the Kangaroo competition is the third Thursday of March. What is the latest possible date of the competition in any year? Κάθε χρόνο, η ημερομηνία

Διαβάστε περισσότερα

Advanced Subsidiary Unit 1: Understanding and Written Response

Advanced Subsidiary Unit 1: Understanding and Written Response Write your name here Surname Other names Edexcel GE entre Number andidate Number Greek dvanced Subsidiary Unit 1: Understanding and Written Response Thursday 16 May 2013 Morning Time: 2 hours 45 minutes

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Kangourou Mathematics Competition 2015

Kangourou Mathematics Competition 2015 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus Kangourou Mathematics Competition 2015 Junior (Γ Γυμνασίου Α Λυκείου) 21 Μαρτίου/March 2015 10:00 11:15 Ερωτήσεις 1 10 = 3 βαθμοί

Διαβάστε περισσότερα

Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus. Level 9 10

Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus. Level 9 10 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 9 10 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Kangourou Mathematics Competition Level 5 6

Kangourou Mathematics Competition Level 5 6 Thales Foundation Cyprus 36 Stasinou street, Office 104, Strovolos 2003, Nicosia, Cyprus Kangourou Mathematics Competition 2017 Level 5 6 Date: 18 March 2017 Time: 10:00 11:15 Questions 1 10 = 3 points

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 9 10 (Γ Γυμνασίου Α Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιο από τα ακόλουθα είναι το αποτέλεσμα της διαίρεσης του αριθμού 20102010 με τον

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization)

Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization) Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization) Προσδιορισμός της Τιμής όταν η Ομολογία Αγοράζεται μεταξύ δύο Τοκοφόρων Περιόδων Για να υπολογίσουμε την τιμή της ομολογίας πρέπει: Υπολογίζουμε

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

KANGOUROU Mathematics Competition 2016 Level 1-2

KANGOUROU Mathematics Competition 2016 Level 1-2 Thales Foundation Cyprus P.O. Box 28959, CY2084 Acropolis, Nicosia, Cyprus KANGOUROU Mathematics Competition 2016 Level 1-2 (A - Β Δημοτικού) 19 Μαρτίου/March 2016 10:00 11:15 Ερωτήσεις 1 8 = 3 βαθμοί

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ

Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΖ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2016 17 ΑΠΡΙΛΙΟΥ 2016 Γ ΓΥΜΝΑΣΙΟΥ & Α ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ

Διαβάστε περισσότερα