Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5"

Transcript

1 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου 2012 Ασκηση 1. Εστω G µια οµάδα. (1) x, a G: (2) a, b G: o(x 1 ax) = o(a) = o(xax 1 ) o(ab) = o(ba) (3) Αν H είναι µια υποοµάδα της G, τότε x G, το σύνολο x 1 Hx είναι µια υποοµάδα της G µε τάξη o(x 1 Hx) = o(h) Λύση. (1) Για κάθε x, a G έχουµε: (x 1 ax) n = (x 1 ax) (x 1 ax) (x 1 ax) = x 1 a n x και άρα Εποµένως έπεται ότι (x 1 ax) n = e x 1 a n x = e a n = xex 1 a n = e ( ) o(x 1 ax) < o(a) < Εστω o(x 1 ax) = n. Τότε (x 1 ax) n = e και από τη σχέση ( ) έχουµε a n = e. Συνεπώς o(a) / n = o(x 1 ax) (1) Αν o(a) = m, δηλαδή a m = e, τότε από τη σχέση ( ) έχουµε (x 1 ax) m = e και άρα o(x 1 ax) / m = o(a) (2) Από τις σχέσεις (1) και (2) συνεπάγεται ότι o(x 1 ax) = n = m = o(a). Οµοια δείχνουµε ότι o(a) = o(xax 1 ) και αν o(a) = τότε o(x 1 ax) = = o(a). (2) Εστω a, b G. Επειδή a 1 ab a = eba = ba από το ερώτηµα (1) έχουµε το Ϲητούµενο : o(ab) = o(a 1 aba) = o(ba). (3) Εστω a, b x 1 Hx. Τότε υπάρχουν στοιχεία h 1, h 2 H έτσι ώστε : a = x 1 h 1 x και b = x 1 h 2 x, όπου h 1, h 2 H Επειδή το σύνολο H είναι υποοµάδα της G ϑα έχουµε: e = x 1 ex x 1 Hx. ab = x 1 h 1 x x 1 h 2 x = x 1 h 1 h 2 x x 1 Hx. a 1 = (x 1 h 1 x) 1 = x 1 h 1 1 (x 1 ) 1 = x 1 h 1 1 x x 1 Hx.

2 2 Άρα για κάθε x G το σύνολο x 1 Hx είναι υποοµάδα της G. Στη συνέχεια υπολογίζουµε τη τάξη της υποοµάδας x 1 Hx. Θεωρούµε την απεικόνιση: f : H x 1 Hx, h f(h) = x 1 hx Ισχυριζόµαστε ότι η συνάρτηση f είναι 1-1 και επί. Εχουµε: 1-1: Εστω f(h 1 ) = f(h 2 ) για h 1, h 2 H. Τότε x 1 h 1 x = x 1 h 2 x = h 1 x = h 2 x = h 1 = h 2 = f : 1 1 Επί: Εστω x 1 hx x 1 Hx. Τότε υπάρχει το h H έτσι ώστε f(h) = x 1 hx. Άρα η απεικόνιση f είναι επί εξόρισµού. Εποµένως: o(x 1 Hx) = o(h). Ασκηση 2. Βρείτε το πλήθος των γεννητόρων µιας κυκλικής οµάδας µε τάξη : (α ) 5, (ϐ ) 8, (γ ) 12, (δ ) 60 Λύση. Εστω G µια κυκλική οµάδα τάξης n. Τότε γνωρίζουµε από τη Θεωρία ότι το πλήθος των γεννητόρων της G ισούται µε φ(n) όπου φ η συνάρτηση του Euler. Υπενθυµίζουµε ότι αν n = p a 1 1 p a 2 2 pa k k η πρωτογενής ανάλυση του αριθµού n N τότε φ(n) = (p a 1 1 pa ) (p a 2 2 pa ) (p an n pn an 1 ) = n(1 1 )(1 1 ) (1 1 ) p 1 p 2 p k Εχουµε: (α ) φ(5) = = 4. (ϐ ) φ(8) = φ(2 3 ) = ( ) = 4. (γ ) φ(12) = φ(3 2 2 ) = φ(3) φ(2 2 ) = ( ) ( ) = 2 2 = 4. (δ ) φ(60) = φ( ) = φ(2 2 ) φ(3) φ(5) = ( ) ( ) ( ) = = 16. Ασκηση 3. Οι γεννήτορες της κυκλικής πολλαπλασιαστικής οµάδας U n όλων των n-στών ϱιζών της µονάδας στο C καλούνται πρωταρχικές n-οστές ϱίζες της µονάδας. Βρείτε τις πρωταρχικές n-οστές ϱίζες της µονάδας για n = 4. Λύση. Οι πρωταρχικές ϱίζες της U 4 είναι 2 διότι φ(4) = φ(2 2 ) = 2. Εχουµε: U 4 = {z C z 4 = 1} = {i, 1, 1, i} = i = i και άρα οι πρωταρχικές ϱίζες της U 4 είναι: i, i. Ασκηση 4. (1) Βρείτε το πλήθος των στοιχείων της κυκλικής υποοµάδας [25] 30 της οµάδας (Z 30, +). (2) Βρείτε το πλήθος των στοιχείων της κυκλικής υποοµάδας [30] 42 της οµάδας (Z 42, +). (3) Βρείτε το πλήθος των στοιχείων της κυκλικής υποοµάδας i της οµάδας C των µη µηδενικών µιγαδικών αριθµών µε πράξη τον πολλαπλασιασµό. (4) Βρείτε το πλήθος των στοιχείων της κυκλικής υποοµάδας 1 + i της οµάδας C των µη µηδενικών µιγαδικών αριθµών µε πράξη τον πολλαπλασιασµό.

3 Λύση. (1) Εχουµε: [25] 30 = {[25], [20], [15], [10], [5], [0]} και άρα o([25] 30 ) = 6. ιαφορετικά χρησιµοποιώντας το γνωστό τύπο : o(a k ) = o(a) (o(a),k) έχουµε: o([25] 30 ) = o(25 [1] 30 ) = o([1]) (o([1]), 25) = 30 (30, 25) = 30 5 = 6 (2) Υπολογίζοντας τη κυκλική υποοµάδα [30] 42 της οµάδας (Z 42, +) έχουµε: [30] 42 = {[30], [18], [6], [], [24], [12], [0]} = o([30] 42 ) = 7 ή χρησιµοποιώντας το τύπο ϐρίσκουµε (3) Εχουµε: o([30] 42 ) = o(30 [1] 42 ) = o([1]) (o([1]), 30) = 42 (42, 30) = 42 6 = 7 i = {i, i 2, i 3, i 4, } = {i, 1, i, 1} = o( i ) = 4 (4) Εστω ότι o(1 + i) <. Τότε υπάρχει n 1 έτσι ώστε (1 + i) n = 1 και άρα 1 + i U n = {z C z n = 1} {z C z = 1} ηλαδή το µέτρο του 1 + i είναι ένα. Αυτό όµως είναι άτοπο αφού 1 + i = 2 1. Εποµένως η τάξη του 1 + i C είναι o(1 + i) =. 3 Ασκηση 5. Ποιες είναι οι δυνατές τάξεις για τις υποοµάδες των επόµενων κυκλικών οµάδων; (α ) (Z 6, +), (ϐ ) (Z 8, +), (γ ) (Z 12, +), (δ ) (Z 60, +), (ε ) (Z 17, +) Λύση. Υπενθυµίζουµε από τη Θεωρία ότι σε µια κυκλική οµάδα τάξης n υπάρχει µοναδική υποοµάδα της για κάθε διαιρέτη του n µε τάξη αυτόν τον διαιρέτη. Άρα έχουµε: (α ) ιαιρέτες του 6: 1, 2, 3, 6. Άρα η (Z 6, +) έχει 4 υποοµάδες µε δυνατές τάξεις: 1, 2, 3, 6. (ϐ ) ιαιρέτες του 8: 1, 2, 4, 8. Άρα η (Z 8, +) έχει 4 υποοµάδες µε δυνατές τάξεις: 1, 2, 4, 6. (γ ) ιαιρέτες του 12: 1, 2, 3, 4, 6, 12. Άρα η (Z 12, +) έχει 6 υποοµάδες µε δυνατές τάξεις: 1, 2, 3, 4, 6, 12. (δ ) ιαιρέτες του 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60. Άρα η (Z 60, +) έχει 12 υποοµάδες µε δυνατές τάξεις: 1, 2, 3, 5, 6, 10, 12, 15, 20, 30, 60. (ε ) ιαιρέτες του 17: 1, 17. Άρα η (Z 17, +) έχει 2 υποοµάδες µε δυνατές τάξεις: 1, 17. Ασκηση 6. Βρείτε όλες τις υποοµάδες των παρακάτω οµάδων και σχεδιάστε το διάγραµµα Hasse από τις υποοµάδες τους. (α ) (Z 12, +), (ϐ ) (Z, +), (γ ) (Z 8, +) Λύση. Εστω G = a µε G = m. Τότε για κάθε διαιρέτη d m υπάρχει µοναδική υποοµάδα H d G µε τάξη H d = d και H d = a m (d,m) Άρα για να ϐρούµε όλες τις υποοµάδες το µόνο που έχουµε να κάνουµε κάθε ϕορά είναι να ϐρίσκουµε όλους τους διαιρέτες της τάξης της οµάδας µας και να υπολογίζουµε όπως παραπάνω τις υποοµάδες που λαµβάνουµε από αυτούς. (α ) Η τάξη της Z 12 είναι 12 και οι διαιρέτες του 12 είναι οι αριθµοί : 1, 2, 3, 4, 6, 12. Συνεπώς ϑα ϐρούµε στο σύνολο έξι υποοµάδες. Εχουµε :

4 4 12 H 1 = [1] (1,12) = [1] 12 1 = 12 [1] = [12] = {[0]} 12 H 2 = [1] (2,12) = [1] 12 2 =6 = 6 [1] = [6] = {[0], [6]} 12 H 3 = [1] (3,12) = [1] 12 3 =4 = 4 [1] = [4] = {[0], [4], [8]} 12 H 4 = [1] (4,12) = [1] 12 4 =3 = 3 [1] = [3] = {[0], [3], [6], [9]} 12 H 6 = [1] (6,12) = [1] 12 6 =2 = 2 [1] = [2] = {[0], [2], [4], [6], [8], [10]} 12 H 12 = [1] (12,12) = [1] =1 = [1] = {[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]} = Z 12 Συνεπώς το διάγραµµα Hasse των υποοµάδων της Z 12 είναι το εξής : Z 12 = [1] [2] [3] [4] [6] {[0]} (ϐ ) Η τάξη της Z είναι και οι διαιρέτες του είναι οι αριθµοί : 1, 2, 3, 4, 6, 9, 12, 18. Συνεπώς ϑα ϐρούµε στο σύνολο 8 υποοµάδες. Εχουµε : H 1 = [1] (1,) = [1] 1 = [1] = [] = {[0]} H 2 = [1] (2,) = [1] 2 =18 = 18 [1] = [18] = {[0], [18]} H 3 = [1] (3,) = [1] 3 =12 = 12 [1] = [12] = {[0], [12], [24]} H 4 = [1] (4,) = [1] 4 =9 = 9 [1] = [9] = {[0], [9], [18], [27]} H 6 = [1] (6,) = [1] 6 =6 = 6 [1] = [6] = {[0], [6], [12], [18], [24], [30]} H 9 = [1] (9,) = [1] 9 =4 = 4 [1] = [4] = {[0], [4], [8], [12], [16], [20], [24], [28], [32]} H 12 = [1] (12,) = [1] 12 =3 = 3 [1] = [3] = {[0], [3], [6], [9], [12], [15], [18], [21], [24], [27], [30], [33]} H 18 = [1] (18,) = [1] 18 =2 = 2 [1] = [2] = {[0], [2], [4], [6], [8], [10], [12], [14], [16], [18], [20], [22], [24], [26], [28], [30],[32], [34]}

5 5 Συνεπώς το διάγραµµα Hasse των υποοµάδων της Z είναι το εξής : Z = [1] [2] [3] [4] [6] [9] [12] [18] {[0]} (γ ) Η τάξη της Z 8 είναι 8 και οι διαιρέτες του 8 είναι οι αριθµοί : 1, 2, 4, 8. Συνεπώς ϑα ϐρούµε στο σύνολο 4 υποοµάδες. Εχουµε : 8 H 1 = [1] (1,8) = [1] 8 1 =8 = 8 [1] = [8] = {[0]} 8 H 2 = [1] (2,8) = [1] 8 2 =4 = 4 [1] = [4] = {[0], [4]} 8 H 4 = [1] (4,8) = [1] 8 4 =2 = 2 [1] = [2] = {[0], [2], [4], [6]} 8 H 8 = [1] (8,8) = [1] 8 8 =1 = 1 [1] = [1] = {[0], [1], [2], [3], [4], [5], [6], [7]} = Z 8 Άρα το διάγραµµα Hasse των υποοµάδων της Z 8 είναι το ακόλουθο : [1] = Z 8 [2] [4] {0} και έτσι έχουµε το Ϲητούµενο. Ασκηση 7. Εστω (G, ) µια πεπερασµένη οµάδα η οποία ικανοποιεί τη συνθήκη : 1 Αν H, K είναι οποιεσδήποτε υποοµάδες της G, τότε : είτε H K ή K H Να δειχθεί ότι η G είναι κυκλική οµάδα που η τάξη της ισούται µε τη δύναµη ενός πρώτου αριθµού. Λύση. Αν G = {e}, τότε η G ικανοποιεί την δοσµένη συνθήκη και η G είναι προφανώς κυκλική τάξης 2 0 = 1. 1 µια τέτοια οµάδα καλείται µονοσειριακή (uniserial)

6 6 Εστω o(g) > 1, δηλαδή G {e}, και υποθέτουµε ότι η οµάδα G δεν είναι κυκλική. Εστω a 1 G µε a 1 e. Τότε αφού η G δεν είναι κυκλική έπεται ότι a 1 G όπου a 1 είναι η κυκλική υποοµάδα της G που παράγεται από το a 1. Άρα υπάρχει στοιχείο a 2 G\ a 1 και ϑεωρούµε την κυκλική υποοµάδα a 2 της G. Από την υπόθεση έχουµε Οµως αφού a 2 / a 1 έπεται ότι a 1 a 2 ή a 2 a 1 a 2 a 1 = a 1 a 2 Επειδή η G δεν είναι κυκλική έχουµε ότι G a 2 και άρα υπάρχει στοιχείο a 3 G\ a 2. Τότε όπως παραπάνω έχουµε a 2 a 3 και a 3 G Συνεχίζοντας αυτή τη διαδικασία ϑα έχουµε µια αλυσίδα υποοµάδων της G η οποία δεν σταµατά: {e} a 1 a 2 a 3 G και άρα ϑα έχουµε άπειρο πλήθος διακεκριµµένων στοιχείων e, a 1, a 2, a 3, στην G. Ετσι όµως έχουµε καταλήξει σε άτοπο δίοτι η οµάδα G είναι πεπερασµένη. Άρα η οµάδα G είναι κυκλική. Εστω o(g) = n = p k 1 1 pk 2 2 pkr r, όπου p 1, p 2,, p r πρώτοι αριθµοί µε p i p j για i j. Εστω r 2. Τότε υπάρχουν i, j µε i j έτσι ώστε p i n και p j n. Επειδή η οµάδα G είναι κυκλική έπεται ότι υπάρχει υποοµάδα H της G µε τάξη H = p i και υποοµάδα K της G µε τάξη K = p j. Από την υπόθεση όµως έχουµε H K ή K H = p i p j ή p j p i το οποίο είναι άτοπο διότι p i p j. Εποµένως r = 1 και άρα o(g) = n = p k όπου k 0 και p πρώτος. Συνεπώς δείξαµε ότι µια πεπερασµένη µονοσειριακή οµάδα είναι κυκλική που η τάξη της ισούται µε τη δύναµη ενός πρώτου αριθµού. Ασκηση 8. Θεωρούµε την οµάδα (U(Z 20 ), ) των αντιστρέψιµων κλάσεων ισοδυναµίας των ακεραίων Z κατά µόδιο (mod) 20 µε πράξη τον πολλαπλασιασµό των κλάσεων κατά µόδιο (mod) 20. (1) Να δειχθεί ότι U(Z 20 ) = { [1], [3], [7], [9], [11], [13], [17], [19] } (2) Να δειχθεί ότι για κάθε στοιχείο u U(Z 20 ) ισχύει u 8 = [1]. (3) Να λυθεί ως προς x εξίσωση [17] ( 108) x [7] 333 = [3] ( 1). Λύση. (1) Εχουµε: o ( U(Z 20 ) ) = φ(20) = φ(2 2 5) = φ(2 2 ) φ(5) = ( ) ( ) = 2 4 = 8 και U(Z 20 ) = {1 k 20 (k, 20) = 1} = {[1], [3], [7], [9], [11], [13], [17], [19]} (2) Αφού o ( U(Z 20 ) ) = 8 έπεται ότι u 8 = [1] για κάθε στοιχείο u U(Z 20 ).

7 7 (3) Επειδή u 8 = [1] για κάθε στοιχείο u U(Z 20 ) έχουµε ότι u 1 = u 7. Τότε έχουµε [17] ( 108) x [7] 333 = [3] ( 1) = x = [17] 108 [3] 1 [7] 333 = x = [17] 108 [3] 7 ([7] 1 ) 333 = x = [17] 108 [3] 7 ([7] 7 ) 333 = x = [17] 108 [3] 7 ([7]) 2331 = x = [17] [3] 7 ([7]) = x = [17] 4 [3] 7 ([7]) 3 = x = [17] 2 [17] 2 [3] 2 [3] 2 [3] 3 [7] 3 = x = [9] [9] [9] [9] [27] [49] [7] = x = [81] [81] [27] [49] [7] mod 20 = x = [1] [1] [7] [9] [7] = [63] [7] = [3] [7] = [1] Ασκηση 9. (1) Να δειχθεί ότι µια οµάδα που δεν διαθέτει άλλες υποοµάδες παρά µόνο τις τετριµ- µένες είναι κυκλική µε τάξη 1 ή p, όπου ο p είναι πρώτος αριθµός. (2) Να δειχθεί ότι κάθε οµάδα µε τάξη έναν πρώτο αριθµό είναι κυκλική. Λύση. (1) Αν G = e τότε G = e και άρα η G είναι κυκλική τάξης 1. Εστω G e µια οµάδα που δεν διαθέτει άλλες υποοµάδες παρά µόνο τις τετριµµένες. Τότε υπάρχει στοιχείο a G\{e} και ϑεωρούµε την κυκλική υποοµάδα a G. Επειδή a e έπεται ότι a = e και άρα G = a, δηλαδή η οµάδα G είναι κυκλική. Επιπλέον η τάξη της G είναι πεπερασµένη διότι αν o(g) = τότε η G ϑα έχει άπειρες υποοµάδες: a, a 2,, a n, το οποίο είναι άτοπο. Άρα o(g) = o(a) = p <. Τέλος αν p = κ λ µε κ 1 τότε γνωρίζουµε από τη Θεωρία ότι η G ϑα έχει γνήσια υποοµάδα τάξης κ, το οποίο είναι άτοπο από υπόθεση. Συνεπώς η οµάδα G είναι κυκλική µε τάξη p, όπου ο p είναι πρώτος αριθµός. (2) Εστω G οµάδα µε τάξη o(g) = p, όπου p 2 ένας πρώτος αριθµός. Τότε υπάρχει στοιχείο a G\{e} και από το Θεώρηµα του Langrange έπεται ότι o(a) = o( a ) p = o(g) και άρα o(a) = 1 ή o(a) = p. Οµως αφού a e έχουµε ότι o(a) = p και άρα G = a, δηλαδή η G είναι κυκλική. Συνεπώς κάθε οµάδα µε τάξη έναν πρώτο αριθµό είναι κυκλική. Ασκηση 10. Εστω ότι G είναι µια οµάδα και ότι a, b είναι δύο στοιχεία της µε ab = ba. Αν οι τάξεις o(a), o(b) είναι πεπερασµένες και (o(a), o(b)) = 1, τότε η τάξη του στοιχείου ab ισούται µε o(a) o(b).

8 8 Λύση. Εστω o(a) = n, o(b) = m και o(ab) = k. Άρα a n = e, b m = e και επειδή ab = ba έπεται ότι (ab) nm = ab ab ab = a nm b nm = (a n ) m (b m ) n = e m e n = e = o(ab) = k nm = o(a)o(b) (1) Αφού o(ab) = k και ab = ba έχουµε (ab) k = e = a k b k = e = a k = b k = o(a k ) = o(b k ) = o(b k ) ( ) Τότε από τη σχέση ( ) έχουµε o(a k ) = o(a) o(a),k = o(b k ) = o(b) o(b),k = n (n,k) m (m,k) = n (n, k) = m (m, k) = n (m, k) = m (n, k) = n m (n, k) m n (m, k) (n,m)=1 = n (n, k) m (m, k) = n = (n, k) m = (m, k) = n k m k και άρα επειδή (n, m) = 1 έπεται ότι o(a)o(b) = nm k = o(ab) (2) Από τις σχέσεις (1) και (2) συµπεραίνουµε ότι o(a)o(b) = o(ab). Ασκηση 11. Εστω G = { g 1 = e, g 2,, g n } µια πεπερασµένη αβελιανή οµάδα. Λύση. (1) (g 1 g 2 g n ) 2 = e. (2) Τι συµβαίνει αν η τάξη της G είναι περιττός αριθµός ; (1) Γνωρίζουµε ότι για κάθε g G υπάρχει το αντίστροφο στοιχείο g 1 G. Επειδή η G είναι αβελιανή και g 1, g 2,, g n είναι όλα τα στοιχεία της G έπεται ότι στο γινόµενο g 1 g 2 g n ϑα µείνουν µόνα εκείνα τα στοιχεία g G έτσι ώστε g = g 1, καθώς τα υπόλοιπα εµφανίζονται ως γινόµενα Ϲευγών gg 1 = e τα οποία δεν συνεισφέρουν τίποτα στο γινόµεςνο g 1 g 2 g n. Άρα g 1 g 2 g n = h 1 h 2 h k όπου h i G και h i = h 1 i, δηλαδή ισοδύναµα h 2 i = e. Τότε όµως αφού η G είναι αβελιανή έχουµε (g 1 g 2 g n ) 2 = (h 1 h 2 h k ) 2 = h 2 1h 2 2 h 2 k = ee e = e και άρα δείξαµε πράγµατι ότι (g 1 g 2 g n ) 2 = e. (2) Εστω ότι η τάξη της G είναι περιττός αριθµός. Αν το στοιχείο g 1 g 2 g n δεν είναι το ουδέτερο, δηλαδή g 1 g 2 g n e, τότε από το ερώτηµα (1) έπεται ότι o(g 1 g 2 g n ) = 2. Επειδή όµως 2 o(g) έχουµε καταλήξει σε άτοπο. Συνεπώς αν η τάξη o(g) είναι περιττός αριθµός τότε g 1 g 2 g n = e: o(g) : περιττός = g 1 g 2 g n = e Ασκηση 12. Εστω G µια κυκλική οµάδα τάξης n. πλήθος των στοιχείων της G µε τάξη m. Για κάθε διαιρέτη m n, να προσδιορισθεί το

9 9 Λύση. Εστω m n. Τότε επειδή η οµάδα G είναι κυκλική έπεται ότι υπάρχει µοναδική υποοµάδα H G µε o(h) = m. Τα στοιχεία της H τα οποία την παράγουν έχουν τάξη m, δηλαδή αν H = x και o(x) = m τότε για κάθε y H έχουµε: y = x = H o(y) = m Γνωρίζουµε όµως από τη Θεωρία ότι τέτοια στοιχεία είναι ακριβώς φ(m) σε πλήθος. Επίσης αν z G είναι ένα άλλο στοιχείο µε o(z) = m τότε λόγω µοναδικότητας έχουµε ότι z = H. Εποµένως για κάθε διαιρέτη m n το πλήθος των στοιχείων της G τάξης m ισούται µε φ(m). Αν m n τότε από το Θεώρηµα του Langrange έχουµε ότι δεν υπάρχει κανένα στοιχείο στην G µε τάξη ίση µε m. Ασκηση 13. (1) Εστω ότι G είναι µια οµάδα µε τάξη pq, όπου οι p, q είναι πρώτοι αριθµοί. Να δειχθεί ότι κάθε γνήσια υποοµάδα H της G είναι κυκλική. (2) Εστω ότι G είναι µια αβελιανή οµάδα µε τάξη pq και ότι οι p, q είναι πρώτοι αριθµοί µε p q. Να δειχθεί ότι η G είναι µια κυκλική οµάδα. (3) Να δειχθεί ότι υπάρχουν αβελιανές οµάδες τάξης p 2, όπου ο p είναι πρώτος αριθµός, οι οποίες δεν είναι κυκλικές. Λύση. (1) Εστω H G και H G. Από το Θεώρηµα του Langrange έχουµε o(h) o(g) = o(h) pq Οµως οι διαιρέτες του pq είναι: 1, p, q, pq. Επειδή η H είναι γνήσια υποοµάδα της G έπεται ότι o(h) pq και άρα o(h) = 1, p ή q. Αν o(h) = 1 τότε H = {e} = e και άρα η H είναι κυκλική. ιαφορετικά αν o(h) = p ή o(h) = q τότε από την Άσκηση 9 έπεται ότι η υποοµάδα H είναι κυκλική. Εποµένως δείξαµε ότι κάθε γνήσια υποοµάδα H της G είναι κυκλική. (2) Εστω G µια αβελιανή οµάδα µε τάξη o(g) = pq όπου p, q είναι πρώτοι αριθµοί µε p q. Θα δείξουµε ότι η οµάδα G είναι κυκλική. Χρειαζόµαστε πρώτα τα παρακάτω: (α ) Εστω H, K G δυο υποοµάδες της G. Τότε από την Άσκηση 2 του Φυλλαδίου 3 έχουµε ότι το σύνολο HK = {hk G h H, k K} = {kh G h H, k K} = KH είναι υποοµάδα της G διότι η οµάδα G είναι αβελιανή. (ϐ ) Εστω H, K G δυο υποοµάδες της G έτσι ώστε H K = {e}. Τότε ισχυριζόµαστε ότι o(hk) = o(h) o(k). Ορίζουµε την απεικόνιση f : H K HK, (h, k) f(h, k) = hk Εστω (h, k), (h, k ) H K έτσι ώστε f(h, k) = f(h, k ). Τότε k k 1 = e = k = k hk = h k = (h ) 1 h = k k 1 H K = {e} = (h ) 1 h = e = h = h και άρα (h, k) = (h, k ). Συνεπώς η f είναι ένα προς ένα και επειδή είναι προφανώς και επί έχουµε πράγµατι ότι o(h K) = o(hk) = o(h) o(k) Χρησιµοποιώντας τα παραπάνω ϑα δείξουµε ότι η G είναι κυκλική. Καταρχήν αν υπάρχει στοιχείο e a G έτσι ώστε o(a) = pq τότε G = a και άρα η G είναι κυκλική. Εστω ότι δεν υπάρχει στοιχείο a G µε τάξη o(a) = pq. Τότε για κάθε στοιχείο a G\{e} ϑα έχουµε ότι o(a) = p ή o(a) = q

10 10 Εστω λοιπόν a G µε o(a) = p. Θεωρούµε την κυκλική υποοµάδα a G, που είναι προφανώς γνήσια. Τότε υπάρχει µη-τετριµµένο στοιχείο b G\{ a } και από την υπόθεση µας έχουµε ότι o(b) pq. Άρα o(b) = p ή o(b) = q Ισχυριζόµαστε ότι a b = {e}. Υποθέτουµε αντίθετα ότι a b {e} και έστω o( a b ) = m. Επειδή a b a και a b b έχουµε m o(a) = p m = 1 ή m = p = m o(b) m o(b) Αν m = 1 τότε a b = {e} που είναι άτοπο. Για m = p τότε a b = a και άρα a b. Εποµένως έχουµε a b = a = b = b a o(b) = p ή a b o(b) = q = p q = p = 1 ή p = q Οµως και στις δυο περιπτώσεις έχουµε καταλήξει σε άτοπο διότι b G\{ a } και p, q είναι πρώτοι αριθµοί µε p q. Συνεπώς a b = {e} Από τα (α ), (ϐ ) και το Θεώρηµα του Langrange έχουµε o( a b ) = o(a) o(b) G = pq = p o(b) pq και άρα o(b) p. Εποµένως o(b) = q. Τότε από την Άσκηση 10 έπεται ότι o(ab) = pq διότι (p, q) = 1 και έτσι έχουµε καταλήξει σε άτοπο. Συνεπώς δείξαµε ότι αν G είναι µια αβελιανή οµάδα µε τάξη pq και p, q είναι πρώτοι αριθµοί µε p q, τότε η G είναι µια κυκλική οµάδα. (3) Η οµάδα V 4 του Klein, δηλαδή η Z 2 Z 2, έχει τάξη 4 = 2 2 αλλά δεν είναι κυκλική. Γενικότερα για κάθε πρώτο αριθµό p η οµάδα ευθύ γινόµενο (Z p Z p, +) δεν είναι κυκλική. Εστω ότι υπάρχει στοιχείο ([a], [b]) Z p Z p έτσι ώστε Z p Z p = ([a], [b]), δηλαδή η Z p Z p είναι κυκλική. Τότε o([a], [b]) = p 2 = o(z p Z p ) Οµως p ([a], [b]) = (p[a], p[b]) = ([0], [0]) = o([a], [b]) p που είναι προφανώς άτοπο. Άρα οι οµάδες (Z p Z p, +), όπου ο p είναι πρώτος αριθµός, είναι αβελιανές οµάδες τάξης p 2 οι οποίες δεν είναι κυκλικές. Ασκηση 14. (1) Εστω p και q πρώτοι αριθµοί. Βρείτε το πλήθος των γεννητόρων της κυκλικής οµάδας Z pq καθώς και το διάγραµµα Hasse των υποοµάδων της. (2) Εστω p ένας πρώτος αριθµός. Βρείτε το πλήθος των γεννητόρων της κυκλικής οµάδας Z p r, όπου r 1, καθώς και το διάγραµµα Hasse των υποοµάδων της. Λύση. (1) Το πλήθος των γεννητόρων της Z pq είναι φ(pq) = φ(p) φ(q) = (p 1 p 0 ) (q 1 q 0 ) = (p 1) (q 1) Η τάξη της Z pq είναι pq και οι διαιρέτες του pq είναι οι αριθµοί : 1, p, q, pq. Συνεπώς ϑα ϐρούµε στο σύνολο 4 υποοµάδες. Εχουµε :

11 11 pq H 1 = [1] (1,pq) = [1] pq 1 = pq [1] = [pq] = [0] pq H p = [1] (p,pq) = [1] pq p =q = q [1] = [q] = {[0], [q]} pq H q = [1] (q,pq) = [1] pq q =p = p [1] = [p] = {[0], [p]} pq H pq = [1] (pq,pq) = [1] pq pq =1 = [1] = {[0], [1], [2],, [pq 1]} = Z pq Συνεπώς το διάγραµµα Hasse των υποοµάδων της Z pq είναι το εξής : Z pq [p] [q] [0] Αν p = q τότε το πλήθος των γεννητόρων της Z p 2 είναι φ(p 2 ) = (p 2 p 1 ) = p (p 1) Η τάξη της Z p 2 είναι p 2 και οι διαιρέτες του p 2 είναι οι αριθµοί : 1, p, p 2. Συνεπώς ϑα ϐρούµε στο σύνολο 3 υποοµάδες. Εχουµε : p 2 H 1 = [1] (1,p 2 ) = [1] p2 1 = p 2 [1] = [p 2 ] = [0] p 2 H p = [1] (p,p 2 ) = [1] p2 p =p = p [1] = [p] = {[0], [p]} p 2 H p 2 = [1] (p 2,p 2 ) = [1] p2 p 2 =1 = [1] = {[0], [1], [2],, [p 2 1]} = Z p 2 Συνεπώς το διάγραµµα Hasse των υποοµάδων της Z p 2 είναι το εξής : Z p 2 [p] [0] (2) Το πλήθος των γεννητόρων της Z p r είναι φ(p r ) = (p r p r 1 ) = p r 1 (p 1) Η τάξη της Z p r είναι p r και οι διαιρέτες του p r είναι οι αριθµοί : 1, p, p 2,, p r. Συνεπώς ϑα ϐρούµε στο σύνολο r + 1 υποοµάδες. Εχουµε : p r H 1 = [1] (1,p r ) = [1] pr 1 = p r [1] = [p r ] = [0] p r H p = [1] (p,p r ) = [1] pr p =pr 1 = p r 1 [1] = [p r 1 ] p r H p 2 = [1] (p 2,p r ) = [1] pr p 2 =pr 2 = p r 2 [1] = [p r 2 ]

12 12 p r H p r 1 = [1] (p r 1,p r ) = [1] pr p r 1 =p = p [1] = [p] p r H p r = [1] (p r,p r ) = [1] pr p r =1 = [1] = Z p r Τότε το διάγραµµα Hasse των υποοµάδων της Z pq είναι το εξής : Z p r [p] [p 2 ]. [p r 2 ] [p r 1 ] και έτσι έχουµε το Ϲητούµενο. [0] Ασκηση 15. (1) Να δειχθεί ότι ότι η οµάδα (Q, +) των ϱητών αριθµών µε πράξη την συνήθη πρόσθεση δεν είναι κυκλική οµάδα. (2) Να δειχθεί ότι η οµάδα των πραγµατικών αριθµών (R, +) µε πράξη την συνήθη πρόσθεση δεν είναι κυκλική οµάδα. Λύση. (1) Εστω ότι η οµάδα (Q, +) είναι κυκλική. Τότε υπάρχει ϱητός p q Q έτσι ώστε Q = p q Οµως τότε p 2q Q = p q και άρα υπάρχει n Z έτσι ώστε p 2q = n p = p q 2 = np = p(1 2 n) = 0 = p = 0 ή n = 1 2 Σε κάθε περίπτωση όµως έχουµε καταλήξει σε άτοπο διότι n Z και αν p = 0 τότε προφανώς Q = {0}. Εποµένως η οµάδα (Q, +) δεν είναι κυκλική. (2) Από τη Θεωρία γνωρίζουµε ότι κάθε υποοµάδα κυκλικής οµάδας είναι κυκλική. Επειδή (Q, +) (R, +), αν η οµάδα (R, +) είναι κυκλική τότε ϑα είχαµε ότι και η οµάδα (Q, +) είναι κυκλική, που είναι άτοπο από το (1). Εποµένως η οµάδα (R, +) δεν είναι κυκλική.

13 13 Ασκηση 16. Σηµειώστε αν είναι σωστό ή λάθος. (1) Κάθε κυκλική οµάδα είναι αβελιανή. (2) Κάθε αβελιανή οµάδα είναι κυκλική (3) Κάθε στοιχείο µιας κυκλικής οµάδας παράγει την οµάδα. (4) Για κάθε n N, υπάρχει τουλάχιστον µια αβελιανή οµάδα µε τάξη n. (5) Κάθε οµάδα τάξης 4 είναι κυκλική. (6) Για κάθε στοιχείο [a] 20 της Z 20 που είναι γεννήτορας, υπάρχει ένα στοιχείο b [a] 20, το οποίο είναι πρώτος αριθµός. (7) Η S 3 είναι κυκλική οµάδα. (8) Η A 3 είναι κυκλική οµάδα. (9) Κάθε κυκλική οµάδα τάξης > 2 έχει τουλάχιστον δυο διαφορετικούς γεννήτορες. Λύση. (1) Σ, ϐλέπε Άσκηση 10 στο Φυλλάδιο 3. (2) Λ, για παράδειγµα η οµάδα V 4 του Klein είναι αβελιανή αλλά όχι κυκλική. (3) Λ, για παράδειγµα στην Z 4 έχουµε ότι Z 4 = [1] = [3]. (4) Σ, διότι η Z n µε n > 0 είναι πεπερασµένη αβελιανή τάξης n. (5) Λ, η οµάδα V 4 του Klein έχει τάξη 4 και δεν είναι κυκλική. (6) Σ. Οι γεννήτορες της Z 20 είναι σε πλήθος φ(20) = 8 και είναι οι εξής: Z 20 = [1] = [3] = [7] = [9] = [11] = [13] = [17] = [19] Ολοι οι αντιπρόσωποι είναι πρώτοι αριθµοί εκτός από τους [1], [9]. Τότε έχουµε ότι 29 [9] 20 και 41 [1] 20, όπου οι αριθµοί 29 και 41 είναι πρώτοι αριθµοί. (7) Λ, διότι κανένα από τα στοιχεία της S 3 δεν παράγει ολόκληρη την οµάδα. (8) Σ, διότι A 3 = ρ 1 = ρ 2. (9) Σ. Εστω G = a κυκλική τάξης n > 2 και ας υποθέσουµε ότι η G έχει µόνο έναν γεννήτορα, το στοιχείο a. Τότε και το a 1 είναι γεννήτορας και G = a = a 1. Άρα από την υπόθεση που κάναµε έχουµε : a = a 1 = a 2 = e και άρα G = {e, a}, δηλαδή η οµάδα G έχει τάξη 2. Αυτό όµως είναι άτοπο από την υπόθεση µας. Άρα κάθε κυκλική οµάδα τάξης > 2 έχει τουλάχιστον δυο διαφορετικούς γεννήτορες. Ασκηση 17. Στις παρακάτω προτάσεις, δώστε παράδειγµα οµάδας µε την ιδιότητα που περιγράφεται ή εξηγήστε γιατί δεν υπάρχει τέτοιο παράδειγµα. (1) Μια πεπερασµένη οµάδα που δεν είναι κυκλική. (2) Μια άπειρη οµάδα που δεν είναι κυκλική. (3) Μια κυκλική οµάδα που έχει µόνο έναν γεννήτορα. (4) Μια άπειρη κυκλική οµάδα που έχει τέσσερις γεννήτορες. (5) Μια πεπερασµένη κυκλική οµάδα που έχει τέσσερις γεννήτορες. Λύση. (1) Η οµάδα V 4 του Klein ( Z 2 Z 2 ) είναι µια πεπερασµένη οµάδα που δεν είναι κυκλική. (2) Από την Άσκηση 15 έχουµε ότι οι ϱητοί (Q, +) είναι µια άπειρη οµάδα που δεν είναι κυκλική. (3) Η οµάδα Z 2 = {[0], [1]} = [1] είναι µια κυκλική οµάδα που έχει µόνο έναν γεννήτορα. (4) εν υπάρχει παράδειγµα άπειρης κυκλικής οµάδας µε τέσσερις γεννήτορες διότι κάθε άπειρη κυκλική έχει ακριβώς 2 γεννήτορες. (5) Ψάχνουµε παραδείγµατα πεπερασµένων κυκλικών οµάδων που έχουν τέσσερις γεννήτορες. ηλαδή ϑέλουµε οµάδες της µορφής Z n µε φ(n) = 4. Για παράδειγµα: (α ) Η οµάδα Z 5 έχει τέσσερις γεννήτορες αφού φ(5) = 4. (ϐ ) Η οµάδα Z 8 έχει τέσσερις γεννήτορες αφού φ(8) = 4. (γ ) Η οµάδα Z 90 έχει τέσσερις γεννήτορες αφού φ(90) = 4.

14 14 Οµοια µπορείτε να ϐρείτε και άλλα παραδείγµατα. Ασκηση 18. (1) είξτε ότι µια οµάδα που έχει πεπερασµένο µόνο πλήθος υποοµάδων πρέπει να είναι πεπερασµένη οµάδα. (2) είξτε ότι δεν µπορεί µια οµάδα να γραφεί ως ένωση δύο γνήσιων υποοµάδων της. (3) Μπορεί µια οµάδα να γραφεί ως ένωση τριών γνησίων υποοµάδων της ; Λύση. (1) Εστω G µια οµάδα που έχει πεπερασµένο µόνο πλήθος υποοµάδων. Τότε για κάθε a G ϑεωρούµε τη κυκλική υποοµάδα a που παράγεται από το a. Ισχυριζόµαστε ότι η υποοµάδα a είναι πεπερασµένη. Πράγµατι αν η a είναι άπειρη τότε η a άρα και η G έχουν άπειρο πλήθος υποοµάδων, τις a i, i 0. Αυτό όµως είναι άτοπο από την υπόθεση µας και άρα o( a ) <. Οµως G = {a} = a a G Από την υπόθεση µας γνωρίζουµε ότι η G έχει πεπερασµένες πολλές (κυκλικές) υποοµάδες και επειδή κάθε κυκλική υποοµάδα a είναι πεπερασµένη έπεται από τη παραπάνω σχέση ότι η οµάδα G είναι πεπερασµένη. (2) Εστω G = H K όπου H, K G δυο γνήσιες υποοµάδες της G. Αν H K ή K H τότε έχουµε a G H K = K = G ή H K = H = G που είναι άτοπο διότι οι υποοµάδες H και K είναι γνήσιες. Άρα έπεται ότι H K και K H Εστω στοιχείο g K\H και h H\K. Τότε gh H gh G = H K = ή gh K h H = g H g K = h K και έτσι έχουµε καταλήξει σε άτοπο. Εποµένως µια οµάδα δε µπορεί να γραφεί ως ένωση δύο γνήσιων υποοµάδων της. (3) Θεωρούµε την οµάδα V 4 = {e, a, b, ab} του Klein. Τότε η V 4 έχει τρεις γνήσιες υποοµάδες: H 1 = {e, a}, H 2 = {e, b}, H 3 = {e, ab} και προφανώς V 4 = H 1 H 2 H 3 Γενικά στην ερώτηση αν µπορεί µια οµάδα να γραφεί ως ένωση τριών γνησίων υποοµάδων της απάντηση δίνει το παρακάτω αποτέλεσµα το οποίο ϑα αποδειχθεί στις Σηεµιώσεις Θεωρητικών Θεµάτων του Μαθήµατος: ΘΕΩΡΗΜΑ: Μια οµάδα G γράφεται ως ένωση τριών γνήσιων υποοµάδων της αν και µόνο αν υπάρχει κανονική υποοµάδα H G έτσι ώστε η επαγόµενη οµάδα-πηλίκο G/H να είναι ισόµορφη µε την οµάδα του Klein V 4 : G/H V 4

15 15 Ασκηση 19. Εστω ότι (G, ) είναι µια οµάδα και ότι H G, K G είναι δύο υποοµάδες της. Θεωρούµε το υποσύνολο R G G που ορίζεται ως (a, b) R a = h b k, h H, k K. Να δειχθεί ότι το υποσύνολο R ορίζει µια σχέση ισοδυναµίας επί της G και ακολούθως να περιγραφούν οι κλάσεις ισοδυναµίας. Λύση. Για κάθε (x, x), (x, y), (y, z)z R έχουµε : Ανακλαστική ιδιότητα δηλαδή (x, x) R : Για h = k = e έχουµε ότι x = e x e και άρα (x, x) R για κάθε x G. Συµµετρική ιδιότητα δηλαδή (x, y) R = (y, x) R : Αν (x, y) R τότε υπάρχουν h H, k K έτσι ώστε διότι h 1 H και k 1 K. x = h y k = y = h 1 x k 1 = (y, x) R Μεταβατική ιδιότητα δηλαδή (x, y) R και (y, z) R = (x, z) R : Επειδή (x, y) R και (y, z) R έχουµε x = h 1 y k 1 y = h 2 z k 2 = x = h 1 (h 2 z k 2 ) k 1 = x = (h 1 h 2 ) z (k 2 k 1 ) = (x, z) R διότι h 1 h 2 H και k 1 k 2 K. Άρα η R είναι µια σχέση ισοδυναµίας επί της G. Εστω x G. Τότε η κλάση ισοδυναµίας [x] του x ως προς τη σχέση R είναι το ακόλουθο σύνολο : [x] = { y G (x, y) R } = { y G x = h y k, h H, k K } = { y G y = h 1 x k 1, h H, k K } = { h 1 x k 1 h H, k K } = HxK

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 246 6. Οι Οµάδες τάξης

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος Αλγεβρικες οµες Ι Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 22

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα Αλγεβρικες οµες Ι Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 4 εκεµβρίου 2012

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 25 Μαιου 2013 2

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαιο 7 ιασκοντες: Ν. Μαρµαρίης - Α. Μπεληγιάννης Βοηθοι Ασκησεων: Χ. Ψαρουάκης Ιστοσελια Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii.html - - Ασκηση.

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 2 Απριλίου 2013 Το παρόν κείµενο

Διαβάστε περισσότερα

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη Σηµειώσεις Θεωρίας Αριθµών Θ. Θεοχάρη-Αποστολίδη Ευχαριστώ ιδιαίτερα τη ϕοιτήτριά µου Μαρίνα Παλαιστή για τη µεταφορά του χειρογράφου µου σε κείµενο "tex" Κεφάλαιο 1 Βασικές Ιδιότητες Ισοδυναµιών Η ϑεωρία

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2013-2014 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Γραµµικη Ανεξαρτησια, Βασεις και ιασταση Στο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114

Α Δ Ι Θ Θ Α Ε Ι Μ :  https://sites.google.com/site/maths4edu/home/algdom114 Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26

Διαβάστε περισσότερα

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ

Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ. Να βρείτε το πεδίο ορισµού των παρακάτω συναρτήσεων: ( = g( = + 4 h( = t( = 5 φ( = ln σ( = ln(ln p( = ln m( = λ R λ - λ - k( = ln 4 s( = ηµ. Να εξετάσετε αν για τις παραπάνω συναρτήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 ιαιρετότητα και Ισοτιµίες Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης Στη µνήµη του δασκάλου µου, Χάρη Βαφειάδη... www.math.uoc.gr/

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 Περιεχόμενα 1 Βασικές Έννοιες 1 1.1 Ορισμοί - παραδείγματα.............................. 1 1.2 Υποομάδες και Σύμπλοκα..............................

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 ιαιρετότητα και Ισοτιµίες Β και Γ Λυκείου Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Ιούλιος 2009 1 ιαιρετοτητα και Ισοτιµιες ΠΡΟΛΟΓΟΣ Το

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Η συνάρτηση φ(.) του Euler Για κάθε ακέραιο n > 0, έστω φ(n) το πλήθος των ακεραίων στο

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6.

a. a + b = 3. b. a διαιρεί τ ο b. c. a - b = 0. d. ΜΚΔ(a, b) = 1. e. ΕΚΠ(a, b) = 6. ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 4 η Σειρά Ασκήσεων - Λύσεις Άσκηση 4.1 [1 μονάδα] Βρείτε όλα τα διατεταγμένα ζεύγη στη σχέση R από το Α={0,1,2,3} στο Β={0,1,2,3,4} όπου (a,b) R αν και μόνο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

Συσχετισµός ϑεµελιώδους οµάδας και πρώτης οµάδας οµολογίας

Συσχετισµός ϑεµελιώδους οµάδας και πρώτης οµάδας οµολογίας Συσχετισµός ϑεµελιώδους οµάδας και πρώτης οµάδας οµολογίας Εργασία στο πλαίσιο τού µαθήµατος Αλγεβρική Τοπολογία - Οµολογία µε κωδ. αρ. Γ 21 Χειµερινό Εξάµηνο 2007-2008 Μιχαήλ Γκίκας Περίληψη Σκοπός αυτής

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

= L = L = L ( ) ( )( ) ( )( ) ( )( )

= L = L = L ( ) ( )( ) ( )( ) ( )( ) ΟΜΑ ΕΣ Σηµείωση Χρήσιµο είναι ο αναγνώστης να έχει υπόψη του τα παρατιθέµενα στην ενότητα Σύνολα, 7 Βασικό παράδειγµα οµάδας µε πεπερασµένο πλήθος στοιχεία, αποτελεί το σύνολο των µεταθέσεων στοιχείων

Διαβάστε περισσότερα

Αλγεβρικές οµές Ι. Α.Ι. Πάπιστας Τµήµα Μαθηµατικών Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης

Αλγεβρικές οµές Ι. Α.Ι. Πάπιστας Τµήµα Μαθηµατικών Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Αλγεβρικές οµές Ι Α.Ι. Πάπιστας Τµήµα Μαθηµατικών Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης 2 Περιεχόµενα 1 Οµάδες 5 1.1 Μια σύντοµη ιστορική αναδροµή στο «Λογισµό της συµµετρίας» 5 1.2 ιµελείς Πράξεις.........................

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

Παρατηρήσεις, Συµπληρώσεις και Ασκήσεις στο πρώτο µέρος του 1 ου κεφαλαίου της Ανάλυσης (ενότητες 1.1, 1.2, 1.3)

Παρατηρήσεις, Συµπληρώσεις και Ασκήσεις στο πρώτο µέρος του 1 ου κεφαλαίου της Ανάλυσης (ενότητες 1.1, 1.2, 1.3) ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ.Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος I. Μπουνάκης Σχολικός Σύµβουλος Μαθηµατικών

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 5 Γραµµικες Απεικονισεις Στην άλγεβρα, και γενικότερα στα Μαθηµατικά,

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

Λύνοντας ασκήσεις µε αντίστροφες συναρτήσεις ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Εισαγωγή Η αντίστροφη συνάρτηση f µιας αντιστρέψιµης συνάρτησης f είναι

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟ ΜΕΡΟΣ ΠΡΑΓΜΑΤΙΚΟΥ

ΑΚΕΡΑΙΟ ΜΕΡΟΣ ΠΡΑΓΜΑΤΙΚΟΥ ΑΚΕΡΑΙΟ ΜΕΡΟΣ ΠΡΑΓΜΑΤΙΚΟΥ Έστω ένας πραγµατικός αριθµός. ίνουµε τον εξής ορισµό: Ορισµός Ονοµάζουµε ακέραιο µέρος του και το συµβολίζουµε [ ], τον πιο µεγάλο ακέραιο που δεν υπερβαίνει τον. Έτσι [ 3,98]

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙΙ. αντιστοιχίζεται ο αριθµός Χω= ω+ ω δηλαδή ορίζεται η συνάρτηση Χ : Ω µε Χω,ω ω ω Α 3, 2, 2,3, 4,1, 1, 4

ΚΕΦΑΛΑΙΟ ΙΙ. αντιστοιχίζεται ο αριθµός Χω= ω+ ω δηλαδή ορίζεται η συνάρτηση Χ : Ω µε Χω,ω ω ω Α 3, 2, 2,3, 4,1, 1, 4 ΚΕΦΑΛΑΙΟ ΙΙ. Η έννοια της τυχαίας µεταβλητής Συχνά αυτό το οποίο παρατηρούµε σε ένα πείραµα τύχης δεν είναι το όποιο αποτέλεσµα ω Ω αλλά µια µαθηµατική ποσότητα Χ εξαρτώµενη από το αποτέλεσµα ω Ω. Ας εξετάσουµε

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Βαθµίδα Πίνακα Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 8 Βαθµιδα Πινακα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϐαθµίδα ενός πίνακα

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ

ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ ΚΕΦΑΛΑΙΟ 6 ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ 6. Βέλτιστες προσεγγίσεις σε ευκλείδειους χώρους Στο κεφάλαιο αυτό θα ασχοληθούµε µε προσεγγίσεις που ελαχιστοποιούν αποστάσεις σε διανυσµατικούς χώρους, µε νόρµα που προέρχεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

Επιλύσιµες και µηδενοδύναµες οµάδες

Επιλύσιµες και µηδενοδύναµες οµάδες Κεφάλαιο 8 Επιλύσιµες και µηδενοδύναµες οµάδες Σύνοψη. Μελετώνται οι επιλύσιµες και οι µηδενοδύναµες οµάδες. Εισάγονται οι έννοιες των κανονικών και συνθετικών σειρών. Αποδεικνύεται το Θεώρηµα των Schreier,

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση, η οποία είναι ορισµένη σε ένα κλειστό διάστηµα,. Αν: η συνεχής στο, και τότε, για κάθε αριθµό µεταξύ των

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999

Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 1999 Θέµατα Μαθηµατικών Θετικής Κατεύθυνσης Β Λυκείου 999 Ζήτηµα ο Α. Έστω a, ) και β, ) δύο διανύσµατα του καρτεσιανού επιπέδου Ο. α) Να εκφράσετε χωρίς απόδειξη) το εσωτερικό γινόµενο των διανυσµάτων a και

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία

Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Υπολογιστική Θεωρία Αριθμών και Κρυπτογραφία Εισαγωγή στη Θεωρία Αριθμών Άρης Παγουρτζής Στάθης Ζάχος Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχολή ΗΜΜΥ ΕΜΠ 1

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 5 Οκτωβρίου 006 Ηµεροµηνία παράδοσης της Εργασίας: 0 Νοεµβρίου 006.

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΕΙΑΣ ΘΕΜΑ Ο : Α. Για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω να αποδειχθεί ότι: Ρ(Α-Β)=Ρ(Α)-

Διαβάστε περισσότερα