Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ."

Transcript

1 Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους Μαρκάκης Ευάγγελος Ντούσκας Θεόδωρος

2 Outline Public Key Cryptography! RSA cryptosystem " Περιγραφή και κρυπτανάλυση! ElGamal cryptosystem " Περιγραφή και κρυπτανάλυση! Ψηφιακές Υπογραφές " RSA signature scheme " ElGamal signature scheme! Ελλειπτικές Καµπύλες " Ελλειπτικές καµπύλες στους πραγµατικούς, στο Z p και στο GF(2 m ) " Κρυπτογραφία ελλειπτικών καµπυλών 2

3 ! Κρυπτοσυστήµατα δηµόσιου κλειδιού " Κύριο µειονέκτηµα της συµµετρικής κρυπτογραφίας: Η Alice και ο Bob πρέπει να συµφωνήσουν εκ των προτέρων για το κλειδί Κ µέσω ασφαλούς καναλιού " Αν αυτό δεν είναι εφικτό? Μπορεί να γίνει η κρυπτογράφηση χωρίς να υπάρξει επικοινωνία µεταξύ Alice και Bob? " Ιδέα: Κάθε οντότητα κατέχει ένα Public και ένα private (Secret) key. " Κάθε κλειδί είναι ένα τµήµα πληροφορίας. # RSA: το δηµόσιο κλειδί είναι ένα ζεύγος ακεραίων. " Η Alice (A) και ο Bob (B) έχουν ως public και secret keys τα # P A, S A για Alice # P B, S B για Bob. 3

4 ! Κρυπτοσυστήµατα δηµόσιου κλειδιού " Έστω D ο χώρος των αποδεκτών µηνυµάτων " Στην απλούστερη µορφή της public-key cryptography, τα public και secret keys ορίζουν one-to-one µετασχηµατισµούς από το D στο D " Η encryption function που αντιστοιχεί στο public key της Alice δηλώνεται ως E A και η decryption function που αντιστοιχεί στο secret key της Alice ως D A. # Οι E A, D A είναι permutations στο D. # Οι E A, D A είναι υπολογιστικά εφικτές δεδοµένων των P A και S A, αντίστοιχα " Πρόκληση για ανάπτυξη υπολογιστικά εφικτού public-key cryptosystem: # Δηµιουργία ενός συστήµατος στο οποίο µπορούµε να αποκαλύψουµε το µετασχηµατισµό E A () χωρίς να µπορεί να ανακαλυφθεί ο αντίστροφος µετασχηµατισµός D A () # Αντιθέτως, στη συµµετρική κρυπτογραφία αν ξέρουµε το E A () τότε εύκολα µαθαίνουµε και το D A () 4

5 ! Κρυπτοσυστήµατα δηµόσιου κλειδιού! Συνοψίζοντας, σε ένα public key cryptosystem: " Είναι υπολογιστικά εφικτό για έναν χρήστη B να παράγει ένα ζεύγος κλειδιών (Ρublic key P B, Secret key S B ) " Είναι υπολογιστικά εφικτό για έναν αποστολέα Α, που γνωρίζει το δηµόσιο κλειδί του Β και το plaintext Μ να δηµιουργήσει το αντίστοιχο ciphertext: C= E B (M) " Είναι υπολογιστικά εφικτό για έναν παραλήπτη B, που γνωρίζει το ιδιωτικό του κλειδί και λαµβάνει το ciphertext C να ανακτήσει το αρχικό κείµενο M: Μ=D B (C)=D B (E B (M)) " Είναι υπολογιστικά ανέφικτο γνωρίζοντας µόνο το δηµόσιο κλειδί P B να προσδιοριστεί το ιδιωτικό κλειδί S B " Είναι υπολογιστικά ανέφικτο γνωρίζοντας το δηµόσιο κλειδί P B και το ciphertext C να προσδιοριστεί το αρχικό µήνυµα M 5

6 ! Κρυπτοσυστήµατα δηµόσιου κλειδιού " Trapdoor one way functions " One-way functions: είναι συναρτήσεις που µπορούµε να τις υπολογίσουµε εύκολα, είναι όµως υπολογιστικά ανέφικτο να υπολογίσουµε την αντίστροφή τους " Trapdoor: κάποια πληροφορία που µας επιτρέπει να υπολογίσουµε την αντίστροφη µιας one way function " Ουσιαστικά στην κρυπτογραφία δηµοσίου κλειδιού ψάχνουµε για trapdoor one-way functions " [Diffie-Hellman, 1976]: New Directions in Cryptography 6

7 ! RSA - Rivest, Shamir, Adleman (1978, MIT) " Turing award,

8 ! RSA - Rivest, Shamir, Adleman (1978, MIT)! Χαρακτηριστικά " Block cipher " Ορίζεται στο Z n, δηλαδή ο χώρος των αποδεκτών µηνυµάτων D είναι οι αριθµοί modulo n (κλάσεις ισοδυναµίας) Παραγωγή Κλειδιών Επέλεξε πρώτους, µεγάλους, διαφορετικούς, αριθµούς p, q Υπολόγισε n: n = p q Υπολόγισε φ(n): φ(n) = (p-1) (q-1) Επέλεξε ακέραιο e (1<e<φ(n)), έτσι ώστε: gcd(φ(n), e) = 1 Υπολόγισε d, έτσι ώστε: de = 1 mod(φ(n)) Public key P = {e,n} Secret key S = {d, p, q} Συνάρτηση Euler 8

9 ! RSA - Rivest, Shamir, Adleman (1978, MIT) " Μπορούµε να έχουµε ένα ευρετήριο µε τα δηµόσια κλειδιά όλων των χρηστών Κρυπτογράφηση Αρχικό κείµενο Μ < n Ciphertext: C = E(M) = M e mod n Αποκρυπτογράφηση Ciphertext C < n Αρχικό κείµενο: M = D(C) = C d mod n " Για την ύψωση σε δύναµη: χρήση του repeated squaring algorithm 9

10 ! Υλοποίηση παραγωγής κλειδιών! Πώς επιλέγουµε το e? " Αρκεί κάποιος πρώτος αριθµός > max{p, q} (ίσως και µικρότεροι πρώτοι να είναι κατάλληλοι) " Χρήση primality testing! Πώς υπολογίζουµε το d? " Χρήση του extended Euclidean algorithm Παραγωγή Κλειδιών Επέλεξε πρώτους, µεγάλους, διαφορετικούς, αριθµούς p, q Υπολόγισε n: n = p q Υπολόγισε φ(n): φ(n) = (p-1) (q-1) Επέλεξε ακέραιο e (1<e<φ(n)), έτσι ώστε: gcd(φ(n), e) = 1 Υπολόγισε d, έτσι ώστε: de = 1 mod(φ(n)) Public key P = {e,n} Secret key S = {d, p, q} 10

11 ! Παράδειγµα Παραγωγή Κλειδιών Επέλεξε πρώτους, µεγάλους, διαφορετικούς, αριθµούς p, q Υπολόγισε n: n = p q Υπολόγισε φ(n): φ(n) = (p-1) (q-1) Επέλεξε ακέραιο e (1<e<φ(n)), έτσι ώστε: gcd(φ(n), e) = 1 Υπολόγισε d, έτσι ώστε: de = 1 mod(φ(n)) Public key P = {e,n} Secret key S = {d, p, q} p = 7, q = 17 n = 119 φ(n) = 96 e = 5 d = 77 γιατί 5*77=1 mod96 Έστω M = 19 Αποστολέας, encryption C = M 5 mod n = 19 5 mod 119 = 66 Παραλήπτης, decryption M= C 77 mod n = mod 119 = 19 Repeated Squaring Algorithm: 11

12 ! Απόδειξη ορθότητας " Θεώρηµα: Για κάθε Μ στο D # Ε(D (Μ)) = Μ και # D(E (Μ)) = Μ για κάθε Μ στο D " Απόδειξη: Έστω Μ Ζ n. Επειδή ο d είναι ο πολλαπλασιαστικός αντίστροφος του e, modulo φ(n) = (p - 1)(q - 1), έχουµε ed = 1 + k φ(n) για κάποιο ακέραιο k. i) Aν M 0 (mod p), έχουµε M ed (mod p) M 1 + k φ(n) (mod p) M (M φ(n) ) k (mod p) M (M p-1 ) k(q-1) (mod p) M (mod p) (από θεώρηµα Fermat) ii) Aν M = 0 (mod p), τότε πάλι M ed (mod p) Μ (mod p) 12

13 ! Απόδειξη ορθότητας " Άρα για κάθε Μ, M ed (mod p) Μ (mod p) " Οµοίως M ed (mod q) Μ (mod q) " Από Chinese Remainder Theorem: όταν n=pq, τότε x = y mod n αν και µόνο αν x=y mod p και x=y mod q " D(E(Μ)) = M ed (mod n) = M (mod n)! Πιο απλή απόδειξη όταν Μ Ζ n * (gcd(m, n)=1): " ed = 1 + k φ(n) για κάποιο ακέραιο k. D(E(Μ)) = M ed M 1 + k φ(n) (mod n) M (M φ(n) ) k (mod n) M (mod n) (από θεώρηµα Fermat-Euler) 13

14 ! Κρυπτανάλυση του RSA " Δυσκολία RSA " Ciphertext-only ή Chosen ciphertext attack: " Δεδοµένου ακέραιου n που είναι γινόµενο δύο διαφορετικών πρώτων p και q, ενός ακεραίου e τέτοιου ώστε gcd(e, (p 1)(q 1)) = 1, και ενός ακεραίου C, βρες ακέραιο Μ έτσι ώστε Μ e =C (modn) (ή διαφορετικά βρες τον εκθέτη d) " Ο ορισµός του προβλήµατος και οι παράµετροι n και e εξασφαλίζουν ότι για κάθε ακέραιο C {0, 1,..., n 1} υπάρχει ένας ακριβώς M {0, 1,..., n 1} τέτοιος ώστε M e C (mod n). " Η δυσκολία έγκειται ουσιαστικά στον υπολογισµό του εκθέτη d (decryption exponent) # Αν και δεν µπορούµε να αποκλείσουµε το ενδεχόµενο να σπάσουµε το RSA χωρίς απαραίτητα να υπολογίσουµε το d 14

15 ! Κρυπτανάλυση του RSA " Δυσκολία RSA " Εικασία: η συνάρτηση f(x) = x b mod n, όπου n είναι γινόµενο 2 πρώτων είναι one-way function " Αυτή τη στιγµή δεν υπάρχει καµία συνάρτηση που να είναι αποδεδειγµένα one-way " Θεώρηµα: Αν υπάρχουν one-way functions, τότε P NP " Trapdoor στο RSA: φ(n) 15

16 ! Κρυπτανάλυση του RSA " Αναγωγή στο integer factorization problem: " Έστω ότι ο Oscar µπορεί να παραγοντοποιήσει εύκολα το n # Με το να βρει τους p και q, µπορεί να υπολογίσει το φ(n) # Στη συνέχεια µπορεί εύκολα να βρει το d έτσι ώστε de = 1 mod(φ(n)) µε χρήση του extended Euclidean algorithm " Για το αντίθετο ξέρουµε ότι: " Θεώρηµα: Ένας αλγόριθµος που υπολογίζει τον εκθέτη d σε ένα σύστηµα RSA, µπορεί να µετατραπεί σε έναν πιθανοτικό αλγόριθµο παραγοντοποίησης του n (απόδειξη στο Stinson) # Άρα, αν αποκαλυφθεί το d, δεν αρκεί να αλλάξεις τα d, e, πρέπει να αλλάξει και το n " Προσοχή: δεν σηµαίνει απαραίτητα ότι η παραγοντοποίηση είναι ισοδύναµη µε την κρυπτανάλυση του RSA 16

17 ! Κρυπτανάλυση του RSA " Παρατήρηση: Για την παραγοντοποίηση του n, αρκεί να γνωρίζουµε το φ(n) " Έστω ότι φ(n) γνωστό " Μπορούµε να λύσουµε το σύστηµα: n = pq φ(n) = (p-1)(q-1) " Aν q = n/p, οι παράγοντες θα προέλθουν από τη διωνυµική εξίσωση p 2 (N φ(n)+1)p + N = 0 " Πόρισµα: Ο υπολογισµός του φ(n) δεν είναι ευκολότερος από την παραγοντοποίηση του n. 17

18 ! Κρυπτανάλυση του RSA! Στην πράξη: " Αν δουλέψουµε µε modulus 512 bits, τότε δηµιουργείται ένα public key που είναι απαραβίαστο σε εύλογο χρονικό διάστηµα µε βάση την τρέχουσα γνώση και τεχνολογία (n 200 decimal digits) " Ίσως όχι τόσο ασφαλές για το µέλλον όµως " Factoring αλγόριθµοι πάνε σχετικά καλά µέχρι το πολύ 130 decimal digits 18

19 ! Κρυπτανάλυση του RSA! Μερική ανάκτηση πληροφοριών Είναι εφικτό να µάθουµε έστω κάποια bits του plaintext?! Έστω y = x e modn " Παρατήρηση: E(x x ) = E(x) E(x )! Έστω οι συναρτήσεις: " Parity(y) := LSB(x) " Half(y) := 0 αν x<n/2, 1 αν x> n/2 (n είναι περιττός αφού n=pq)! Οι 2 συναρτήσεις είναι polynomial-time equivalent " Half(y) = parity(y E(2) modn) = parity( E(2x) ) " Parity(y) = half(y E(2-1 ) modn) = half(e(x 2-1 ) ) 19

20 ! Κρυπτανάλυση του RSA! Θεώρηµα: Ένας αλγόριθµος που µπορεί να υπολογίσει το parity(y) ή το half(y) για οποιοδήποτε ciphertext y = E(x), µπορεί να χρησιµοποιηθεί για να υπολογίσει ολόκληρο το αρχικό κείµενο x.! Έστω π.χ. αλγόριθµος που µπορεί να υπολογίσει το half(y) για οποιοδήποτε y! Υπολόγισε τα y i = half(e(x 2 i )) (τα οποία ισούνται µε half(e(x) E(2 i )))! Aν half(e(x)) = 0 x [0, n/2)! Aν half(e(2x)) = 0 x [0, n/4) [n/2, 3n/4)! κ.ο.κ.! Με binary search µπορούµε να βρούµε τελικά το x 20

21 ! Κρυπτανάλυση του RSA! Αλγόριθµος υπολογισµού του x, δεδοµένου ενός αλγορίθµου για το half(y) k = logn for i=0 to k lo = 0 hi = n y i = half(y) y = (y E(2)) modn for i=0 to k mid = (hi + lo)/2 if y i = 1 lo = mid else hi = mid x = hi 21

22 ElGamal! Κρυπτοσύστηµα ElGamal " T. Elgamal (1985) 22

23 ElGamal! Προβλήµατα διακριτού λογαρίθµου " Υπενθύµιση από προηγούµενα µαθήµατα: " Αν p πρώτος, τότε το Z * p = Ζ p οµάδα {0} είναι κυκλική " Αν g γεννήτορας (ή πρωτογενής ρίζα) τότε για κάθε a є Z* p υπάρχει z τέτοιος ώστε g z a (mod p) # To z καλείται διακριτός λογάριθµος (discrete logarithm) του a, modulo p, µε βάση το g " Αν θέλουµε να υπολογίσουµε την k-οστή δύναµη ενός στοιχείου: # Εύκολο πρόβληµα, χρήση του repeated squaring algorithm # Π.χ. στο Z* 17 µε k=4, mod17 23

24 ElGamal! Προβλήµατα διακριτού λογαρίθµου " Discrete logarithm στο Ζ p (DLP): το αντίστροφο πρόβληµα της ύψωσης σε δύναµη # Δεδοµένου ότι 3 k 13 (mod 17), ποιο είναι το k? # Πιο γενικά: Δεδοµένης πρωτογενούς ρίζας g є Z* p, και ενός στοιχειου β є Z* p, βρες το µοναδικό ακέραιο k є {0,, p-1} για τον οποίο g k = β (mod p) " Θεωρείται δύσκολο πρόβληµα όταν το p έχει επιλεγεί προσεκτικά # Π.χ. για p 150 δεκαδικά ψηφία και όταν το p-1 έχει ένα «µεγάλο» πρώτο παράγοντα 24

25 ElGamal! Σύστηµα ElGamal (T. ElGamal, 1985)! Βασίζεται στο DLP! Ορίζεται στο (Z* p, * ) " Παραγωγή κλειδιών # Αρχικά επιλέγεται ένας πρώτος τέτοιος ώστε το DLP να είναι δύσκολο στο (Z* p,. ). Ενδεικτικός τρόπος: # Επέλεξε µεγάλο πρώτο p έτσι ώστε p 1 = mq για κάποιο µικρό ακέραιο m και µεγάλο πρώτο q. # Π.χ., µε m=2, επιλέγουµε πρώτα ένα µεγάλο πρώτο q και ελέγχουµε αν το p=2q+1 είναι πρώτος Χρήση primality testing # Επέλεξε γεννήτορα g є Z* p, (άρα g p-1 = 1 mod p) # Επέλεξε στοιχείο α є {2,...,p-2} 25

26 ElGamal! Κρυπτοσύστηµα ElGamal " Παραγωγή κλειδιών # Έστω Κ = {(p,g,α,β): β g α modp)} # Public Key: Οι τιµές p, g, β # Private Key: ο εκθέτης α " Αλγόριθµος κρυπτογράφησης (µηνύµατος x) # Για Κ=(p,g,α,β) η Alice διαλέγει µυστικό τυχαίο αριθµό k є Z* p 1 και στέλνει E K (x,k) = (y 1, y 2 ), όπου y 1 = g k modp y 2 = xβ k modp " Αλγόριθµος αποκρυπτογράφησης # Για τα y 1, y 2 η συνάρτηση αποκρυπτογράφησης ορίζεται ως: D K (y 1, y 2 ) = y 2 ( y 1α ) -1 modp o Η οποία παράγει το x 26

27 ElGamal! Κρυπτοσύστηµα ElGamal! Απόδειξη ορθότητας # Η D K (y 1, y 2 )=y 2 ( y 1α ) -1 modp παράγει το x Πράγµατι: y 2 (y 1α ) -1 =xβ k ((g k ) α ) -1 =xβ k ((g α ) k ) -1 =xβ k ((β) k ) -1 (γιατί β g α modp) =x! Χαρακτηριστικά " Το plaintext x «µασκαρεύεται» µε πολλαπλασιασµό µε β k (παράγεται το y 2 ) " Στο ciphertext µεταδίδεται και η τιµή g k " Ο Bob που γνωρίζει το ιδιωτικό του κλειδί α µπορεί να παράγει το (y 1 ) α " Κατόπιν αφαιρεί τη µάσκα µε το να πολλαπλασιάζει το y 2 µε τον αντίστροφο του β k 27

28 ElGamal! Παράδειγµα " Έστω p = 2579, g = 2, α = 765 " β = mod 2579 = 949 " Έστω ότι η Alice θέλει να στείλει το µήνυµα x = 1299 " Έστω επίσης ότι διαλέγει τυχαίο k = 853 " Τότε: # y 1 = mod 2579 = 435 # y 2 = 1299 (949) 853 mod 2579 = 2396 " o Bob υπολογίζει το # 2396 ( ) -1 mod 2579 =

29 ElGamal! Κρυπτανάλυση του ElGamal " Για chosen ciphertext attack, η κρυπτανάλυση µπορεί να αναχθεί στο discrete logarithm problem! Δεδοµένων των (p, g, β) και των (y 1, y 2 ), o Oscar θα πρέπει " είτε να υπολογίσει τον εκθέτη α, από τη σχέση β = g α mod p (DLP) " είτε να βρει το k από τη σχέση y 1 = g k (πάλι DLP) 29

30 ElGamal! Κρυπτανάλυση του ElGamal! Γνωστοί αλγόριθµοι για το Discrete Logarithm problem " Shank s algorithm " Pohlig-Hellman algorithm " The Index Calculus method (µοιάζει µε αλγορίθµους παραγοντοποίησης) 30

31 ElGamal! Κρυπτανάλυση - Βit Security των διακριτών λογαρίθµων " Στο κρυπτοσύστηµα ElGamal, το LSB του εκθέτη α µπορεί να υπολογιστεί σε πολυωνυµικό χρόνο " Από θεωρία τετραγωνικών υπολοίπων mod p, ισούται µε: # 0, αν β (p-1)/2 = 1 mod p # 1, διαφορετικά " Τα υπόλοιπα bits όµως είναι (µάλλον) δύσκολο να υπολογιστούν " Θεώρηµα: Αν p = 3 mod 4, ένας αλγόριθµος που υπολογίζει το 2 ο bit του εκθέτη µπορεί να χρησιµοποιηθεί για να λύσει το DLP 31

32 ! Άλλα public key cryptosystems " Merkle-Hellman Knapsack systems, all broken except: # Chor-Rivest " McEliece " Elliptic Curve systems 32

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2016-2017 Outline Public Key Cryptography! RSA cryptosystem " Περιγραφή και

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com Outline Public Key Cryptography

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ασύμμετρη Κρυπτογράφηση (Κρυπτογραφία Δημόσιου Κλειδιού) Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings

Cryptography and Network Security Chapter 9. Fifth Edition by William Stallings Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Chapter 9 Κρυπτογραφια Δημοσιου Κλειδιου και RSA Every Egyptian received two names, which were known respectively as the true

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρήτης ΕΠΠ Εργαστήριο Ασφάλεια Πληροφοριακών Συστηµάτων ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΤΕΙ Κρητης Τµηµα Εφαρµοσµενης Πληροφορικης Και Πολυµεσων Fysarakis Konstantinos, PhD kfysarakis@staff.teicrete.gr Εισαγωγή

Διαβάστε περισσότερα

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός

Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA. Κασαπίδης Γεώργιος -Μαθηµατικός Κρυπτογραφία ηµόσιου Κλειδιού Η µέθοδος RSA Τον Απρίλιο του 977 οι Ρόναλντ Ρίβεστ, Άντι Σαµίρ και Λέοναρντ Άντλεµαν, ερευνητές στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ) µετά από ένα χρόνο προσπαθειών

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας

κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας κρυπτογραϕία Ψηφιακή ασφάλεια και ιδιωτικότητα Γεώργιος Σπαθούλας Msc Πληροφορική και υπολογιστική βιοιατρική Πανεπιστήμιο Θεσσαλίας ιδιότητες ασϕάλειας ιδιότητες ασϕάλειας αγαθών Εμπιστευτικότητα (Confidentiality)

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ)

ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ(Θ) Ενότητα 5: ΑΣΦΑΛΕΙΑ & ΔΙΑΧΕΙΡΙΣΗ ΔΙΚΤΥΩΝ ΔΙΔΑΣΚΩΝ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΧΕΙΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ 2 ΕΠΙΜΕΛΕΙΑ :ΣΤΟΥΚΑ ΑΙΚΑΤΕΡΙΝΗ-ΠΑΝΑΓΙΩΤΑ ΜΕΤΑΠΤΥΧΙΑΚΟ:ΜΠΛΑ Η Alice θέλει να στείλει ένα μήνυμα m(plaintext) στον Bob μέσα από ένα μη έμπιστο κανάλι και να μην μπορεί να το

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA

Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Κρυπτογραφία Δημόσιου Κλειδιού II Αλγόριθμος RSA Τμήμα Μηχ. Πληροφορικής ΤΕΙ Κρήτης Κρυπτογραφία Δημόσιου Κλειδιού -RSA 1 Κρυπτογραφία Δημόσιου Κλειδιού - Ιστορία Ηνωμένες Πολιτείες 1975: Ο Diffie οραματίζεται

Διαβάστε περισσότερα

Αλγόριθµοι δηµόσιου κλειδιού

Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Αλγόριθµοι δηµόσιου κλειδιού Ηδιανοµή του κλειδιού είναι ο πιο αδύναµος κρίκος στα περισσότερα κρυπτογραφικά συστήµατα Diffie και Hellman, 1976 (Stanford Un.) πρότειναν ένα

Διαβάστε περισσότερα

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές

Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Εισαγωγή στην Κρυπτογραφία και τις Ψηφιακές Υπογραφές Βαγγέλης Φλώρος, BSc, MSc Τµήµα Πληροφορικής και Τηλεπικοινωνιών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών Εν αρχή είναι... Η Πληροφορία - Αρχείο

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 Βασικές υπηρεσίες/εφαρμογές κρυπτογραφίες: Confidentiality, Authentication, Integrity, Non- Repudiation Βασικές έννοιες κρυπτογραφίας 2 3

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών

Στοιχεία Θεωρίας Αριθμών Ε Μ Π Σ Ε Μ & Φ Ε Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Κωστής Γ Διδάσκοντες: Στάθης Ζ Άρης Π 9 Δεκεμβρίου 2011 1 Πιθανές Επιθέσεις στο RSA Υπενθύμιση

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3

ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Lab 3 Η Aσύμμετρη Kρυπτογραφία ή Κρυπτογραφία Δημοσίου Κλειδιού χρησιμοποιεί δύο διαφορετικά κλειδιά για την κρυπτογράφηση και αποκρυπτογράφηση. Eπινοήθηκε στο τέλος της δεκαετίας

Διαβάστε περισσότερα

project RSA και Rabin-Williams

project RSA και Rabin-Williams Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών project RSA και Rabin-Williams Στοιχεία Θεωρίας Αριθμών& Εφαρμογές στην Κρυπτογραφία Ονοματεπώνυμο Σπουδαστών: Θανάσης Ανδρέου

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ ΥΠΟΛΟΓΙΣΤΙΚΗ ΚΡΥΠΤΟΓΡΑΦΙΑ Εισαγωγή Άρης Παγουρτζής Στάθης Ζάχος Σχολή ΗΜΜΥ ΕΜΠ Διοικητικά του μαθήματος Διδάσκοντες Στάθης Ζάχος Άρης Παγουρτζής Πέτρος Ποτίκας (2017-18) Βοηθοί διδασκαλίας Παναγιώτης Γροντάς

Διαβάστε περισσότερα

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία

ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία ΕΠΛ 674: Εργαστήριο 1 Ασφάλεια Επικοινωνιακών Συστημάτων - Κρυπτογραφία Παύλος Αντωνίου Γραφείο: ΘΕΕ 02 B176 Εαρινό Εξάμηνο 2011 Department of Computer Science Ασφάλεια - Απειλές Ασφάλεια Γενικά (Ι) Τα

Διαβάστε περισσότερα

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους

Threshold Cryptography Algorithms. Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Threshold Cryptography Algorithms Εργασία στα πλαίσια του μαθήματος Τεχνολογίες Υπολογιστικού Νέφους Ορισμός Το σύστημα το οποίο τεμαχίζει ένα κλειδί k σε n τεμάχια έτσι ώστε οποιοσδήποτε συνδυασμός πλήθους

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ζωή Παρασκευοπούλου Νίκος

Διαβάστε περισσότερα

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2

El Gamal Αλγόριθμος. Κώστας Λιμνιώτης Κρυπτογραφία - Εργαστηριακό μάθημα 7 2 Κρυπτογραφία Εργαστηριακό μάθημα 7 (Αλγόριθμοι Δημοσίου Κλειδιού) α) El Gamal β) Diffie-Hellman αλγόριθμος για την ανταλλαγή συμμετρικού κλειδιού κρυπτογράφησης El Gamal Αλγόριθμος Παράμετροι συστήματος:

Διαβάστε περισσότερα

W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων:

W i. Subset Sum Μια παραλλαγή του προβλήματος knapsack είναι το πρόβλημα Subset Sum, το οποίο δεν λαμβάνει υπόψιν την αξία των αντικειμένων: 6/4/2017 Μετά την πρόταση των ασύρματων πρωτοκόλλων από τους Diffie-Hellman το 1976, το 1978 προτάθηκε ένα πρωτόκολλο από τους Merkle-Hellman το οποίο βασίστηκε στο ότι δεν μπορούμε να λύσουμε γρήγορα

Διαβάστε περισσότερα

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών Κρυπτογραφία Θεωρία Αριθμών Παύλος Εφραιμίδης v1.8, 02/04/2014 1 Θεωρία Αριθμών Θεωρία Αριθμών Ένας όμορφος κλάδος των μαθηματικών Απέκτησε μεγάλη πρακτική αξία χάρη στη Σύγχρονη Κρυπτογραφία Η Υπολογιστική

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ KΕΦΑΛΑΙΟ 3 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 1 Το Κρυπτοσύστηµα RSA Η ιδέα της κρυπτογραφίας δηµοσίου κλειδιού παρουσιάσθηκε για πρώτη φορά το 1976 από τους Dffe και Hellman Ένα χρόνο αργότερα, οι R L Rvest, A Shamr

Διαβάστε περισσότερα

Πρόσφατες κατευθύνσεις

Πρόσφατες κατευθύνσεις Η Παρούσα Κατάσταση σε θέµατα ΚΡΥΠΤΟΓΡΑΦΙΑΣ Κων/νος Χαλάτσης, Τµ. Π&Τ, ΕΚΠΑ Παρούσα κατάσταση - Προβλήµατα Cryptography (σχόλια για κρυπτοσυστήµατα) http://axion.physics.ubc.ca/crypt.html Snake Oil Warning

Διαβάστε περισσότερα

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ

6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6 ΑΣΥΜΜΕΤΡΗ ΚΡΥΠΤΟΓΡΑΦΙΑ 6.1. Εισαγωγή Οι σύγχρονες κρυπτογραφικές λύσεις συμπεριλαμβάνουν κρυπτογραφία δημόσιου κλειδιού ή αλλιώς, ασύμμετρη κρυπτογραφία. Η ασύμμετρη κρυπτογραφία βασίζεται αποκλειστικά

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ

KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ KΕΦΑΛΑΙΟ 5 ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ 1 Γενικά Η ψηφιακή υπογραφή είναι µια µέθοδος ηλεκτρονικής υπογραφής όπου ο παραλήπτης ενός υπογεγραµµένου ηλεκτρονικού µηνύµατος µπορεί να διαπιστώσει τη γνησιότητα του,

Διαβάστε περισσότερα

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21

Κατάλογος Σχηµάτων. Κατάλογος Πινάκων. I Κρυπτανάλυση 21 Κατάλογος Σχηµάτων Κατάλογος Πινάκων ix xiv xvi I Κρυπτανάλυση 21 1 Βασικές αρχές κρυπτανάλυσης 23 1.1 Εισαγωγή....................... 24 1.2 Βασικές επιθέσεις................... 25 1.3 Η επίθεση του Hellman-TMTO............

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΠΤΟΛΟΓΙΑ ΣΗΜΕΙΩΣΕΙΣ #6 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1. Το προβληµα του διακριτου λογαριθµου Στο µάθηµα αυτό ϑα δούµε κάποιους αλγόριθµους για υπολογισµό διακριτών λογάριθµων. Θυµίζουµε ότι στο

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Ασύμμετρη Κρυπτογραφία. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Ασύμμετρη Κρυπτογραφία Χρήστος Ξενάκης Ασύμμετρη κρυπτογραφία Μονόδρομες συναρτήσεις με μυστική πόρτα Μια συνάρτηση f είναι μονόδρομη, όταν δοθέντος

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές

8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Κεφάλαιο 8 8.3.4 Τεχνικές Ασφάλειας Συμμετρική Κρυπτογράφηση Ασυμμετρική Κρυπτογράφηση Ψηφιακές Υπογραφές Σελ. 320-325 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-g.ggia.info/ Creative

Διαβάστε περισσότερα

Το κρυπτοσύστημα RSA

Το κρυπτοσύστημα RSA Το κρυπτοσύστημα RSA Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2017-2018) 14/11/2017 RSA 1 / 50 Περιεχόμενα Κρυπτογραφία Δημοσίου Κλειδιού Ορισμός RSA Αριθμοθεωρητικές επιθέσεις Μοντελοποίηση

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

Το κρυπτοσύστημα RSA

Το κρυπτοσύστημα RSA Το κρυπτοσύστημα RSA Παναγιώτης Γροντάς - Άρης Παγουρτζής ΕΜΠ - Κρυπτογραφία (2016-2017) 25/11/2016 1 / 49 (ΕΜΠ - Κρυπτογραφία (2016-2017)) Το κρυπτοσύστημα RSA Περιεχόμενα Κρυπτογραφία Δημοσίου Κλειδιού

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Ψηφιακές Υπογραφές Υπογραφές Επιπρόσθετης Λειτουργικότητας Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou ιαχείριση Κλειδιών Ορισμός: Εγκαθίδρυση κλειδιού (key establishment) είναι η διαδικασία κατά την οποία

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση

Κρυπτογραφία. Κεφάλαιο 1 Γενική επισκόπηση Κρυπτογραφία Κεφάλαιο 1 Γενική επισκόπηση Ανασκόπηση ύλης Στόχοι της κρυπτογραφίας Ιστορικό Γενικά χαρακτηριστικά Κλασσική κρυπτογραφία Συμμετρικού κλειδιού (block ciphers stream ciphers) Δημοσίου κλειδιού

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ

ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΕΛΛΕΙΠΤΙΚΩΝ ΚΑΜΠΥΛΩΝ ΣΤΗΝ ΚΡΥΠΤΟΓΡΑΦΙΑ ιπλωµατική Εργασία του Θωµά Σκόδρα Επιβλέπων καθηγητής: Στεφανίδης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές 3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους

ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 2. Θεωρία αριθμών Αλγεβρικές δομές  3. Οι κρυπταλγόριθμοι και οι ιδιότητές τους ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή... 1 1.1. Ορισμοί και ορολογία... 2 1.1.1. Συμμετρικά και ασύμμετρα κρυπτοσυστήματα... 4 1.1.2. Κρυπτογραφικές υπηρεσίες και πρωτόκολλα... 9 1.1.3. Αρχές μέτρησης κρυπτογραφικής

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ Ορισµός τριών στόχων ασφάλειας - Εµπιστευτικότητα, ακεραιότητα και διαθεσιµότητα Επιθέσεις Υπηρεσίες και Τεχνικές

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

Βασικές Έννοιες Κρυπτογραφίας

Βασικές Έννοιες Κρυπτογραφίας Βασικές Έννοιες Κρυπτογραφίας Παύλος Εφραιμίδης Κρυπτογραφία Βασικές Έννοιες 1 Τι θα μάθουμε Obscurity vs. Security Βασικές υπηρεσίες κρυπτογραφίας: Confidentiality, Authentication, Integrity, Non- Repudiation

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Διαβάστε περισσότερα

Κρυπτοσυστήματα Δημοσίου Κλειδιού

Κρυπτοσυστήματα Δημοσίου Κλειδιού Κεφάλαιο 6 Κρυπτοσυστήματα Δημοσίου Κλειδιού 6.1 Εισαγωγή Η ιδέα της κρυπτογραφίας δημοσίων κλειδιών οφείλεται στους Diffie και Hellman (1976) [4], και το πρώτο κρυπτοσύστημα δημοσίου κλειδιού ήταν το

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Εισαγωγή. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Εισαγωγή Χρήστος Ξενάκης Στόχος του μαθήματος Η παρουσίαση και ανάλυση των βασικών θεμάτων της θεωρίας κρυπτογραφίας. Οι εφαρμογές της κρυπτογραφίας

Διαβάστε περισσότερα

Γενικά Μία μέθοδος κρυπτογραφίας δημοσίου κλειδιού Αντί για δακτύλιους της μορφής Z n χρησιμοποιεί ελλειπτικές καμπύλες ορισμένες σε πεπερασμένα σώματ

Γενικά Μία μέθοδος κρυπτογραφίας δημοσίου κλειδιού Αντί για δακτύλιους της μορφής Z n χρησιμοποιεί ελλειπτικές καμπύλες ορισμένες σε πεπερασμένα σώματ Γενικά Μία μέθοδος κρυπτογραφίας δημοσίου κλειδιού Αντί για δακτύλιους της μορφής Z n χρησιμοποιεί ελλειπτικές καμπύλες ορισμένες σε πεπερασμένα σώματα Βασίζεται στο πρόβλημα του διακριτού λογαρίθμου Αυξημένη

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Η συνάρτηση φ(.) του Euler Για κάθε ακέραιο n > 0, έστω φ(n) το πλήθος των ακεραίων στο

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Ψηφιακή Υπογραφή και Αυθεντικοποίηση Μηνύματος Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων.

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών Ασφάλεια Δεδομένων. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής στην Επιστήμη των Υπολογιστών 2015-16 Ασφάλεια Δεδομένων http://www.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Οι απειλές Ένας κακόβουλος χρήστης Καταγράφει μηνύματα

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα [1, n] που

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ ΨΗΦΙΑΚΕΣ ΥΠΟΓΡΑΦΕΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΤΣΙΛΟΓΙΑΝΝΗΣ ΓΕΩΡΓΙΟΣ Υπεύθυνος Καθηγητής: Α Παπαϊωάννου - - Πρόλογoς

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

Ασφάλεια ικτύων (Computer Security)

Ασφάλεια ικτύων (Computer Security) Ασφάλεια ικτύων (Computer Security) Τι Εννοούµε µε τον Όρο Ασφάλεια ικτύων; Ασφάλεια Μόνο ο αποστολέας και ο προοριζόµενος παραλήπτης µπορούν να διαβάσουν και να κατανοήσουν ένα µήνυµα. Ο αποστολέας το

Διαβάστε περισσότερα

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών

Θεμελιώδη Θέματα Επιστήμης Υπολογιστών http://www.corelab.ntua.gr/courses/ Θεμελιώδη Θέματα Επιστήμης Υπολογιστών 5ο εξάμηνο ΣΕΜΦΕ Ενότητα 0: Εισαγωγή Διδάσκοντες: Στάθης Ζάχος, Άρης Παγουρτζής Υπεύθυνη εργαστηρίου / ασκήσεων: Δώρα Σούλιου

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ. Δ Εξάμηνο ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΑΣΦΑΛΕΙΑ ΥΠΟΛΟΓΙΣΤΩΝ Δ Εξάμηνο Εισαγωγή- Βασικές Έννοιες Διδάσκων : Δρ. Παρασκευάς Κίτσος Επίκουρος Καθηγητής e-mail: pkitsos@teimes.gr, pkitsos@ieee.org Αντίρριο 2015 1 ΤΙ ΕΙΝΑΙ Η ΚΡΥΠΤΟΛΟΓΙΑ?

Διαβάστε περισσότερα

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α. 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά

Διαβάστε περισσότερα

Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Βασικά Θέματα Κρυπτογραφίας Χρήστος Ξενάκης Τμήμα Ψηφιακών Συστημάτων Πανεπιστήμιο Πειραιά Αντικείμενο μελέτης Εφαρμοσμένη Κρυπτογραφία, απαραίτητη για την Ασφάλεια Δικτύων Υπολογιστών Χαρακτηριστικά των

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΒΑΣΙΣΜΕΝΗΣ ΣΕ ΕΛΛΕΙΠΤΙΚΕΣ ΚΑΜΠΥΛΕΣ ΠΑΝΩ ΣΕ BINARY EXTENSION GALOIS FIELDS GF(2 N )

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΒΑΣΙΣΜΕΝΗΣ ΣΕ ΕΛΛΕΙΠΤΙΚΕΣ ΚΑΜΠΥΛΕΣ ΠΑΝΩ ΣΕ BINARY EXTENSION GALOIS FIELDS GF(2 N ) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΒΑΣΙΣΜΕΝΗΣ ΣΕ ΕΛΛΕΙΠΤΙΚΕΣ ΚΑΜΠΥΛΕΣ ΠΑΝΩ

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΜΣ ΕΠΙΧΕΙΡΗΜΑΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟΣΤΟΛΙΔΟΥ ΚΥΡΙΑΚΗ ΕΠΙΒΛΕΠΩΝ: ΜΠΙΣΜΠΑΣ ΑΝΤΩΝΙΟΣ, Καθηγητής

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

* * * ( ) mod p = (a p 1. 2 ) mod p.

* * * ( ) mod p = (a p 1. 2 ) mod p. Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος ttouskas@aueb.gr

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

Chapter 12 Cryptography

Chapter 12 Cryptography Chapter 12 Cryptography Σακαβάλας Δημ ήτρης Δ ΠΜΣ Εφαρμοσμ ένες μαθημ ατικές επιστήμ ες Σχη μ ατική αναπαράσταση κρυπτοσυστή μ ατος Κλειδί κρυπτογράφησης : e Κλειδί αποκρυπτογράφησης : d (ιδιωτικό) Αλγόριθμ

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ Κρυπτογραφία και Εφαρμογές Μαριάς Ιωάννης Μαρκάκης Ευάγγελος marias@aueb.gr markakis@gmail.com Περίληψη Shannon theory Εντροπία Μελέτη κρυπτοσυστηµάτων

Διαβάστε περισσότερα

Ασφάλεια Πληροφοριακών Συστημάτων

Ασφάλεια Πληροφοριακών Συστημάτων Ασφάλεια Πληροφοριακών Συστημάτων Κρυπτογραφία/Ψηφιακές Υπογραφές Διάλεξη 2η Δρ. Β. Βασιλειάδης Τμ. Διοίκησης Επιχειρήσεων, ΤΕΙ Δυτ. Ελλάδας Kρυπτανάλυση Προσπαθούμε να σπάσουμε τον κώδικα. Ξέρουμε το

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Public Key Cryptography. Dimitris Mitropoulos

Public Key Cryptography. Dimitris Mitropoulos Public Key Cryptography Dimitris Mitropoulos dimitro@di.uoa.gr Symmetric Cryptography Key Management Challenge K13 U1 U3 K12 K34 K23 K14 U2 K24 U4 Trusted Third Party (TTP) Bob KΒ K1 U1 KAB TTP KΑ K2 Alice

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ

Παύλος Εφραιμίδης. Βασικές Έννοιες Κρυπτογραφίας. Ασφ Υπολ Συστ Παύλος Εφραιμίδης Βασικές Έννοιες Κρυπτογραφίας Ασφ Υπολ Συστ 1 θα εξετάσουμε τα ακόλουθα εργαλεία κρυπτογραφίας: ψηφιακές υπογραφές κατακερματισμός (hashing) συνόψεις μηνυμάτων μ (message digests) ψευδοτυχαίοι

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2011-2012 Μαριάς Ιωάννης marias@aueb.gr Μαρκάκης Ευάγγελος markakis@gmail.com

Διαβάστε περισσότερα

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κρυπτογραφία. Κρυπτοσυστήματα ροής. Πέτρος Ποτίκας. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτογραφία Κρυπτοσυστήματα ροής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία 1 / 22 Περιεχόμενα 1 Εισαγωγή 2 Υπολογιστική

Διαβάστε περισσότερα

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Κρυπτογραφία Έλεγχος πρώτων αριθών-παραγοντοποίηση Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ Κρυπτογραφία

Διαβάστε περισσότερα

Κρυπτογραφικά Πρωτόκολλα

Κρυπτογραφικά Πρωτόκολλα Κρυπτογραφικά Πρωτόκολλα Παύλος Εφραιµίδης 25/04/2013 1 Κρυπτογραφικά Πρωτόκολλα Bit Commitment Fair Coin Mental Poker Secret Sharing Zero-Knowledge Protocol 2 πρωτόκολλα και υπηρεσίες χρήστης κρυπτογραφικές

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ. στο µάθηµα : "ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ" Μπαλάφας Βασίλειος. Καθηγητής : Μελετίου Γεράσιµος

ΕΡΓΑΣΙΑ. στο µάθηµα : ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ Μπαλάφας Βασίλειος. Καθηγητής : Μελετίου Γεράσιµος ΕΡΓΑΣΙΑ στο µάθηµα : "ΑΣΦΑΛΕΙΑ ΣΥΣΤΗΜΑΤΩΝ" Μπαλάφας Βασίλειος Καθηγητής : Μελετίου Γεράσιµος Μάιος 2000 Περιεχόµενα : Εισαγωγή - Ιστορική αναδροµή Η συνθήκη του συστήµατος των Diffie και Hellman Η κρυπτογράφηση

Διαβάστε περισσότερα

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ

Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ Κρυπτογράφηση με χρήση Δημοσίου Κλειδιού (Public Key Cryptography PKC) στέλνοντας μυστικά σε μία κάρτ ποστάλ 1 Σύνοψη Πρόβλημα: θέλω να στείλω μήνυμα σε κάποιον δημόσια χωρίς να μπορούν να το καταλάβουν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 22 Μαΐου 2013 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΕΘΟΔΟΙ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΕΘΟΔΟΙ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΕΘΟΔΟΙ ΚΡΥΠΤΟΓΡΑΦΙΑΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Πτυχιακή Εργασία του Σκόδρα Θωμά Επιβλέπων καθηγητής: Διαμαντάρας Κωνσταντίνος Τμήμα Πληροφορικής

Διαβάστε περισσότερα

7. O κβαντικός αλγόριθμος του Shor

7. O κβαντικός αλγόριθμος του Shor 7. O κβαντικός αλγόριθμος του Shor Σύνοψη Ο κβαντικός αλγόριθμος του Shor μπορεί να χρησιμοποιηθεί για την εύρεση της περιόδου περιοδικών συναρτήσεων και για την ανάλυση ενός αριθμού σε γινόμενο πρώτων

Διαβάστε περισσότερα

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας

Κρυπ Κρ το υπ γραφία Κρυπ Κρ το υπ λογίας Διαχείριση και Ασφάλεια Τηλεπικοινωνιακών Συστημάτων Κρυπτογραφία Κρυπτογραφία Η Κρυπτογραφία (cryptography) είναι ένας κλάδος της επιστήμης της Κρυπτολογίας (cryptology), η οποία ασχολείται με την μελέτη

Διαβάστε περισσότερα

Α.ΤΕΙ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝIΚΩΝ ΜΗΧΑΝΙΚΩΝ

Α.ΤΕΙ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝIΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.ΤΕΙ ΚΡΗΤΗΣ ΠΑΡΑΡΤΗΜΑ ΧΑΝΙΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝIΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΑ ΨΗΦΙΑΚΑ ΠΙΣΤΟΠΟΙΗΤΙΚΑ ΚΑΙ ΟΙ ΧΡΗΣΙΜΟΤΗΤΑ ΤΟΥΣ ΧΑΤΖΗΣΤΕΦΑΝΟΥ ΣΤΥΛΙΑΝΟΣ ΧΑΝΙΑ ΜΑΙΟΣ 2013 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΜΠΑΡΜΟΥΝΑΚΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ ΜΕΓΑΛΩΝ ΑΚΕΡΑΙΩΝ ΚΑΙ ΟΙ ΚΡΥΠΤΑΝΑΛΥΤΙΚΕΣ ΕΠΙΘΕΣΕΙΣ Διπλωματική Εργασία της Σακάρου

Διαβάστε περισσότερα

Κρυπτογραφία. Εργαστηριακό μάθημα 1

Κρυπτογραφία. Εργαστηριακό μάθημα 1 Κρυπτογραφία Εργαστηριακό μάθημα 1 Βασικοί όροι Με τον όρο κρυπτογραφία εννοούμε τη μελέτη μαθηματικών τεχνικών που στοχεύουν στην εξασφάλιση θεμάτων που άπτονται της ασφάλειας μετάδοσης της πληροφορίας,

Διαβάστε περισσότερα