Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα"

Transcript

1 Αλγεβρικες οµες Ι Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : 4 εκεµβρίου 2012 Το παρόν κείµενο αποτελεί ένα σύνολο πρόχειρων σηµειώσεων για τις ανάγκες του µαθήµατος Αλγεβρικές οµές Ι, Χειµερινό Εξάµηνο Ακαδηµαϊκού Ετους , και τελεί υπο συνεχή επεξεργασία.

2 2 Περιεχόµενα Μέρος 1. Θεωρία Οµάδων 4 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Σχέσεις ισοδυναµίας ιαµερίσεις ιαµερίσεις και Σχέσεις Ισοδυναµίας Απεικονίσεις και Σχέσεις Ισοδυναµίας Πράξεις Πράξεις συµβιβαστές µε σχέσεις ισοδυναµίας 9 2. Υποοµάδες και το Θεώρηµα του Langrange Βασικές ιδιότητες υποοµάδων Οµάδες προερχόµενες από την οµάδα Z των ακεραίων Υποοµάδες και Σχέσεις Ισοδυναµίας Το Θεώρηµα του Langrange Οι Υποοµάδες της S Το αντίστροφο του Θεωρήµατος του Langrange και η Εναλλάσσουσα Οµάδα A Εφαρµογές του Θεωρήµατος Langrange (I Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-Οµάδες ύναµη Στοιχείου Κυκλικές Οµάδες Τάξη στοιχείου Τάξη Γινοµένου Στοιχείων µιας Οµάδας Εφαρµογές του Θεωρήµατος Langrange (II Χαρακτηρισµοί Πεπερασµένων Κυκλικών Οµάδων Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Υποοµάδες και Γεννήτορες Άπειρων Κυκλικών Οµάδων Υποοµάδες και Γεννήτορες Πεπερασµένων Κυκλικών Οµάδων Η Οµάδα των n-οστών ϱιζών της µονάδας Κυκλικές Οµάδες - Ευθέα Γινόµενα Ταξινόµηση Κυκλικών Οµάδων Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Οµάδες τάξης 2p Οµάδες τάξης pq Οµάδες µεταθέσεων (µετατάξεων Οι πρώτες έννοιες Τροχιές και ανάλυση σε κύκλους Εκτιµώντας τις τάξεις των µεταθέσεων (µετατάξεων της (S n,. ιαµερίσεις του n Άρτιες και περιττές µεταθέσεις (µετατάξεις ιεδρικές Οµάδες και Οµάδες Συµµετρίας* Οµάδες Παραγόµενες από Υποσύνολα και ιαγράµµατα Hasse* Κανονικές (Ορθόθετες Υποοµάδες Κανονικές Υποοµάδες Κανονικές Υποοµάδες και Σχέσεις Ισοδυναµίας Παραδείγµατα Κανονικών Υποοµάδων Τρία Χαρακτηριστικά (Αντι-Παραδείγµατα Οµάδες Hamilton Μεταβατική ιδιότητα κανονικότητας υποοµάδων 88

3 3 12. Οµάδες-πηλίκα Οµοµορφισµοί Οµάδων Βασικές ιδιότητες και Παραδείγµατα Οµοµορφισµοί και Υποοµάδες οµικές Ιδιότητες Οµάδων - Κριτήρια (Μη-Ισοµορφίας Οµοµορφισµοί και Κανονικές Υποοµάδες Το Θεώρηµα του Cayley Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Ταξινόµηση Άπειρων Κυκλικών Οµάδων Ταξινόµηση Πεπερασµένων Κυκλικών Οµάδων Κριτήριο Ισοµορφίας Κυκλικών Οµάδων Οµάδες Οµοµορφισµών Κυκλικών Οµάδων Οµάδες Αυτοµορφισµών Κυκλικών Οµάδων Τα Θεωρήµατα Ισοµορφισµών και οι Εφαρµογές τους Ευθέα Γινόµενα και Πεπερασµένες Αβελιανές Οµάδες Απλές Οµάδες Οµάδες Μικρής Τάξης 126 Μέρος 2. Θεωρία ακτυλίων Βιβλιογραφια 128

4 4 Μέρος 1. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα υποσύνολο R του καρτεσιανού γινοµένου X X: R X X το οποίο ικανοποιεί τις ακόλουθες ιδιότητες : 1. x X: (x, x R. (ανακλαστική ιδιόητα 2. x, y X: (x, y R = (y, x R (συµµετρική ιδιότητα 3. x, y, z X: (x, y R & (y, z R = (x, z R (µεταβατική ιδιότητα Συµβολισµός : x, y X, αν (x, y R, τότε ϑα γράφουµε ισοδύναµα : x R y ή x R y ή x y(r Εστω R µια σχέση ισοδυναµίας επί του συνόλου X. Αν x X, η κλάση ισοδυναµίας του x ως προς την R ορίζεται να είναι το ακόλουθο σύνολο : [x] R = { y X y R x } X Ενα τυχόν στοιχείο µιας κλάσης ισοδυναµίας, δηλαδή ενός υποσυνόλου του X της µορφής [x] R καλείται αντιπρόσωπος της κλάσης ισοδυναµίας. Επειδή x R x, ϑα έχουµε προφανώς ότι x [x] R και άρα το x είναι ένας αντιπρόσωπος της κλάσης ισοδυναµίας του. Θα δούµε αργότερα σε συγκεκριµµένα παραδείγµατα ότι πολλές ϕορές υπάρχει ϕυσική επιλογή αντιπροσώπου µιας κλάσης ισοδυναµίας. Το σύνολο X/R όλων των κλάσεων ισοδυναµίας των στοιχείων του X X/R = { [x] R x X } ως προς τη σχέση ισοδυναµίας R, καλείται σύνολο-πηλίκο του X ως προς την R. Ορίζουµε µια απεικόνιση π R : X X/R, π R (x = [x] R η οποία καλείται η κανονική προβολή του X στο σύνολο πηλίκο X/R του X ως προς τη σχέση ισοδυναµίας R. Παρατήρηση 1.2. Η απεικόνιση κανονικής προβολής π R : X X/R είναι προφανώς επί. Ενα ϕυσικό ερώτηµα το οποίο προκύπτει είναι ποιά είναι η σχέση µεταξύ δύο κλάσεων ισοδυναµίας. Λήµµα 1.3. Εστω R µια σχέση ισοδυναµίας επί του συνόλου X, και x, y X. 1. x R y [x] R = [y] R. 2. Είτε [x] R = [y] R ή [x] R [y] R =. Απόδειξη. 1. = Εστω x R y. Εστω z [x] R. Τότε z R x και άρα από την µαταβατική ιδιότητα ϑα έχουµε z R y. Εποµένως z [y] R και εποµένως [x] R [y] R. Αντίστροφα αν z [y] R, τότε z R y και άρα y R z. Από την µαταβατική ιδιότητα ϑα έχουµε x R z ή ισοδύναµα z R x. Εποµένως z [x] R και άρα [y] R [x] R. Ετσι δείξαµε ότι : [x] R = [y] R. = Εστω [x] R = [y] R. Τότε x [x] R = [y] R και εποµένως x R y. 2. Αρκεί να δείξουµε ότι αν [x] R [y] R, τότε [x] R = [y] R. Εστω z [x] R [y] R. Τότε z [x] R και z [y] R. Αυτό σηµαίνει ότι : z R x και z R y. Ισοδύναµα, επειδή η σχέση R είναι σχέση

5 5 ισοδυναµίας, x R z και z R y. Από την µεταβατική ιδιότητα τότε ϑα έχουµε x R y και άρα από το 1. ϑα έχουµε [x] R = [y] R. Πόρισµα 1.4. Εστω R µια σχέση ισοδυναµίας επί του µη-κενού συνόλου X. 1. x X: [x] R. 2. Είτε [x] R = [y] R ή [x] R [y] R =. 3. X = x X [x] R. Απόδειξη. 1. Εστω x X. Επειδή x [x] R έπεται ότι [x] R. 2. Το Ϲητούµενο προκύπτει από το 2. του Λήµµατος Επειδή x X, έχουµε x [x] R, έπεται ότι X = x X {x} x X [x] R και άρα ϑα έχουµε X = x X [x] R. Από το παραπάνω Πόρισµα 1.4 ϐλέπουµε ότι το σύνολο-πηλίκο X/R είναι ένα σύνολο υποσυνόλων του X, των κλάσεων ισοδυναµίας των στοιχείων του X ως προς τη σχέση ισοδυναµίας R, το οποίο ικανοποιεί την ακόλουθη ιδιότητα : κάθε στοιχείο του συνόλου X ανήκει σε µία και µόνο µία κλάση ισοδυναµίας. Αυτή η ιδιότητα µας οδηγεί στην έννοια της διαµέρισης ενός συνόλου ιαµερίσεις. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.5. Μια διαµέριση του X είναι µια συλλογή υποσυνόλων = { A i A i X } i I, όπου I είναι ένα σύνολο δεικτών, έτσι ώστε να ικανοποιούνται οι ακόλουθες ιδιότητης : (1 i I: A i. (2 i, j I: i j = A i A j =. (3 X = i I A i. Με άλλα λόγια µια διαµέριση του µη-κενού συνόλου X είναι µια συλλογή µη-κενών υποσυνόλων του X µε την ιδιότητα κάθε στοιχείο του συνόλου X ανήκει σε ένα και µόνο ένα σύνολο της συλλογής. Υπενθυµίζουµε ότι αν X είναι ένα σύνολο, τότε συµβολίζει το πλήθος των στοιχείων του X. X ή #(X Παρατήρηση 1.6. Εστω X ένα πεπερασµένο σύνολο και = { A i A i X } µια διαµέριση i I του συνόλου X. Τότε προφανώς το σύνολο δεικτών I και κάθε υπσύνολο A i της διαµέρισης είναι πεπερασµένα σύνολα και εποµένως επειδή το X είναι ξένη ένωση των A i : X = i I A i, και A i Aj =, i j ϑα έχουµε : X = i I A i Η επόµενη Πρόταση µας εξασφαλίζει ότι κάθε διαµέριση του συνόλου X ορίζει µια σχέση ισοδυνα- µίας R επί του X έτσι ώστε οι κλάσεις ισοδυναµίας των στοιχείων του X ως προς την R να συµπίπτουν µε τα υποσύνολα της διαµέρισης. Πρόταση 1.7. Εστω = { A i A i X } µια διαµέριση του µη-κενού συνόλου X. Τότε ορίζοντας i I R := { } (x, y X X i I : x, y A i αποκτούµε µια σχέση ισοδυναµίας R επί του X. Επιπλέον :

6 6 1. x X: [x] R = A i, για κάποιο i I (το i είναι ο µοναδικός δείκτης i I έτσι ώστε x A i. 2. X/R = ως συλλογές υποσυνόλων του X. Απόδειξη. Εστω x X. Επειδή η συλλογή υποσυνόλων είναι µια διαµέριση του X, έπεται ότι x X = i I A i και άρα υπάρχει δείκτης i I έτσι ώστε : x A i. Τότε προφανώς (x, x R, δηλαδή x R x και άρα ισχύει η ανακλαστική ιδιότητα. Εστω x, y X και υποθέτουµε ότι (x, y R, δηλαδή x R y. Τότε εξ ορισµού υπάρχει δείκτης i I έτσι ώστε x, y A i και προφανώς τότε y, x A i. Άρα (y, x R δηλαδή y R x και έτσι η σχέση R είναι συµµετρική. Εστω (x, y R και (y, z R, δηλαδή x R y και y R z. Τότε υπάρχουν δείκτες i, j I έτσι ώστε : x, y A i και y, z A j. Τότε όµως y A i A j. Επειδή όµως A i A j = αν i j, έπεται ότι αναγκαστικά ϑα έχουµε i = j και άρα A i = A j. Εποµένως x, y, z A i το οποίο σηµαίνει ότι (x, z R, δηλαδή x R z και έτσι η σχέση R είναι µεταβατική. 1. Εστω x X. Τότε υπάρχει µοναδικός δείκτης i I έτσι ώστε : x A i. Θα έχουµε : [x] R = { y X y R x } = { y X j I : x, y A j } Επειδή x A i και A i A j = αν i j, ϑα έχουµε αναγκαστικά i = j και άρα : [x] R = { y X j I : x, y A j } = { y X y Ai } = Ai 2. Επειδή X/R = { [x] R x X } και [x] R = A i, όπου i I είναι ο µοναδικός δείκτης για τον οποίο ισχύει x A i, ϑα έχουµε ότι : X/R = { [x] R x X } = { A i i I } = 1.3. ιαµερίσεις και Σχέσεις Ισοδυναµίας. Συνδυάζοντας το Πόρισµα 1.4 και την Πρόταση 1.7, έχουµε το ακόλουθο ϐασικό Θεώρηµα : Θεώρηµα 1.8. Εστω X ένα µη-κενό σύνολο. Τότε οι απεικονίσεις Φ : D := { ιαµερίσεις του X } S := { Σχέσεις ισοδυναµίας R επί του X }, Φ( = R Ψ : S := { Σχέσεις ισοδυναµίας R επί του X } D := { ιαµερίσεις του X }, Ψ(R = X/R ορίζουν µια 1-1 και επί αντιστοιχία µεταξύ του συνόλου D των διαµερίσων του X και του συνόλου S των κλασεων ισοδυναµίας επί του X. Απόδειξη. Από το Πόρισµα 1.4 και την Πρόταση 1.7 έπεται ότι οι αντιστοιχίες Φ και Ψ ορίζουν απεικονίσεις Φ: D S, Φ( = R και Ψ: S D, Ψ(R = R := X/R. Για την ολοκλήρωση της απόδειξης, αρκεί να δείξουµε ότι οι απεικονίσεις Φ και Ψ είναι η µία αντίστροφη της άλλης. Με άλλα λόγια αρκεί να δείξουµε ότι : ή ισοδύναµα : D : ΨΦ( = και R S : ΦΨ(R = R D : R = και R S : R R = R Από την Πρόταση 1.7, έπεται ότι για κάθε διαµέρσιη του X, έχουµε X/R = ως υποσύνολα του X. Ετσι ΨΦ( = Ψ(R = X/R = Για να δείξουµε τώρα ότι R S : ΦΨ(R = R, αρκεί να δείξουµε ότι R R = R. Υπενθυµίζουµε ότι η διαµέριση R, την οποία ορίζει η σχέση ισοδυναµίας R, αποτελείται από τις κλάσεις ισοδυναµίας [x] R των στοιχείων του X. Ετσι εξ ορισµού για την επαγόµενη σχέση ισοδυναµίας R R την οποία ορίζει η R ϑα έχουµε : x, y X: (x, y R R αν και µόνον αν τα στοιχεία x και y ανήκουν στο ίδιο σύνολο της διαµέρισης R, δηλαδή αν και µόνον αν υπάρχει z X έτσι ώστε x, y [z] R. Αυτό όµως

7 7 συµβαίνει αν και µόνον αν z R x και z R y και εποµένως αν και µόνον αν x R y αν και µόνον αν (x, y R. Συνοψίζοντας δείξαµε ότι : x, y X : (x, y R R (x, y R Εποµένως R R = R και άρα R S : ΦΨ(R = R. Ετσι δείξαµε ότι οι απεικονίσεις Φ και Ψ είναι 1-1 και επί και επιπλέον : Ψ = Φ Απεικονίσεις και Σχέσεις Ισοδυναµίας. Εστω f : X Y µια απεικόνιση µεταξύ των µηκενών συνόλων X, Y. Ορίζουµε µια σχέση επί του συνόλου X ως εξής : R f = { (x, y X X f(x = f(y } Η επόµενη πρόταση δείχνει ότι η σχέση R f είναι µια σχέση ισοδυναµίας επί του X. Πρόταση 1.9. Η σχέση R f είναι µια σχέση ισοδυναµίας επί του X. Επιπλέον, x X: [x] Rf = f 1{ f(x } = { x X f(x = f(x } και η απεικόνιση f επάγει µια 1-1 και επί απεικόνιση f : X/R f Im(f, f([x] Rf = f(x Επιπλέον αν g : X Z είναι µια απεικόνιση έτσι ώστε να ικανοποιείται η ακόλουθη συνθήκη : τότε υπάρχει µοναδική απεικόνιση x, y X : f(x = f(y = g(x = g(y ( g : X/R f Z, έτσι ώστε : g π f = g όπου π f : X X/R f είναι η απεικόνιση κανονικής προβολής. Απόδειξη. Εστω x X. Τότε x Rf x διότι f(x = f(x. Άρα η σχέση R f είναι ανακλαστική. Εστω x, y X και υποθέτουµε ότι x Rf y. Τότε f(x = f(y. Άρα f(y = f(x και εποµένως y Rf x, δηλαδή η σχέση R f είναι συµµετρική. Εστω x, y, z X και υποθέτουµε ότι x Rf y και y Rf z. Τότε f(x = f(y και f(y = f(z. Προφανώς τότε f(x = f(z και εποµένως x Rf z, δηλαδή η σχέση R f είναι µεταβατική. Ετσι η σχέση R f είναι µια σχέση ισοδυναµίας επί του X. Εστω x X. Τότε : [x] Rf = { y X y Rf x } = { y X f(y = f(x } = { y X y f 1 ({f(x} } = f 1 ({f(x} Ορίζουµε τώρα µια απεικόνιση f : X/R f Im(f, f([x] Rf = f(x Η f είναι καλά ορισµένη: Εστω [x] Rf = [y] Rf. Τότε όπως γνωρίζουµε ϑα ισχύει x Rf y και από τον ορισµό της R f : f(x = f(y. Ετσι f([x] Rf = f(x = f(y = f([y] Rf και η f([x] Rf είναι καλά ορισµένη. Η f είναι 1-1 και επί: Προφανώς η f είναι επί, διότι αν y Im(f, τότε y = f(x για κάποιο x X, και εποµένως f([x] Rf = f(x = y. Εστω τώρα ότι f([x] Rf = f([y] Rf και εποµένως f(x = f(y. Εξ ορισµού ϑα έχουµε τότε x Rf y και από το Λήµµα 1.3 έπεται ότι [x] Rf = [y] Rf. Αυτό δείχνει ότι η f είναι 1-1. Τέλος έστω g : X Z µια απεικόνιση για την οποία ισχύει η σχέση (. Ορίζουµε τότε απεικόνιση g : X/R f Z, g([x] Rf = g(x

8 8 Η g είναι καλά ορισµένη διότι αν [x] Rf = [y] Rf, τότε όπως γνωρίζουµε ϑα ισχύει x Rf y και από τον ορισµό της R f : f(x = f(y. Λόγω της συνθήκης ( ϑα έχουµε τότε και g(x = g(y, δηλαδή g([x] Rf = g(x = g(y = g([y] Rf και η g είναι καλά ορισµένη. Επιπλέον (g π f (x = g(π f (x = g([x] Rf = g(x, x X = g π f = g Αν h: X/R f Z είναι µια άλλη απεικόνιση έτσι ώστε h π f = g, τότε, x X: h([x] Rf = h(π f (x = (h π f (x = g(x = (g π f (x = g(π f (x = g([x] Rf = g = h και άρα η g είναι η µοναδική απεικόνιση : X/R f Z η οποία ικανοποιεί την ιδιότητα g π f = g. Ορισµός Η σχέση ισοδυναµίας R f η οποία ορίζεται στο σύνολο X µέσω µιας απεικόνισης f : X Y καλείται η επαγόµενη από την f σχέση ισοδυναµίας στο σύνολο X. Παράδειγµα Εστω R µια σχέση ισοδυναµίας επί του συνόλου X. Τότε η απεικόνιση κανονικής προβολής π R : X X/R, π R (x = [x] R επάγει στο X την ίδια σχέση ισοδυναµίας : R = R πr. Πράγµατικά : x RπR y π R (x = π R (y [x] R = [y] R x R y Από την Πρόταση 1.9 έπεται ότι κάθε απεικόνιση f : X Y µπορεί να γραφεί ως σύνθεση f = i f π Rf (1 µιας απεικόνισης «Επι» π Rf : X X/R f, π Rf (x = [x] Rf (2 µιας απεικόνισης «1-1 και Επι» f : X/R f Im(f, f([x] Rf = f(x (3 µιας απεικόνισης «1-1» Σχηµατικά : i : Im(f Y, X f i(y = y Y π Rf X/R f f i Im(f Παρατηρούµε ότι αν η f είναι απεικόνιση επί, τότε η επαγόµενη απεικόνιση f : X/R f Y είναι 1-1 και επί. Συµπερασµατικά : 1. Κάθε σχέση ισοδυναµίας R σε ένα σύνολο X ορίζει µια απεικόνιση επί, την π R : X X/R, της οποίας η επαγόµενη σχέση ισοδυναµίας επί του X συµπίπτει µε την R. 2. Κάθε απεικόνιση επί f : X Y ορίζει µια σχέση ισοδυναµίας επί του X, την R f, η ο- ποία επάγει µια απεικόνιση επί π Rf : X X/R f και υπάρχει µια 1-1 και επί απεικόνιση f : X/R f Y.

9 Πράξεις. Στην παρούσα παράγραφο ϑα µελετήσουµε σύντοµα την έννοια της πράξης επί ενός συνόλου καθώς και την έννοια της πράξης η οποία είναι συµβατή µε µια σχέση ισοδυναµίας. Ορισµός Μια (διµελής πράξη επί ενός συνόλου X είναι µια απεικόνιση µ : X X X, (x, y µ(x, y Συνήθως µια πράξης µ επι ενός συνόλου X παρίσταται µε ένα εκ των συµβόλων : µ =,,, #,, +,,,... Αντίστοιχα, το αποτέλεσµα της πράξης στο Ϲεύγος στοιχείων (x, y του X, συµβολίζεται ως εξής : µ(x, y = x y, x y, x y, x#y, x y, x + y, x y, x y,... Ορισµός Εστω X ένα µη-κενό σύνολο, και µια πράξη επί του X. : X X X, 1. Η πράξη καλείται προσεταιριστική αν ισχύει : x, y, z X : 2. Η πράξη καλείται µεταθετική αν ισχύει : x, y X : (x, y = x y x (y z = (x y z x y = y x 3. Υποθέτουµε ότι η πράξη επί του X είναι προσεταιριστική. α. Ενα στοιχείο e X καλείται ουδέτερο στοιχείο του X ως προς την πράξη, αν ισχύει : x X : x e = x = e x Υπενθυµίζουµε αν υπάρχει ουδέτερο στοιχείο για την πράξη στο σύνολο X, τότε αυτό είναι µοναδικό. ϐ. Αν e X είναι ένα ουδέτερο στοιχείο της πράξης, και x X, τότε ένα στοιχείο x X καλείται αντίθετο του x, αν ισχύει : x x = e = x x Υπενθυµίζουµε ότι επειδή η πράξη επί του X είναι προσεταιριστική, αν e είναι το ουδέτερο στοιχείο της, τότε αν υπάρχει το αντίθετο στοιχείο x του x X, τότε αυτό είναι µοναδικό Πράξεις συµβιβαστές µε σχέσεις ισοδυναµίας. Υποθέτουµε τώρα ότι : X X X είναι µια πράξη επί του συνόλου X. Εστω R X X µια σχέση ισοδυναµίας επί του συνόλου X. Στα επόµενα εδάφια σηµαντικό ϱόλο ϑα παίξουν πράξεις επί συνόλων οι οποίες είναι συµβιβαστές µε µια δοσµένη σχέση ισοδυναµίας µε την έννοια του ακόλουθου ορισµού. Ορισµός Η σχέση ισοδυναµίας R είναι συµβιβαστή µε την πράξη αν ισχύει : x, y, z, w X : x R z και y R w = x y R z w Πρόταση Εστω : X X X µια πράξη επί του συνόλου X, και έστω R X X µια σχέση ισοδυναµίας επί του συνόλου X η οποία είναι συµβιβαστή µε την πράξη. 1. Ορίζοντας : X/R X/R X/R, αποκτούµε µια πράξη επί του συνόλου-πηλίκο X/R. ([x] R, [y] R := [x] R [y] R = [x y] R

10 10 2. Αν η πράξη επί του X είναι προσεταιριστική ή µεταθετική, τότε η πράξη επί του X/R είναι προσεταιριστική ή µεταθετική αντίστοιχα. 3. Εστω e X ένα ουδέτερο στοιχείο για την πράξη επί του X. Τότε το [e] R X/R είναι ουδέτερο στοιχείο για την πράξη επί του X/R. 4. Υποθέτουµε ότι η πράξη έχει ένα ουδέτερο στοιχείο e X, και έστω x ένα στοιχείο του X για το οποίο υπάρχει ένα αντίθετο στοιχείο x X. Τότε το στοιχείο [x ] R είναι ένα αντίθετο στοιχείο του [x] R για την πράξη επί του X/R. Απόδειξη. 1. Αρκεί ο ορισµός [x] R [y] R = [x y] R να είναι ανεξάρτητος της επιλογής αντιπροσώπων των κλάσεων ισοδυναµίας. ηλαδή αρκεί να δείξουµε ότι : x, y, z, w X : [x] R = [z] R και [y] R = [w] R = [x y] R = [z w] R Ισοδύναµα αρκεί να δείξουµε ότι x, y, z, w X : x R z και y R w = x y R z w Η τελευταία συνεπαγωγή όµως ισχύει ακριβώς διότι η σχέση R είναι συµβιβαστή µε την πράξη. Τα υπόλοιπα µέρη της Πρότασης προκύπτουν άµεσα από τους ορισµούς και αφήνονται ως άσκηση. Η επαγόµενη πράξη στο σύνολο-πηλίκο X/R µιας συµβιβαστής µε την πράξη σχέσης ισοδυναµίας R επί του X σχηµατικά περιγράφεται µε το ακόλουθο µεταθετικό διάγραµµα X X X π R π R π R X/R X/R X/R δηλαδή : (π R π R = π R, όπου η απεικόνιση π R π R ορίζεται ως (π R π R (x, y = ([x] R, [y] R. Φυσικά δεν είναι όλες οι πράξεις σε ένα σύνολο συµβιβαστές µε µια δοσµένη σχέση ισοδυναµίας επί του συνόλου. Ας δούµε ένα παράδειγµα µιας σχέσης ισοδυναµίας R που ορίζεται επί ενός συνόλου X, η οποία δεν είναι συµβιβαστή µε µία από τις πράξεις του συνόλου : Παράδειγµα Επί του συνόλου των ακεραίων αριθµών ϑεωρούµε τις γνωστές πράξεις της πρόσθεσης και πολλαπλασιασµού : + : Z Z Z, (z 1, z 2 z 1 + z 2 : Z Z Z, (z 1, z 2 z 1 z 2. Επιπλέον, ϑεωρούµε την ακόλουθη διαµέριση του Z: Z = A B, όπου A = {0, ±1}, B = {±2, ±3, ±4,... }. Η προηγούµενη διαµέριση, χορηγεί τη σχέση ισοδυναµίας R = {(α, β α, β A} {(γ, δ γ, δ B}. Η πράξη της πρόσθεσης δεν είναι συµβιβαστή µε τη σχέση R, αφού [0] R = [1] R, ενώ [0] R = [0 + 0] R [2] R = [1 + 1] R. Αλλά η πράξη του πολλαπλασιασµού είναι συµβιβαστή µε τη σχέση R, αφού [0] R = [1] R = [ 1] R, όπως επίσης [±2] R = [±3] R = [±4] R =... και όλα τα δυνατά γινόµενα α β, όπου α, β A ή B αντιστοίχως δίνουν και πάλι στοιχείο από το A ή το B αντιστοίχως. Ισως το πιο χαρακτηριστικό παράδειγµα πράξης η οποία είναι συµβιβαστή µε µια σχέση ισοδυναµίας είναι το ακόλουθο :

11 11 Παράδειγµα Εστω n 1. Στο σύνολο Z ϑεωρούµε τη σχέση R n η οποία ορίζεται ως εξής : a, b Z : a Rn b n a b Τότε η R n είναι µια σχέση ισοδυναµίας επί του Z, και είναι εύκολο να διαπιστωθεί ότι η R n είναι συµβιβαστή µε την πράξη της πρόσθεσης και πολλαπλασιασµού ακεραίων. Παρατήρηση Εστω : X X X µια πράξη επί του συνόλου X, και έστω R X X µια σχέση ισοδυναµίας επί του συνόλου X η οποία είναι συµβιβαστή µε την πράξη. Τότε η πράξη [x] R [y] R := [x y] R επί του X/R είναι η µοναδική πράξη επί του X/R η οποία ικανοποιεί την παραπάνω σχέση. ηλαδή αν : X/R X/R X/R, ([x] R, [y] R := [x] R [y] R είναι µια πράξη επί του X/R για την οποία ισχύει : [x] R [y] R = [x y] R, [x] R, [y] R X/R, τότε : [x] R, [y] R X/R. = : X/R X/R X/R, δηλαδή : [x] R [y] R = [x] R [y] R Το παρακάτω πρόβληµα ϑα αναλυθεί διεξοδικά αργότερα - στην ϑεωρία (κανονικών υποοµάδων µιας οµάδας : Πρόβληµα Εστω : G G G µια πράξη επί του µη κενού συνόλου G. Εστω H G ένα µη-κενό υποσύνολο του G. Αν το Ϲεύγος (G, είναι οµάδα, και R H είναι η σχέση τότε : x, y G : x RH y x 1 y H (1 Πότε η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G; (2 Αν η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G, πότε η R H είναι συµβιβαστή µε την πράξη της G;

12 12 2. Υποοµάδες και το Θεώρηµα του Langrange Στο παρόν εδάφιο ενδιαφερόµαστε κυρίως για την έννοια της υποοµάδας, δηλαδή ένα υποσύνολο H G µιας οµάδας (G, το οποίο αποτελεί οµάδα µε πράξη τον περιορισµό της πράξης στο υποσύνολο H. Στη συνέχεια ϑα δούµε ότι κάθε υποοµάδα H ορίζει µια ενδιαφέρουσα σχέση ισοδυναµίας επί του συνόλου G, και επιπλέον, όταν το σύνολο G είναι πεπερασµένο, η επαγόµενη διαµέριση του G, δέιχνει ότι το πλήθος των στοιχείων της H διαιρεί το πλήθος των στοιχείων του G. Υπενθυµίζουµε πρώτα την έννοια της οµάδας. Ορισµός 2.1. Μια οµάδα είναι ένα Ϲεύγος (G,, όπου G είναι ένα σύνολο, και : G G G, (x, y = x y µια πράξη επί του G, για την οποία ικανοποιούνται τα ακόλουθα αξιώµατα : 1. Η πράξη είναι προσεταιριστική, δηλαδή ισχύει : x, y, z X : x (y z = (x y z 2. Υπάρχει ένα στοιχείο e G, το οποίο καλείται ουδέτερο ή ταυτοτικό στοιχείο της G, έτσι ώστε να ισχύει : x X : x e = x = e x 3. Για κάθε x G, υπάρχει ένα στοιχείο x G, το οποίο καλείται αντίστροφο ή αντίθετο στοιχείο του x, έτσι ώστε να ισχύει : x G, x G : Μια οµάδα (G, καλείται αβελιανή ή µεταθετική αν : 4. Η πράξη είναι µεταθετική, δηλαδή ισχύει : x, y X : x x = e = x x x y = y x Ορισµός 2.2. Η τάξη µιας οµάδας (G, ορίζεται να είναι το πλήθος G των στοιχείων του συνόλου G και από τώρα και στο εξής ϑα συµβολίζεται ως εξής : o(g := G Η οµάδα (G, καλείται πεπερασµένη, αν o(g <. ιαφορετικά η (G, καλείται άπειρη οµάδα. Συµβολισµός : Αν (G, είναι µια οµάδα, τότε συνήθως το αντίστροφο ή αντίθετο στοιχείο του x G ϑα το συµβολίζουµε µε x 1, δηλαδή ϑα γράφουµε : x = x 1. Επίσης για την πράξη της οµάδας συνήθως ϑα γράφουµε ή τίποτα. Για παράδειγµα ϑα γράφουµε : x y = x y 1 ή xy 1 Σε κάποιες περιπτώσεις το ουδέτερο στοιχείο e ϑα συµβολίζεται µε 1 ή 1 G προς αποφυγή σύγχυσης. Αν η οµάδα (G, είναι αβελιανή, τότε για την πράξη ϑα χρησιµοποιούµε (συνήθως αλλά όχι πάντα τον συµβολισµό «+». Επίσης το αντίστροφο ή αντίθετο στοιχείο του x G ϑα το συµβολίζουµε µε x, δηλαδή ϑα γράφουµε : x = x. Για παράδειγµα ϑα γράφουµε : x y = x + ( y := x y Τέλος το ουδέτερο στοιχείο e ϑα συµβολίζεται µε 0 ή 0 G προς αποφυγή σύγχυσης.

13 Βασικές ιδιότητες υποοµάδων. Από τώρα και στο εξής : (G, συµβολίζει µια οµάδα. Υπενθυµίζουµε ότι ένα υποσύνολο H της οµάδας G είναι κλειστό στην πράξη : G G G αν : a, b H : a b H Αν το υποσύνολο H είναι κλειστό στην πράξη της G, τότε η απεικόνιση επάγει µια πράξη : H H H στην H. Προφανώς η επαγόµενη πράξη είναι προσεταιριστική. Ορισµός 2.3. Εστω (G, µια οµάδα και H ένα υποσύνολο τής G. Το H καλείται υποοµάδα της G, αν : (1 Το υποσύνολο H G είναι κλειστό στην πράξη της G. (2 Το Ϲεύγος (H, αποτελεί οµάδα. Λήµµα 2.4. Εστω ότι (G, είναι µια οµάδα και ότι H είναι µια υποοµάδα της. (α Το ουδέτερο στοιχείο e H τής H συµπίπτει µε το ουδέτερο στοιχείο e G τής G. (ϐ Για κάθε a H, το αντίστροφό του a 1 H στην H συµπίπτει µε το αντίστροφό του a 1 στην G. Απόδειξη. (α Παρατηρούµε ότι e H e H = e H, επειδή το e H είναι το ουδέτερο τής H και e H e G = e H, επειδή το e G είναι το ουδέτερο τής G. Εποµένως, τα e H και e G είναι και τα δύο λύσεις τής εξίσωσης e H x = e H, ως προς x, στην οµάδα G. Αφού όµως η G είναι οµάδα, η προηγούµενη εξίσωση έχει ακριβώς µια λύση. Εποµένως, e H = e G. (ϐ Παρατηρούµε ότι a a 1 H = e G και a a 1 = e G. Συνεπώς, τα a 1 H και a 1 είναι και τα δύο λύσεις τής εξίσωσης a x = e G, ως προς x, στην οµάδα G. Αφού όµως η G είναι οµάδα, η προηγούµενη εξίσωση έχει ακριβώς µια λύση, εποµένως, a 1 H = a 1. Λήµµα 2.5. Εστω (G, µια οµάδα και H ένα υποσύνολό της. Τότε τα ακόλουθα είναι ισοδύναµα : (1 Το H αποτελεί µια υποοµάδα τής (G,. (2 H και : a, b H : a b 1 H Απόδειξη. (1 = (2 Εστω ότι το H είναι µια υποοµάδα. Τότε, σύµφωνα µε τον ορισµό τής υποοµάδας, το H δεν είναι το κενό σύνολο. Επιπλέον, αν το (a, b είναι στοιχείο τού H H, τότε το b ανήκει στην H και κατόπιν το b 1 ανήκει στην H, ϐλ. Λήµµα 2.4(ϐ και επειδή η H είναι υποοµάδα, το a b 1 είναι επίσης στοιχείο τής H. (2 = (1 Υπάρχει κάποιο a G µε a H, αφού το H. Οµως τότε, το (a, a είναι στοιχείο τού H H και γι αυτό, από την υπόθεση, το στοιχείο a a 1 = e G είναι στοιχείο τού H. Για κάθε a H, το στοιχείο (e G, a είναι στοιχείο τού H H και γι αυτό, σύµφωνα µε την υπόθεση, το στοιχείο e G a 1 = a 1 είναι στοιχείο τού H. Θα δείξουµε τώρα ότι ο περιορισµός τής στο H H ορίζει µια απεικόνιση από το H H στο H, δηλαδή ότι αν (a, b H H, τότε το a b είναι στοιχείο τού H. Οταν όµως (a, b H H, τότε b H και όπως είδαµε παραπάνω το b 1 H. Συνεπώς, το Ϲεύγος (a, b 1 ανήκει στο H H και γι αυτό εφαρµόζοντας και πάλι την υπόθεση, το στοιχείο a (b 1 1 ανήκει στο H. Αλλά (b 1 1 = b, και εποµένως το στοιχείο a b είναι στοιχείο τού H. Τέλος, επειδή η είναι µια προσεταιριστική πράξη επί των στοιχείων τής G, είναι ϕανερό ότι παραµένει προσεταιριστική και επί των στοιχείων τού υποσυνόλου H. Εποµένως, η H είναι µια υποοµάδα τής G.

14 14 Παράδειγµα 2.6. Είναι γνωστό ότι το σύνολο GL n (K = { A M n (K det(a 0 } των n n αντιστρέψιµων πινάκων µε συνιστώσες από ένα σώµα K εφοδιασµένο µε την πράξη του πολλαπλασιασµού πινάκων αποτελεί µια οµάδα. Θεωρούµε το υποσύνολο SL n (K = { A GL n (K det(a = 1 } Θα εφαρµόσουµε το Λήµµα 2.5 για να αποδείξουµε ότι το SL n (K είναι υποοµάδα της GL n (K. Πα- ϱατηρούµε πρώτα ότι το SL n (K, αφού ο ταυτοτικός n n πίνακας I n είναι στοιχείο του συνόλου SL n (K. Τώρα σύµφωνα µε το Λήµµα 2.5, αρκεί να αποδείξουµε ότι αν A, B SL n (K, τότε και ο πίνακας A B 1 ανήκει επίσης στο SL n (K. Πράγµατικά έχουµε det(a B 1 = det A det(b 1 = det A (det B 1 = 1 (1 1 = 1 Σε µερικές περιπτώσεις ο έλεγχος αν ένα υποσύνολο µιας υποοµάδας αποτελεί υποοµάδα, είναι εξαιρετικά απλός, όπως δείχνει το επόµενο Λήµµα : Λήµµα 2.7. Εστω (G, µια οµάδα και H ένα µη κενό υποσύνολό της µε πεπερασµένο το πλήθος στοιχεία. Αν το H είναι κλειστό ως προς την πράξη τής G, τότε το H αποτελεί µια υποοµάδα τής G. Απόδειξη. Το ότι το σύνολο H είναι κλειστό ως προς την πράξη σηµαίνει ότι a, b H, το στοιχείο a b ανήκει επίσης στην H και γι αυτό ορίζεται η πράξη : H H H, (a, b a b. Σύµφωνα µε τον Ορισµό 2.3 και το Λήµµα 2.4, για να είναι τώρα η H υποοµάδα τής G, πρέπει το ουδέτερο στοιχείο e G να ανήκει στο H και για κάθε a H, το αντίστροφό του a 1 (το οποίο υπάρχει στην G να ανήκει επίσης στο H. Αφού το H είναι πεπερασµένο σύνολο, µπορούµε να υποθέσουµε ότι H = {a 1, a 2,..., a n } µε n N. Ας είναι a ένα οποιοδήποτε αλλά συγκεκριµένο στοιχείο τής H. Θεωρούµε την απεικόνιση l a : H H, a i l a (a i := a a i. Η l a είναι µια «1 1» απεικόνιση, αφού αν a i, a j είναι στοιχεία τής H µε l a (a i = l a (a j, τότε a a i = a a j και εποµένως 1 a 1 (a a i = a 1 (a a j, δηλαδή a i = a j. Αλλά µια «1 1» απεικόνιση από το πεπερασµένο σύνολο H στον εαυτό του είναι και «επί». Συνεπώς, υπάρχει κάποιο a j H µε a = l a (a j, δηλαδή a = a a j. Άρα, e G = a j H. Ωστε το ουδέτερο στοιχείο τής G ανήκει στην H. Επιπλέον, αφού η l a είναι «επί» και αφού τώρα γνωρίζουµε ότι e G H, συµπεραίνουµε ότι υπάρχει a j H µε l a (a j = e G, δηλαδή a a j = e G. Συνεπώς, a j = a 1 και έτσι το a j H είναι το αντίστροφο τού στοιχείου a Οµάδες προερχόµενες από την οµάδα Z των ακεραίων. Θεωρούµε την οµάδα (Z, + των ακεραίων µε πράξη την πρόσθεση. Η (Z, + είναι µια άπειρη αβελιανή οµάδα. Στην παρούσα ενότητα ϑα δούµε κάποιες οµάδες οι οποίες προέρχονται από την οµάδα Z Η υποοµάδα (nz, +. Για κάθε n 1, το σύνολο nz = { nm Z m Z } ακεραίων πολλαπλασίων του n είναι προφανώς µια (άπειρη υποοµάδα του Z. 1 Το αντίστροφο a 1 τού a υπάρχει στην G, αφού η G είναι οµάδα.

15 Η προσθετική οµάδα (Z n, +. Εστω n 1. Στο σύνολο Z ϑεωρούµε τη σχέση R n η οποία ορίζεται ως εξής : a, b Z : a Rn b n a b Τότε η R n είναι µια σχέση ισοδυναµίας επί του Z, η οποία είναι συµβιβαστή µε την πράξη της πρόσθεσης και εποµένως από την Πρόταση 1.17 το σύνολο πηλίκο Z n = { [k] Z 0 k n 1 } αποτελεί οµάδα µε πράξη την πρόσθεση η οποία επάγεται από την πρόσθεση ακεραίων. (Z n, + είναι µια πεπερασµένη αβελιανή οµάδα µε n το πλήθος στοιχεία. Η οµάδα Η πολλαπλασιαστική οµάδα (U(Z n,. Η παραπάνω σχέση ισοδυναµίας R n είναι επίσης συµ- ϐατή µε την πράξη του πολλαπλασιασµού στο σύνολο Z των ακεραίων. Ετσι αποκτούµε µιοα καλά ορισµένη πράξη πολλαπλασιασµού : Z n Z n Z n, [a] n [b] n = [ab] n Προφανώς αυτή η πράξη είναι προσεταιριστική και µεταθετική και έχει το στοιχείο [1] n ως ταυτοτικό στοιχείο. Οµως το Ϲεύγος (Z n, δεν αποτελεί οµάδα διότι υπάρχουν στοιχεία του Z n τα οποία δεν έχουν αντίστροφο ως προς την πράξη του πολλαπασιασµού, π.χ. το [0] n. Αυτό που πρέπει λοιπόν να κάνουµε για να αποκτήσουµε δοµή οµάδας είναι να περιορισθούµε στο σύνολο των στοιχείων του Z n τα οποία έχουν αντίστροφο ως προς την πράξη του πολλαπλασιασµού. Οµως : το στοιχείο [k] n έχει πολλαπλασιαστικό αντίστροφο στο σύνολο Z n (k, n = 1 Πραγµατικά : αν (k, n = 1, τότε ως γνωστόν υπάρχουν ακέραιοι u, v Z: Z n ϑα έχουµε : uk + vn = 1. Τότε στο [u] n [k] n + [v] n [n] n = [1] n = [u] n [k] n + [v] n [0] n = [1] n = [u] n [k] n + [0] n = [1] n = [u] n [k] n = [1] n = [k] n [u] n Εποµένως το στοιχείο [k] n είναι αντιστρέψιµο µε αντίστροφο το στοιχείο [u] n. ισχύει, τότε Αντίστροφα αν αυτό [u] n [k] n = [uk] n = [1] n = n/1 uk = 1 uk = nv = uk+nv = 1 = (n, k = 1 Εποµένως το Ϲεύγος (U(Z n,, όπου : U(Z n = { [k] n Z n (k, n = 1 } αποτελεί µια, προφανώς πεπερασµένη αβελιανή, οµάδα. Η οµάδα U(Z n καλείται η οµάδα των αντιστρεψίµων στοιχείων του Z n και η τάξη της είναι ίση µε : ϕ(n = { k Z 1 k n & (k, n = 1 } την τιµή της συνάρτησης ϕ του Euler στο n.

16 Υποοµάδες και Σχέσεις Ισοδυναµίας. Εστω (G, µια οµάδα. Ως συνήθως συµβολίζουµε µε e το ουδέτερο στοιχείο της οµάδας G και µε a 1 το αντίστροφο του στοιχείου a G. Για κάθε υποσύνολο H G του συνόλου G, ορίζουµε τις ακόλουθες σχέσεις R H και H R επί του G: Πρόταση 2.8. Τα ακόλουθα είναι ισοδύναµα : x, y G : x RH y x 1 y H x, y G : x H R y x y 1 H (1 Το υποσύνολο H είναι υποοµάδα της (G,. (2 Η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G. (3 Η σχέση H R είναι σχέση ισοδυναµίας επί του συνόλου G. Απόδειξη. (1 = (2 Θα έχουµε : x G: x RH x διότι x 1 x = e H επειδή η H είναι υποοµάδα. x, y G, έστω x RH y και άρα x 1 y H. Επειδή η H είναι υποοµάδα, έπεται ότι (x 1 y 1 H = y 1 (x 1 1 = y 1 x H και άρα y RH x. x, y, z G, έστω x RH y και y RH z. Τότε x 1 y H και y 1 z H. Επειδή η H είναι υποοµάδα ϑα έχουµε : και άρα x RH z. (x 1 y (y 1 z = x 1 y y 1 z = x 1 e z = x 1 z H Εποµένως η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G. (2 = (1 Θα έχουµε : Επειδή x G: x RH x και e G, ϑα έχουµε e RH e δηλαδή e 1 e = e H. Ετσι e H και ιδιαίτερα H. Εστω x, y H. Τότε : H x = e x = e 1 x = e RH x και H y = e y = e 1 y = e RH y Επειδή η σχέση R H είναι σχέση ισοδυναµίας, ϑα έχουµε : x RH e και e RH y, δηλαδή x 1 e = x 1 H και y 1 e = y 1 H. Ιδιαίτερα : x 1 H, x H. Τέλος από τις παραπάνω σχέσεις ϑα έχουµε x 1 RH e και e RH y 1. Λόγω της µεταβατικής ιδιότητας ϑα έχουµε : x 1 RH y 1 το οποίο σηµαίνει ότι (x 1 1 y 1 = x y 1 H. Απο το Λήµµα 2.5 τότε έπεται ότι το υποσύνολο H είναι υποοµάδα της G. Η απόδειξη (1 (3 είναι παρόµοια και αφήνεται ως άσκηση. Από τωρα και στο εξής υποθέτουµε ότι: το υποσύνολο H είναι µια υποοµάδα της οµάδας (G,. Τότε γνωρίζουµε ότι οι σχέσεις R H και H R είναι σχέσεις ισοδυναµίας επί του συνόλου G. Για κάθε x G, συµβολίζουµε µε : [x] H = { y G y RH x } και H[x] = { y G y H R x } την κλάση ισοδυναµίας του x G ως προς τις σχέσεις ισοδυναµίας R H και H R αντίστοιχα. Λήµµα 2.9. x G: [x] H = x H := { x h G h H } H[x] = H x := { h x G h H }

17 17 Απόδειξη. Για την πρώτη σχέση ϑα έχουµε (η δεύτερη αποδεικνύεται παρόµοια: [x] H = { y G y RH x } = { y G x RH y H } = { y G x 1 y H } = = { y G x 1 y = h H } = { y G y = x h, h H } = { x h G h H } = x H Ορισµός Η κλάση ισοδυναµίας [x] H του στοιχείου x G ως προς την σχέση ισοδυναµίας R H καλείται αριστερό σύµπλοκο του x ως προς την υποοµάδα H και συµβολίζεται ως εξής : x H. Η κλάση ισοδυναµίας H [x] του στοιχείου x G ως προς την σχέση ισοδυναµίας H R καλείται δεξιό σύµπλοκο του x ως προς την υποοµάδα H και συµβολίζεται ως εξής : H x. Λήµµα (1 x G: τα σύµπλοκα x H και H x έχουν το ίδιο πλήθος στοιχείων. (2 Τα σύνολα-πηλίκα G/R H και G/ H R έχουν το ίδιο πληθος στοιχείων, δηλαδή : Το πλήθος των διακεκριµµένων αριστερών συµπλόκων της H στην G συµπίπτει µε το πλήθος των διακεκριµµένων δεξιών συµπλόκων της H στην G. Απόδειξη. (1 Για κάθε x G, ορίζοντας φ : x H H x, φ(x h = h x ϐλέπουµε εύκολα ότι αποκτούµε µια καλά ορισµένη απεικόνιση η οποία είναι 1-1 και επί. (2 Ορίζοντας ψ : G/R H G/ H R, ψ(x H = H x 1 ϑα δείξουµε ότι η φ είναι µια 1-1 και επί απεοκόνιση. Κατ αρχήν η ψ είναι καλά ορισµένη : έστω x H = y H και άρα x RH y. Τότε x 1 y H. Εστω x 1 y = h H. Τότε x 1 = h y 1 H y 1 = H [y 1 ]. Οπως γνωρίζουµε τότε τα στοιχεία x 1 και y 1 ορίζουν την ίδια κλάση ισοδυναµίας ως προς την σχέση ισοδυναµίας H R και εποµένως ϑα έχουµε H [x 1 ] = H [y 1 ]. Αυτό όµως σηµαίνει ότι H x 1 = H y 1 και άρα ψ(x H = ψ(y H, δηλαδή η ψ είναι καλά ορισµένη. Εστω ψ(x H = ψ(y H, δηλαδή H x 1 = H y 1 ή ισοδύναµα H [x 1 ] = H [y 1 ]. Τότε όµως x 1 H R y 1 και άρα x 1 (y 1 1 H. ηλαδή x 1 y H και εποµένως x 1 y = h H. Τότε y = x h x H = [x] H και άρα [y] H = [x] H = y H = x H. Εποµένως η ψ είναι 1-1. Εστω H [z] = H z G/ H R. Τότε προφανώς ψ([z 1 ] H = ψ(z 1 H = H (z 1 1 = H z και άρα η ψ είναι επί. Από τώρα και στο εξής: εργαζόµαστε µε την σχέση ισοδυναµίας R H : x, y G : x RH y x 1 y H Ανάλογα συµπεράσµατα ισχύουν για την σχέση ισοδυναµίας H R. Λήµµα Εστω x, y G. Τότε οι κλάσεις ισοδυναµίας [x] H και [y] H έχουν το ίδιο πλήθος στοιχείων. Ακριβέστερα η απεικόνιση είναι 1-1 και επί. φ : [x] H = x H [y] H = y H, φ(x h = y h Απόδειξη. Εστω φ(x h 1 = φ(x h 2, δηλαδή y h 1 = y h 2. Τότε προφανώς, από τον Νόµο ιαγραφής, ϑα έχουµε h 1 = h 2 και άρα x h 1 = x h 2. Εποµένως η ψ είναι 1-1. Αν y h y H, τότε ψ(x h = y h και άρα η ψ είναι επί.

18 18 Πόρισµα Εστω (G, µια οµάδα και H G µια υποοµάδα της G. Τότε : x G : o(h = H = x H Απόδειξη. Θέτοντας y = e στο παραπάνω Λήµµα, ϑα έχουµε ότι τα σύµπλοκα e H και x H έχουνε το ίδιο πλήθος στοιχείων. Οµως προφανώς και εποµένως, x G: e H = { e h G h H } = { h G h H } = H o(h = H = x H 2.4. Το Θεώρηµα του Langrange. Εστω, όπως και πριν, (G, µια οµάδα και H G µια υποοµάδα της G. Συµβολίζουµε µε G/H = G/R H = { [x] H G x G } = { x H G x G } το σύνολο-πηλίκο της G ως προς τη σχέση ισοδυναµίας R H. Το σύνολο G/H καλείται το σύνολο των αριστερών συµπλόκων της H στην G. Οπως γνωρίζουµε το σύνολο υποσυνόλων G/H αποτελεί µια διαµέριση του G και άρα ϑα έχουµε : G = [x] H = x H x G Ορισµός Εστω (G, µια οµάδα και H G µια υποοµάδα της G. Το πλήθος των στοιχείων του συνόλου G/H καλείται ο δείκτης της H στην G και συµβολίζεται µε : [G : H]. Ετσι ο δείκτης [G : H] της H στην G είναι το πλήθος των διακεκριµµένων αριστερών συµπλόκων της H στην G. Σύµφωνα µε το Λήµµα 2.11 ο δείκτης [G : H] της H στην G είναι επίσης το πλήθος των διακεκριµ- µένων δεξιών συµπλόκων της H στην G. Ιδιαίτερα αν η οµάδα G είναι πεπερασµένη, τότε και η υποοµάδα H ϑα είναι πεπερασµένη και το σύνολο των διακεκριµµένων κλάσεων ισοδυναµίας των στοιχείων της ως προς τη σχέση ισοδυναµίας R H ϑα είναι πεπερασµένο. ηλαδή το σύνολο-πηλίκο G/H των αριστερών συµπλόκων της H στην G ϑα είναι πεπερασµένο. Είδαµε ότι το πλήθος των αριστερών συµπλόκων µιας υποοµάδας είναι ίσο µε το πληθος των δεξιών συµπλόκων της υποοµάδας. Αυτό δεν σηµαίνει ότι ένα αριστερό σύµπλοκο είναι και δεξιό : x G Παράδειγµα Θεωρούµε την συµµετρική οµάδα : S 3 = { (1, (12, (13, (23, (123, (132 } Τότε H = { (1, (12 } είναι µια υποοµάδα της S 3 και τα διεκεκριµµένα αριστερά σύµπλοκα της H στην S 3 είναι : { (1, (12 }, { (13, (123 }, { (23, (132 } Βλέπουµε ότι το δεξιό σύµπλοκο H(13 = { (13, (132 } δεν συµπίπτει µε κανένα αριστερό σύµπλοκο. Γενικότερα ϐλέπουµε ότι τα δεξιά σύµπλοκα της H της S 3 είναι { (1, (12 }, { (13, (132 }, { (23, (123 } άρα είναι όπως περιµένουµε τρία και κανένα δεξιό σύµλοκο (εκτός του H δεν συµπίπτει µε κανένα αριστερό σύµλοκο. Εστω τώρα (G, µια πεπερασµένη οµάδα και H µια υποοµάδα της G. Εστω :

19 (1 o(g = n (2 o(h = m (3 [G : H] = k και έστω G/H = { [x 1 ] H, [x 2 ] H,, [x k ] H } = { x1 H, x 2 H,, x k H }. Επειδή τα υποσύνολα [x 1 ] H, [x 2 ] H,, [x k ] H αποτελούν µια διαµέριση του G, έπεται ότι ϑα έχουµε : G = [x 1 ] H [x2 ] H [xk ] H και [x i ] H [xj ] H =, 1 i j k 19 Το ακόλουθο Θεώρηµα, το οποίο οφείλεται στον Langrange και είναι ϑεµελιώδες στην Θεωρία Ο- µάδων, δείχνει ότι µε τους παραπάνω συµβολισµούς : n = m k, δηλαδή η τάξη της H διαιρεί την τάξη της G: Θεώρηµα ( Langrange (1771 Εστω G µια πεπερασµένη οµάδα και H µια υποοµάδα της G. Τότε : o(g = o(h [G : H] Εποµένως η τάξη µιας υποοµάδας H µιας πεπερασµένης οµάδας G διαιρεί την τάξη της οµάδας : Απόδειξη. Επειδή o(h / o(g G = [x 1 ] H [x2 ] H [xk ] H είναι µια διαµέριση του συνόλου G, σύµφωνα µε την Παρατήρηση 1.6, ϑα έχουµε : k k G = [x i ] H = x i H i=1 Από το Πόρισµα 2.13, έχουµε : x i H = o(h, i = 1, 2,, k. Ετσι η παραπάνω σχέση δίνει : k o(g = G = x i H = k H = k o(h = [G : H] o(h i= Οι Υποοµάδες της S 3. Υπενθυµίζουµε ότι : S 3 = { (1, (12, (13, (23, (123, (132 } i=1 Πίνακας πολλαπλασιασµού της S 3 (1 (12 (13 (23 (123 (132 (1 (1 (12 (13 (23 (123 (132 (12 (12 (1 (132 (123 (23 (13 (13 (13 (123 (1 (132 (12 (23 (23 (23 (132 (123 (1 (13 (12 (123 (123 (13 (23 (12 (132 (1 (132 (132 (23 (12 (13 (1 (123 Τα ακόλουθα υποσύνολα είναι όλες οι υποοµάδες της S 3 : (1 Υποµοάδες Τάξης 1: H 0 = {(1}. (2 Υποµοάδες Τάξης 2: H 1 = {(1, (12}, H 2 = {(1, (13}, H 3 = {(1, (23}. (3 Υποµοάδες Τάξης 3: H 4 = {(1, (123, (132}. (4 Υποµοάδες Τάξης 6: H 5 = S 3.

20 20 Εποµένως ϐλέπουµε οτι για την S 3 ισχύει το αντίστροφο του Θεωρήµατος του Langrange, δηλαδή για κάθε διαιρέτη της o(s 3 υπάρχει (τουλάχιστον µια υποοµάδα της S 3 µε τάξη τον διαιρέτη Το αντίστροφο του Θεωρήµατος του Langrange και η Εναλλάσσουσα Οµάδα A 4. Το αντίστροφο τοθ Θεωρήµατος του Langrange γενικά δεν ισχύει. Οπως ϑα δούµε αργότερα, υπάρχουν πεπερασµένες οµάδες G και διαιρέτες k της τάξης της οµάδας έτσι ώστε η G να µην έχει υποοµάδες τάξης k. Η µικρότερη οµάδα για την οποία το αντίστροφο τοθ Θεωρήµατος του Langrange δεν ισχύει, είναι η εναλλάσσουσα οµάδα A 4 µε τάξη 12. Η A 4 έχει υποοµάδες τάξης 1, 2, 3, 4, 12 αλλά δεν έχει καµµία υποοµάδα τάξης 6. Υπενθυµίζουµε ότι η A 4 είναι η υποοµάδα της συµµετρικής οµάδας S 4 η οποία αποτελείται από τις άρτιες µεταθέσεις : A 4 = { (1, (123, (124, (134, (234, (132, (142, (143, (243, (12(34, (13(24, (14(23 } Ειδικότερα η A 4 αποτελείται, εκτός από την ταυτοτική µετάθεση (1, από τους οκτώ 3-κύκλους και τα τρία γινόµενα των ξένων 2-κύκλων. Παρακάτω, χάριν ευκολίας και για µεταγενέστερη χρήση, δίνουµε τον πίνακα πολλαλπασιασµού της οµάδας A 4 : Πίνακας πολλαπλασιασµού της A 4 (1 (123 (124 (134 (234 (132 (142 (143 (243 (12(34 (13(24 (14(23 (1 (1 (123 (124 (134 (234 (132 (142 (143 (243 (12(34 (13(24 (14(23 (123 (123 (132 (13(24 (234 (12(34 (1 (143 (14(23 (124 (134 (243 (142 (124 (124 (14(23 (142 (13(24 (123 (134 (1 (243 (12(34 (143 (132 (234 (134 (134 (124 (12(34 (143 (13(24 (14(23 (234 (1 (132 (123 (142 (243 (234 (234 (13(24 (134 (14(23 (243 (142 (12(34 (123 (1 (132 (143 (124 (132 (132 (1 (243 (12(34 (134 (123 (14(23 (142 (13(24 (234 (124 (143 (142 (142 (234 (1 (132 (14(23 (13(24 (124 (12(34 (143 (243 (134 (123 (143 (143 (12(34 (123 (1 (142 (243 (13(24 (134 (14(23 (124 (234 (132 (243 (243 (143 (14(23 (124 (1 (12(34 (132 (13(24 (234 (142 (123 (134 (12(34 (12(34 (243 (234 (142 (124 (143 (134 (132 (123 (1 (14(23 (13(24 (13(24 (13(24 (142 (143 (243 (132 (234 (123 (124 (134 (14(23 (1 (12(34 (14(23 (14(23 (134 (132 (123 (143 (124 (243 (234 (142 (13(24 (12(34 (1 Πρόταση Η εναλλάσσουσα οµάδα A 4 τάξης 12: (1 έχει υποοµάδες τάξης 1, 2, 3, 4, και 12. (2 δεν έχει υποοµάδα τάξης 6. Απόδειξη. (2 Υποθέτουµε ότι H είναι µια υποοµάδα της A 4 µε o(h = 6. Τότε προφανώς ο δείκτης [A 4 : H] = 2 και εποµένως η H έχει 2 διακεκριµµένα αριστερά σύµπλοκα στην A 4. Θα δείξουµε ότι κάθε στοιχείο της A 4 το οποίο είναι της µορφής g 2, όπου g A 4, ανήκει στην H: M = { g 2 A 4 g A 4 } H ( Πράγµατι : έστω g A 4. Αν g H, τότε g 2 H διότι η H είναι υποοµάδα της A 4. Αν g / H, τότε τα σύµπλοκα (1H = H και gh, δεν συµπίπτουν, διότι διαφορετικά αν H = gh, τότε g H που είναι άτοπο. Άρα επειδή τα σύµπλοκα (1H = H και gh είναι διαφορετικά και επειδή η H

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K = Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Α Δ Ι Θ Θ Α Ε Ι Μ : https://sites.google.com/site/maths4edu/home/algdom114

Α Δ Ι Θ Θ Α Ε Ι Μ :  https://sites.google.com/site/maths4edu/home/algdom114 Α Δ Ι Θ Θ Α Ε 2013-2014 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 12 Μαρτίου 2014 19:26

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος Αλγεβρικες οµες Ι Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 22

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 246 6. Οι Οµάδες τάξης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Γραµµικη Ανεξαρτησια, Βασεις και ιασταση Στο

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οµάδες µεταθέσεων µετατάξεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 250 7. Οµάδες µεταθέσεων µετατάξεων

Διαβάστε περισσότερα

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Κεφάλαιο 0 Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Στο παρόν εισαγωγικό Κεφάλαιο, υπενθυµίζουµε, κατά κύριο λόγο χωρίς αποδείξεις, ϐασικές γνώσεις από : τη στοιχειώδη ϑεωρία συνόλων και απεικονίσεων,

Διαβάστε περισσότερα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Κεφάλαιο 7 ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϑεµελιώδη έννοια του δακτυλίου, ϑα αναπτύξουµε τις ϐασικές ιδιότητες δακτυλίων και ϑα αναλύσουµε µια σειρά

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 2 Απριλίου 2013 Το παρόν κείµενο

Διαβάστε περισσότερα

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 Περιεχόμενα 1 Βασικές Έννοιες 1 1.1 Ορισμοί - παραδείγματα.............................. 1 1.2 Υποομάδες και Σύμπλοκα..............................

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε

Διαβάστε περισσότερα

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη Σηµειώσεις Θεωρίας Αριθµών Θ. Θεοχάρη-Αποστολίδη Ευχαριστώ ιδιαίτερα τη ϕοιτήτριά µου Μαρίνα Παλαιστή για τη µεταφορά του χειρογράφου µου σε κείµενο "tex" Κεφάλαιο 1 Βασικές Ιδιότητες Ισοδυναµιών Η ϑεωρία

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Κανονική Μορφή Fitting Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 26 5. Κανονική Μορφή Fitting Εστω A M n

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Αλγεβρικές οµές Ι. Α.Ι. Πάπιστας Τµήµα Μαθηµατικών Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης

Αλγεβρικές οµές Ι. Α.Ι. Πάπιστας Τµήµα Μαθηµατικών Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Αλγεβρικές οµές Ι Α.Ι. Πάπιστας Τµήµα Μαθηµατικών Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης 2 Περιεχόµενα 1 Οµάδες 5 1.1 Μια σύντοµη ιστορική αναδροµή στο «Λογισµό της συµµετρίας» 5 1.2 ιµελείς Πράξεις.........................

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό Κεφάαιο 3 Εεύθερα Πρότυπα 3.1 Εεύθερα Πρότυπα Έστω Μ ένα R-πρότυπο. Μια οικογένεια Μ αν ) το σύνοο { Λ} τρόπο ως άθροισµα της µορφής πεπερασµένο πήθος από τα ( e ) στοιχείων του Μ καείται βάση του e παράγει

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

Συσχετισµός ϑεµελιώδους οµάδας και πρώτης οµάδας οµολογίας

Συσχετισµός ϑεµελιώδους οµάδας και πρώτης οµάδας οµολογίας Συσχετισµός ϑεµελιώδους οµάδας και πρώτης οµάδας οµολογίας Εργασία στο πλαίσιο τού µαθήµατος Αλγεβρική Τοπολογία - Οµολογία µε κωδ. αρ. Γ 21 Χειµερινό Εξάµηνο 2007-2008 Μιχαήλ Γκίκας Περίληψη Σκοπός αυτής

Διαβάστε περισσότερα

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 5 Γραµµικες Απεικονισεις Στην άλγεβρα, και γενικότερα στα Μαθηµατικά,

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων Περιεχόµενα 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων 3 11 Ο Χώρος των Ελευθέρων ιανυσµάτων 3 12 Εσωτερικές και Εξωτερικές Πράξεις 8 13 Η έννοια του σώµατος 9 2 ιανυσµατικοι Χωροι 13 21 ιανυσµατικοί

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 11

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 11 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 11 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 26 Μαίου 2016 Ασκηση 1. Να

Διαβάστε περισσότερα

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 ιαιρετότητα και Ισοτιµίες Β και Γ Λυκείου Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Ιούλιος 2009 1 ιαιρετοτητα και Ισοτιµιες ΠΡΟΛΟΓΟΣ Το

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

Το θεώρηµα πεπλεγµένων συναρτήσεων

Το θεώρηµα πεπλεγµένων συναρτήσεων 57 Το θεώρηµα πεπλεγµένων συναρτήσεων Έστω F : D R R µια ( τουλάχιστον ) C συνάρτηση ορισµένη στο ανοικτό D x, y D F x, y = Ενδιαφερόµαστε για την ύπαρξη µοναδικής και ώστε διαφορίσιµης συνάρτησης f ορισµένης

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Βαθµίδα Πίνακα Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 8 Βαθµιδα Πινακα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϐαθµίδα ενός πίνακα

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 ιαιρετότητα και Ισοτιµίες Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης Στη µνήµη του δασκάλου µου, Χάρη Βαφειάδη... www.math.uoc.gr/

Διαβάστε περισσότερα

Επιλύσιµες και µηδενοδύναµες οµάδες

Επιλύσιµες και µηδενοδύναµες οµάδες Κεφάλαιο 8 Επιλύσιµες και µηδενοδύναµες οµάδες Σύνοψη. Μελετώνται οι επιλύσιµες και οι µηδενοδύναµες οµάδες. Εισάγονται οι έννοιες των κανονικών και συνθετικών σειρών. Αποδεικνύεται το Θεώρηµα των Schreier,

Διαβάστε περισσότερα

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Ν. Λυγερός Παρουσίαση εργασίας φοιτητή Θα µιλήσουµε για το θεώρηµα του Lagrange. Αλλά προτού φτάσουµε εκεί, θα ήθελα να εισάγω ορισµένες έννοιες που θα µας

Διαβάστε περισσότερα

= L = L = L ( ) ( )( ) ( )( ) ( )( )

= L = L = L ( ) ( )( ) ( )( ) ( )( ) ΟΜΑ ΕΣ Σηµείωση Χρήσιµο είναι ο αναγνώστης να έχει υπόψη του τα παρατιθέµενα στην ενότητα Σύνολα, 7 Βασικό παράδειγµα οµάδας µε πεπερασµένο πλήθος στοιχεία, αποτελεί το σύνολο των µεταθέσεων στοιχείων

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR

KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR KΕΦΑΛΑΙΟ 6 ΥΝΑΜΟΣΕΙΡΕΣ-ΣΕΙΡΕΣ TAYLOR 6 Ορισµοί Ορισµός 6 Εστω α είναι µία πραγµατική ακολουθία και είναι πραγµατικοί αριθµοί Ένα άπειρο πολυώνυµο της µορφής: a ( ) () = καλείται δυναµοσειρά µε κέντρο το

Διαβάστε περισσότερα

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ

2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ Η θεωρία αριθμών και οι αλγεβρικές δομές τα τελευταία χρόνια χρησιμοποιούνται όλο και περισσότερο στην κρυπτολογία. Αριθμο-θεωρητικοί αλγόριθμοι χρησιμοποιούνται σήμερα

Διαβάστε περισσότερα

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις

Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο. Ασκήσεις Εισαγωγή στη Θεωρία Αριθµών για το Λύκειο Σηµειώσεις Προετοιµασίας για Μαθηµατικούς ιαγωνισµούς Ασκήσεις Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Νοέµβριος 2012 1 Ασκησεις στη Θεωρια Αριθµων 1 Μαθηµατική

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συγγραφική Οµάδα : ΗΜΗΤΡΙΟΣ ΒΑΡΣΟΣ ΗΜΗΤΡΙΟΣ ΕΡΙΖΙΩΤΗΣ ΙΩΑΝΝΗΣ ΕΜΜΑΝΟΥΗΛ ΜΙΧΑΗΛ ΜΑΛΙΑΚΑΣ ΑΝΤΩΝΙΟΣ ΜΕΛΑΣ ΟΛΥΜΠΙΑ ΤΑΛΕΛΛΗ 2 Πρόλογος Το ϐιβλίο αυτό στοχεύει στη διδασκαλία ενός

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος Ανάλυση Fourier και Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών Αθήνα 2015 Περιεχόµενα 1 Μέτρο Lebesgue 3 1.1 Εξωτερικό µέτρο Lebesgue........................... 3

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής 6 Ιανουαρίου 013 1 Ασκήσεις 1.1 Ασκήσεις Επανάληψης 1. είξτε ότι : ηµ x + 3συν y 5.. Να αποδείξτε ότι

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Εισαγωγή. Herman Weyl

Εισαγωγή. Herman Weyl Εισαγωγή Όσο σηµαντικές και αν είναι οι γενικές έννοιες και προτάσεις που απορρέουν από το σύγχρονο πάθος για αξιωµατική θεµελίωση και γενίκευση, είµαι όµως πεπεισµένος ότι τα ειδικά προβλήµατα µε όλη

Διαβάστε περισσότερα