Εφαρμοσμένη Κρυπτογραφία Ι

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εφαρμοσμένη Κρυπτογραφία Ι"

Transcript

1 Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ

2 Η συνάρτηση φ(.) του Euler Για κάθε ακέραιο n > 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα [1, n] που είναι σχετικά πρώτοι με το n. Η συνάρτηση φ(.) καλείται Euler phi function. Ιδιότητες: 1) Αν p είναι πρώτος, τότε φ(p) = p-1. 2) Αν gcd(n, m) = 1, τότε φ(nm) = φ(n)φ(m). 3) Αν n = p 1 e1 p 2 e2 p k ek τότε φ(n) = n(1-1/p 1 )(1-1/p 2 ) (1-1/p k ). Παράδειγμα: φ(20) = 20(1-1/2)(1-1/5) = 8. Πράγματι, οι αριθμοί στο [1,20] που είναι σχετικά πρώτοι με το 20 είναι οι 1,3,7,9,11,13,17 και 19. Euler,

3 Ισοδυναμίες και Ισοτιμίες Ορισμός: Έστω n ένας θετικός ακέραιος. Ο ακέραιος a καλείται ισότιμος (congruent) με τον ακέραιο b modulo n, συμβολικά a b mod n aν n a-b (δηλαδή αν η ποσότητα a-b διαιρείται με το n) ή διαφορετικά αν a = kn + b για κάποιον ακέραιο k. Αν το n δεν διαιρεί το a-b, τότε ο a καλείται ανισότιμος με τον b modulo n, συμβολικά a b mod n Παραδείγματα: 24 9 mod mod mod mod mod 9 3

4 Ισοδυναμίες και Ισοτιμίες Η σχέση ισοτιμίας είναι μία σχέση ισοδυναμίας στο Z (σύνολο ακεραίων). Δηλαδή ισχύουν τα εξής: 1) α α mod n για κάθε α στο Z 2) α b mod n b a mod n 3) αν α b mod n και b c mod n α c mod n 4) αν α a 1 mod n και b b 1 mod n α + b a 1 + b 1 mod n και ab a 1 b 1 mod n Για κάθε α που ανήκει στο Z, η κλάση ισοδυναμίας του α είναι η [α] = {x Z x a mod n} και καλείται κλάση ισοτιμίας ή κλάση υπολοίπων του α mod n. 4

5 Ισοδυναμίες και Ισοτιμίες Ορισμός: Οι ακέραιοι modulo n, συμβολίζονται με Z n και είναι το σύνολο των κλάσεων ισοδυναμίας των {0, 1, 2,..., n-1}. Όλες οι πράξεις στο Z n γίνονται modulo n. Το σύνολο Z n αποτελεί αντιμεταθετικό δακτύλιο. Αν το n είναι πρώτος, τότε το σύνολο Z n είναι σώμα (συνήθως συμβολίζεται με F p και καλείται πρώτο πεπερασμένο σώμα). γιατί?? 5

6 Ισοδυναμίες και Ισοτιμίες Παραδείγματα: 1) Έστω ο δακτύλιος Z 25. Αυτός αποτελείται από τα στοιχεία {0, 1, 2,..., 24}. Αν a = 8 και b = 13 είναι δύο στοιχεία του Z 25, υπολογίστε τα αποτελέσματα των πράξεων a+b, a-b, και ab. Λύση: α+b = 8+13 = mod 25 a-b = 8-13 = mod 25 ab = 8*13 = mod 25 2) Ποια από τα παρακάτω είναι σωστά? mod 22, 31 = 53 mod mod 14, 7 = 21 mod mod 14, 21 = 7 mod 14 6

7 Ισοδυναμίες και Ισοτιμίες Πώς ορίζεται η διαίρεση στο Z n? Ένα στοιχείο α του Z n λέμε ότι είναι αντιστρέψιμο αν υπάρχει ένας αριθμός x στο Z n για τον οποίο ισχύει ότι ax 1 mod n Δεν έχουν όλοι οι αριθμοί στο Z n αντίστροφο. Συγκεκριμένα, ένας αριθμός α στο Z n αντιστρέφεται αν και μόνο αν gcd(a, n) = 1. Άρα, για να μπορεί να οριστεί η πράξη a/b στο Z n θα πρέπει το b να αντιστρέφεται. 7

8 Ισοδυναμίες και Ισοτιμίες Παράδειγμα: Έστω τα στοιχεία α = 7 και b = 9 του δακτυλίου Z 14. Υπολογίστε τα a/b και b/a. Λύση: Αρχικά πρέπει να δούμε αν τα a και b αντιστρέφονται. Ισχύει ότι gcd(a, 14) = 7 και gcd(b, 14) = 1. Άρα ορίζεται μόνο η πράξη a/b. To b -1 = mod 14 (γιατί 9*11 1 mod 14). Άρα, a/b = 7*11 = 77 7 mod 14. Ερώτημα: Γιατί το Z n αποτελεί σώμα αν το n είναι πρώτος? 8

9 Ισοδυναμίες και Ισοτιμίες Ορισμός: Αν n > 1 είναι ένας φυσικός αριθμός και α ένας ακέραιος τέτοιος ώστε gcd(a, n) = 1, τότε ο μικρότερος θετικός ακέραιος r με την ιδιότητα a r 1 mod n καλείται τάξη (order) του a mod n. (η τάξη ορίζεται μόνο για τα αντιστρέψιμα στοιχεία του Z n ) Ορισμός: Η πολλαπλασιαστική ομάδα του Z n είναι η Z n* = {a Z n gcd(a, n) = 1}. Δηλαδή η πολλαπλασιαστική ομάδα αποτελείται από τα αντιστρέψιμα στοιχεία του Z n. Η τάξη Z n* του Z n* είναι ίση με φ(n). Aν n είναι πρώτος αριθμός, τότε Z n* = {1, 2,..., n-1}. 9

10 Δύο Βασικά Θεωρήματα Θεώρημα του Euler: Αν α Z n* τότε α φ(n) 1 mod n. H τάξη οποιουδήποτε στοιχείου του Z n* είναι είτε ίση με φ(n) ή διαιρεί ακριβώς το φ(n). Μικρό Θεώρημα του Fermat: Έστω p ένας πρώτος αριθμός. Αν gcd(a, p) = 1 για κάποιον ακέραιο αριθμό α, τότε a p-1 1 mod p. Fermat,

11 Γεννήτορες Ομάδων Αν για κάποιο στοιχείο α του Z n* η τάξη του είναι ίση με φ(n), τότε το στοιχείο αυτό καλείται γεννήτορας του Z n*. Δηλαδή ισχύει ότι Z n* = {α i mod n 0 i φ(n) - 1}. Κάθε ομάδα που έχει έναν τουλάχιστον γεννήτορα καλείται κυκλική. Πώς δημιουργείται ένας γεννήτορας για μια κυκλική ομάδα? αν μια κυκλική ομάδα έχει τάξη t, τότε κάθε γεννήτορας θα έχει τάξη t η τάξη οποιουδήποτε άλλου στοιχείου της ομάδας θα πρέπει να διαιρεί ακριβώς το t 11

12 Τετραγωνικά Υπόλοιπα Ορισμός: Έστω η ισοτιμία x 2 a mod n όπου n φυσικός αριθμός και α ακέραιος αριθμός σχετικά πρώτος προς τον n (δηλαδή α ανήκει στο Z n* ). Τότε ο α θα καλείται τετραγωνικό υπόλοιπο (quadratic residue) modulo n. Αν δεν υπάρχει x που να ικανοποιεί την παραπάνω ισοτιμία, τότε ο α καλείται μη-τετραγωνικό υπόλοιπο (quadratic non-residue) modulo n. To σύνολο των τετραγωνικών υπολοίπων modulo n θα το συμβολίζουμε με Q και το σύνολο των μη-τετραγωνικών υπολοίπων με. n Q n 12

13 Τετραγωνικά Υπόλοιπα Για κάθε περιττό πρώτο αριθμό p υπάρχουν ακριβώς (p-1)/2 τετραγωνικά υπόλοιπα και (p-1)/2 μη-τετραγωνικά υπόλοιπα modulo p. Δηλαδή τα μισά στοιχεία του Z p* είναι τετραγωνικά υπόλοιπα και τα άλλα μισά όχι. Αν ο αριθμός α είναι τετραγωνικό υπόλοιπο modulo p, τότε ισχύει ότι και αν δεν είναι τότε a (p-1)/2 1 mod p a (p-1)/2-1 mod p. Οι ισοτιμίες αυτές χρησιμοποιούνται για να ελεγχθεί εάν ένας αριθμός είναι τετραγωνικό υπόλοιπο ή όχι. 13

14 Το Σύμβολο του Legendre a Το σύμβολο του Legendre p, όπου p είναι ένας πρώτος αριθμός και α ένας ακέραιος αριθμός σχετικά πρώτος ως προς τον p, ορίζεται ως a p a p 1 2 mod p Δηλαδή το σύμβολο του Legendre επιστρέφει την τιμή 1 αν ο α είναι τετραγωνικό υπόλοιπο modulo p και την τιμή -1 αν δεν είναι. Τα σύμβολα των Jacobi και Kronecker γενικεύουν το σύμβολο του Legendre σε οποιοδήποτε ακέραιο b. 14

15 Σώματα Επέκτασης Ορισμός: Ένα σώμα Κ θα καλείται σώμα επέκτασης (extension field) ενός άλλου σώματος F αν F K. Στην περίπτωση αυτή το F λέγεται υπόσωμα (subfield) του Κ. Παράδειγμα, οι μιγαδικοί αριθμοί αποτελούν σώμα επέκτασης των πραγματικών αριθμών και οι πραγματικοί αριθμοί αποτελούν σώμα επέκτασης των ρητών αριθμών. Τα στοιχεία ενός σώματος επέκτασης αναπαρίστανται ως πολυώνυμα βαθμού m-1, όπου m είναι ο βαθμός επέκτασης. 15

16 Σώματα Galois F To σώμα mαποτελεί επέκταση του σώματος p p και ο βαθμός επέκτασης είναι m. Ta σώματα της μορφής αυτής καλούνται και σώματα Galois (Galois fields). F Κάθε στοιχείο s του σώματος επέκτασης αναπαρίσταται ως a όπου. i F p 16

17 Σώματα Galois Πρόσθεση-αφαίρεση Πολλαπλασιασμός χρειάζεται πολυώνυμο αναγωγής (reduction polynomial) βαθμού m 1. Πολυωνυμικός πολλαπλασιασμός 17

18 Σώματα Galois 2. Αναγωγή στο σώμα επέκτασης Συνήθως p(x) = x m a. Παράδειγμα αναγωγής: x 8 +3x 4 +x 2 +1 mod (x 5 1) = 3x 4 +x 3 +x 2 +1 γιατί x 3 (x 5 1) + 3x 4 +x 3 +x 2 +1 = x 8 +3x 4 +x

19 Κινέζικο Θεώρημα Υπολοίπου Κινέζικο Θεώρημα Υπολοίπου (Chinese Remainder Theorem - CRT): Αν οι ακέραιοι n 1, n 2,, n k είναι ανά δύο πρώτοι μεταξύ τους, τότε το σύστημα των ισοτιμιών x a 1 mod n 1 x a 2 mod n 2. x a k mod n k έχει μοναδική λύση modulo n = n 1 n 2 n k.. H λύση των παραπάνω ισοτιμιών υπολογίζεται από τον αλγόριθμο του Gauss. 19

20 Παράδειγμα Ένας Κινέζος στρατηγός κάθε πρωί μετράει τους στρατιώτες του και με την παρακάτω μέθοδο βρίσκει πόσοι λείπουν από τους 1000 συνολικά που έχει, στην πρωινή αναφορά τους: τους ζητά να παραταχτούν σε σειρές των 11, 13 και 17, και μετρά πόσοι περισσεύουν κάθε φορά. Αν ένα πρωί δει ότι περισσεύουν 3 από τις σειρές των 11, 4 από τις σειρές των 13 και 9 από τις σειρές των 17, πόσοι συνολικά είναι οι στρατιώτες που έχουν παρουσιαστεί? 20

21 Λύση... x 3 mod 11 x 4 mod 13 x 9 mod 17 έχει μοναδική λύση modulo n = 11*13*17 = Ν 1 = n/n 1 = 13*17 = 221 M 1 = (221) -1 mod 11 = 1-1 mod 11 Ν 2 = n/n 2 = 11*17 = 187 M 2 = (187) -1 mod 13 = 5-1 mod 13 Ν 3 = n/n 3 = 11*13 = 143 M 3 = (143) -1 mod 17 = 7-1 mod 17 M 1 = 1, M 2 = 8, M 3 = 5. Άρα, x a 1 N 1 M 1 + a 2 N 2 M 2 + a 3 N 3 M 3 mod n 927 mod

22 Πως δημιουργείται ένας πρώτος? Διαδικασία: 1. Δημιουργείται ένας τυχαίος περιττός αριθμός κατάλληλου μεγέθους. 2. Ελέγχεται αν είναι πρώτος 3. Αν είναι σύνθετος, επιστρέφουμε στο 1 ο βήμα. Στο 2 ο βήμα ο αλγόριθμος ελέγχου μπορεί να αποδεικνύει ότι ο αριθμός είναι πρώτος (provable prime) ή να καταδεικνύει ότι με μεγάλη πιθανότητα ο αριθμός είναι πρώτος (probable prime). Προφανώς η δεύτερη κατηγορία αλγορίθμων είναι πολύ πιο αποδοτική από την πρώτη. 22

23 Έλεγχοι Πρώτου Αριθμού A) True Primality Tests Αποδεικνύουν με βεβαιότητα ότι ένας αριθμός είναι πρώτος B) Probabilistic Primality Tests Fermat s test Solovay-Strassen test Miller-Rabin test Απαντά λανθασμένα με μικρότερη πιθανότητα 23

24 Μια σημαντική ανακάλυψη... Μέχρι τις αρχές του 21 ου αιώνα δεν υπήρχε ντετερμινιστικός αλγόριθμος πολυωνυμικού χρόνου που να αποφασίζει εάν ένας περιττός αριθμός είναι πρώτος ή όχι (true primality test). Μάλιστα, υπήρχε η εικασία ότι για το συγκεκριμένο πρόβλημα δεν θα μπορούσε να υπάρξει πολυωνυμικός αλγόριθμος. Primes is in P! Agrawal, Kayal, Saxena,

25 Πιθανοτικός Έλεγχος Miller-Rabin Βασίζεται στην παρακάτω πρόταση: Έστω ότι n είναι ένας πρώτος αριθμός και n-1 = 2 r s, όπου s περιττός. Για κάθε α ο οποίος είναι σχετικά πρώτος με τον n (gcd(a, n) = 1) ισχύει είτε a s j 2 s 1 mod n ή a 1 mod n για κάποιο j, 0 j r-1. Αν ο n ΔΕΝ είναι πρώτος, αλλά παρόλα αυτά ισχύει ότι είτε ότι a 2 j s 1 a s 1 mod n ή mod n για κάποιο j, τότε ο α καλείται strong liar για τον n (συμπεριφέρεται σαν πρώτος). Διαφορετικά, καλείται strong witness. 25

26 Πιθανοτικός Έλεγχος Miller-Rabin 26

27 Πιθανοτικός Έλεγχος Miller-Rabin Μια εύλογη τιμή για την παράμετρο t είναι η 10 ή 20. Για κάθε ακέραιο n που δεν είναι πρώτος, η πιθανότητα ο αλγόριθμος των Miller-Rabin να επιστρέψει λάθος αποτέλεσμα είναι (1/4) t. 27

28 Διάβασμα Σημειώσεις μαθήματος, Κεφάλαια 2.4, 2.5, 4.1 και 4.2 του Handbook of Applied Cryptography, βιβλιογραφικές αναφορές που υπάρχουν στις σημειώσεις 28

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ Κρυπτογραφία Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα [1, n] που

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος

Διαβάστε περισσότερα

Παραγωγή μεγάλων πρώτων αριθμών

Παραγωγή μεγάλων πρώτων αριθμών Παραγωγή μεγάλων πρώτων αριθμών Πώς υπολογίζουμε μεγάλους πρώτους αριθμούς? Μεγάλοι πρώτοι αριθμοί χρειάζονται στην πλειοψηφία των αλγορίθμων Δημοσίου κλειδιού Γιαναεξετάσεικανείςανέναςαριθμόςn είναι πρώτος,

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Stream ciphers Η διαδικασία κωδικοποίησης για έναν stream cipher συνοψίζεται παρακάτω: 1.

Διαβάστε περισσότερα

Αλγεβρικές Δομές και Αριθμοθεωρία

Αλγεβρικές Δομές και Αριθμοθεωρία Κεφάλαιο 9 Αλγεβρικές Δομές και Αριθμοθεωρία 9.1 Εισαγωγή Θα παρουσιάσουμε κάποια στοιχεία από Θεωρία Αριθμών και ελάχιστα από Θεωρία Ομάδων. Οι γνώσεις αυτές είναι οι ελάχιστες απαραίτητες για την κατανόηση

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων Κρυπτογραφία Θεωρία αριθμών Αλγεβρικές δομές Χρήστος Ξενάκης Το σύνολο των ακεραίων Ζ = {..., -2, -1, 0, 1, 2,...} Το σύνολο των φυσικών Ν = {0, 1, 2,...}

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Δημήτριος Μπάκας Αθανάσιος

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ιστορία Ασύμμετρης Κρυπτογραφίας Η αρχή έγινε το 1976 με την εργασία των Diffie-Hellman

Διαβάστε περισσότερα

Υπολογισμός της δύναμης z=x b modn

Υπολογισμός της δύναμης z=x b modn Υπολογισμός της δύναμης z=x b modn 1.Γράφουμε τον εκθέτη b στο δυαδικό σύστημα αρίθμησης i b = b i όπου i= 0 bi {0,1} I==0,1,,l-1.Εφαρμόζουμε έπειτα τον εξής αλγόριθμο: z=1 for I=l-1 downto 0 do z=z modn

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ.

Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Οικονομικό Πανεπιστήμιο Αθηνών Τμήμα Πληροφορικής ΠΜΣ στα Πληροφοριακά Συστήματα Κρυπτογραφία και Εφαρμογές Διαλέξεις Ακ. Έτους 2015-2016 Μαρκάκης Ευάγγελος markakis@aueb.gr Ντούσκας Θεόδωρος tntouskas@aueb.gr

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ψηφιακές Υπογραφές Ορίζονται πάνω σε μηνύματα και είναι αριθμοί που εξαρτώνται από κάποιο

Διαβάστε περισσότερα

Κεφάλαιο 2. Μαθηματικό Υπόβαθρο. 2.1 Θεωρία Αριθμών Διαιρετότητα

Κεφάλαιο 2. Μαθηματικό Υπόβαθρο. 2.1 Θεωρία Αριθμών Διαιρετότητα Κεφάλαιο 2 Μαθηματικό Υπόβαθρο Σε αυτό το κεφάλαιο Θα παρουσιάσουμε ορισμένα στοιχεία από την Θεωρία Αριθμών, την Θεωρία Ομάδων και την Θεωρία Πιθανοτήτων. Θα περιοριστούμε στις ελάχιστες γνώσεις που μας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ Η θεωρία αριθμών και οι αλγεβρικές δομές τα τελευταία χρόνια χρησιμοποιούνται όλο και περισσότερο στην κρυπτολογία. Αριθμο-θεωρητικοί αλγόριθμοι χρησιμοποιούνται σήμερα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ PRIMES P. Από τα αριστερά προς τα δεξία Saxena, Kayal και Agrawal. Επιµέλεια : Γεωργίου Κωνσταντίνος.

ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ PRIMES P. Από τα αριστερά προς τα δεξία Saxena, Kayal και Agrawal. Επιµέλεια : Γεωργίου Κωνσταντίνος. ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ PRIMES P Επιµέλεια : Γεωργίου Κωνσταντίνος Ιούνιος 003 Από τα αριστερά προς τα δεξία Saena, Kayal και Agawal Η ασχολία της ανθρωπότητας µε τους πρώτους αριθµούς Παράδοση

Διαβάστε περισσότερα

Υπολογιστικά Προβλήματα και Αλγόριθμοι στην Κρυπτογραφία

Υπολογιστικά Προβλήματα και Αλγόριθμοι στην Κρυπτογραφία Κεφάλαιο 4 Υπολογιστικά Προβλήματα και Αλγόριθμοι στην Κρυπτογραφία Στο κεφάλαιο αυτό θα περιγράψουμε βασικούς αλγόριθμους που σχετίζονται με έννοιες της Θεωρίας Αριθμών και έχουν άμεση εφαρμογή στην κρυπτογραφία.

Διαβάστε περισσότερα

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι)

Κρυπτογραφία. Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτογραφία Κεφάλαιο 4 Αλγόριθμοι Δημοσίου Κλειδιού (ή ασύμμετροι αλγόριθμοι) Κρυπτοσυστήματα Δημοσίου κλειδιού Αποστολέας P Encryption C Decryption P Παραλήπτης Προτάθηκαν το 1976 Κάθε συμμετέχων στο

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Καλογερόπουλος Παναγιώτης

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Πρόβληµα 2 (12 µονάδες)

Πρόβληµα 2 (12 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2015-2016 ΔΙΔΑΣΚΟΝΤΕΣ: Ε. Μαρκάκης, Θ. Ντούσκας Λύσεις 2 ης Σειράς Ασκήσεων Πρόβληµα 1 (12 µονάδες) 1) Υπολογίστε τον

Διαβάστε περισσότερα

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη Σηµειώσεις Θεωρίας Αριθµών Θ. Θεοχάρη-Αποστολίδη Ευχαριστώ ιδιαίτερα τη ϕοιτήτριά µου Μαρίνα Παλαιστή για τη µεταφορά του χειρογράφου µου σε κείµενο "tex" Κεφάλαιο 1 Βασικές Ιδιότητες Ισοδυναµιών Η ϑεωρία

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Κρυπτοσύστημα RSA (Rivest, Shamir, Adlemann, 1977) Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κρυπτοσύστημα

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο

Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία PROJECT Συνοπτική Παρουσίαση του Κβαντικού Αλγόριθμου Παραγοντοποίησης

Διαβάστε περισσότερα

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r. Κεφάλαιο 2 Θεωρία Αριθμών Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι Hardy and Wright 1979 και Graham, Knuth, and Patashnik 1994. 2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί Θεώρημα 2.1 Αν

Διαβάστε περισσότερα

Περιεχόμενα Εισαγωγή στα πεπερασμένα σώματα

Περιεχόμενα Εισαγωγή στα πεπερασμένα σώματα Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 3 1.1 Μάθημα 1..................................... 3 1.1.1 Στοιχεία αλγεβρικής θεωρίας....................... 4 1.2 Μάθημα 2.....................................

Διαβάστε περισσότερα

Blum Blum Shub Generator

Blum Blum Shub Generator Κρυπτογραφικά Ασφαλείς Γεννήτριες Ψευδοτυχαίων Αριθμών : Blum Blum Shub Generator Διονύσης Μανούσακας 31-01-2012 Εισαγωγή Πού χρειαζόμαστε τυχαίους αριθμούς; Σε κρυπτογραφικές εφαρμογές κλειδιά κρυπτογράφησης

Διαβάστε περισσότερα

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών

Κρυπτογραφία. Θεωρία Αριθμών 2/4/2014. Θεωρία Αριθμών Κρυπτογραφία Θεωρία Αριθμών Παύλος Εφραιμίδης v1.8, 02/04/2014 1 Θεωρία Αριθμών Θεωρία Αριθμών Ένας όμορφος κλάδος των μαθηματικών Απέκτησε μεγάλη πρακτική αξία χάρη στη Σύγχρονη Κρυπτογραφία Η Υπολογιστική

Διαβάστε περισσότερα

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α.

1 Ψηφιακές Υπογραφές. 1.1 Η συνάρτηση RSA : Η ύψωση στην e-οστή δύναμη στο Z n. Κρυπτογραφία: Αρχές και πρωτόκολλα Διάλεξη 6. Καθηγητής Α. 1 Ψηφιακές Υπογραφές Η ψηφιακή υπογραφή είναι μια βασική κρυπτογραφική έννοια, τεχνολογικά ισοδύναμη με την χειρόγραφη υπογραφή. Σε πολλές Εφαρμογές, οι ψηφιακές υπογραφές χρησιμοποιούνται ως δομικά συστατικά

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

conp and Function Problems

conp and Function Problems conp and Function Problems 1 Ένα πρόβλημα απόφασης λέμε ότι επιλύεται σε μηντετερμινιστικό πολυωνυμικό χρόνο αν υπάρχει ένας μηντετερμινιστικός αλγόριθμος που, εκμεταλλευόμενος μια τυχαία επιλογή, μπορεί

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο Σηµειώσεις Προετοιµασίας για Μαθηµατικούς ιαγωνισµούς Ασκήσεις Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Νοέµβριος 2012 1 Ασκησεις στη Θεωρια Αριθµων 1 Μαθηµατική

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Κρυπτογραφία Δημοσίου Κλειδιού

Κρυπτογραφία Δημοσίου Κλειδιού Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία Κρυπτογραφία Δημοσίου Κλειδιού Άρης Παγουρτζής Στάθης Ζάχος Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών Εθνικού Mετσόβιου Πολυτεχνείου

Διαβάστε περισσότερα

Basik 'Algebra Tm ma Majhmatik n Panepist mio Ajhn n Aj na 2013

Basik 'Algebra Tm ma Majhmatik n Panepist mio Ajhn n Aj na 2013 Basik 'Algebra Tm ma Majhmatik n Panepist mio Ajhn n Aj na 2013 Perieqìmena 1 Ακέραιοι 1 1.1 Διαιρετότητα.................................. 1 1.2 Ισοτιμίες..................................... 10 1.3

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

a pn 1 = 1 a pn = a a pn a = 0,

a pn 1 = 1 a pn = a a pn a = 0, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 14 Ιανουαρίου 2015 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 60

Διαβάστε περισσότερα

Το Θεώρημα CHEVALLEY-WARNING

Το Θεώρημα CHEVALLEY-WARNING Το Θεώρημα CHEVALLEY-WARNING Ανθή Ζερβού Διδάσκων: Ιωάννης Αντωνιάδης 3/02/2015 1 ΠΕΠΕΡΑΣΜΕΝΑ ΣΩΜΑΤΑ Ορισμός. Εστω Κ σώμα. Χαρακτηριστική του Κ, συμβολίζεται ch(k), είναι ο ελάχιστος φυσικός αριθμός n

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

Θεωρια Αριθµων Προβληµατα

Θεωρια Αριθµων Προβληµατα Θεωρια Αριθµων Προβληµατα Μιχάλης Κολουντζάκης Τµήµα Μαθηµατικών και Εφαρµοσµένων Μαθηµατικών Πανεπιστήµιο Κρήτης Βούτες 700 3 Ηράκλειο 6 Απριλίου 205 Πολλές από τις παρακάτω ασκήσεις είναι από το ϐιβλίο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Πεπερασμένα σώματα & Κρυπτογραφία. Σημειώσεις σύμφωνα με τις παραδόσεις του Αριστείδη Κοντογεώργη

Πεπερασμένα σώματα & Κρυπτογραφία. Σημειώσεις σύμφωνα με τις παραδόσεις του Αριστείδη Κοντογεώργη Πεπερασμένα σώματα & Κρυπτογραφία Σημειώσεις σύμφωνα με τις παραδόσεις του Αριστείδη Κοντογεώργη Τσουκνίδας Ιωάννης, Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών, 2012 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012 Εαρινό εξάμηνο 2012 17.05.12 Χ. Χαραλάμπους (1791-1858) 1858) Peacock: «Treatise on Algebra»(1830) και αργότερα μετά το 1839 την «αριθμητική άλγεβρα» και στην «συμβολική άλγεβρα». «αριθμητική άλγεβρα»:

Διαβάστε περισσότερα

Θεωρία Αριθμών με Εφαρμογές στην Κρυπτογραφία. Ευαγγελόπουλος Δημήτρης

Θεωρία Αριθμών με Εφαρμογές στην Κρυπτογραφία. Ευαγγελόπουλος Δημήτρης Θεωρία Αριθμών με Εφαρμογές στην Κρυπτογραφία Ευαγγελόπουλος Δημήτρης Φεβρουάριος 2013 2 ΠΡΟΛΟΓΟΣ Η Θεωρία Αριθμών είναι ο κλάδος των Μαθηματικών που ασχολείται με τις ιδιότητες των ακέραιων αριθμών, καθώς

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Θεωρία Sylow Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 2 Θεωρία Sylow 21 Τα Θεωρήματα Sylow Ορισμός 211 Μια ομάδα (G, ) τάξης p α, όπου

Διαβάστε περισσότερα

Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2

Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2 2 Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 11 Νοεμβρίου 2014 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 2

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. Πολυωνυμικοί-Κυκλικοί Κώδικες. 3.1 Πολυωνυμικοί κώδικες

ΚΕΦΑΛΑΙΟ 3. Πολυωνυμικοί-Κυκλικοί Κώδικες. 3.1 Πολυωνυμικοί κώδικες ΚΕΦΑΛΑΙΟ 3 Πολυωνυμικοί-Κυκλικοί Κώδικες Στα προηγούμενα ασχοληθήκαμε με τους γραμμικούς κώδικες και είδαμε πώς η δομή ενός γραμμικού κώδικα, ως διανυσματικού χώρου, καθιστά τις διαδικασίες κωδικοποίησης

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k = ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2016 Χρήστος Α. Αθανασιάδης Συμβολίζουμε με Z m το δακτύλιο των ακεραίων modulo m, με ā Z m την κλάση (mod m) του a Z και με M n (R) το δακτύλιο

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2013-2014 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Α Μπεληγιάννης - Σ Παπαδάκης Ιστοσελιδα Μαθηµατος : http://usersuogr/abelga/numbertheory/nthtml Τετάρτη 10 Απριλίου 2013 Ασκηση 1 Θεωρούµε τις αριθµητικές

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου. Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ILP-Feasibility conp

ILP-Feasibility conp Διάλεξη 19: 23.12.2014 Θεωρία Γραμμικού Προγραμματισμού Γραφέας: Χαρίλαος Τζόβας Διδάσκων: Σταύρος Κολλιόπουλος 19.1 Θεωρία Πολυπλοκότητας και προβλήματα απόφασης Για να μιλήσουμε για προβλήματα και τον

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ

ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ Το πρόβλημα: Δεδομένα: δύο ακέραιοι a και b Ζητούμενο: ο μέγιστος ακέραιος που διαιρεί και τους δύο δοσμένους αριθμούς, γνωστός ως Μέγιστος Κοινός Διαιρέτης τους (Greatest

Διαβάστε περισσότερα

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία

Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Θεμελιώδη Υπολογιστικά Προβλήματα στην Κρυπτογραφία Κωνσταντινίδης Ορέστης Σ.Ε.Μ.Φ.Ε. Επιβλέπων καθηγητής: Άρης Παγουρτζής

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό ) είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια)

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Μορφές αποδείξεων Μαθηματικά Πληροφορικής 2ο Μάθημα Αρχικός συγγραφέας: Ηλίας Κουτσουπιάς Τροποποιήσεις: Σταύρος Κολλιόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σημειώσεις Διαλέξεων Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία Επιμέλεια σημειώσεων: Ελένη Μπακάλη Άρης Παγουρτζής

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Συνολικό Πλαίσιο Ασφάλεια ΠΕΣ Εμπιστευτικότητα Ακεραιότητα Πιστοποίηση Μη-αποποίηση Κρυπτογράφηση

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα