Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα"

Transcript

1 Αλγεβρικες οµες Ι Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : 4 εκεµβρίου 2012 Το παρόν κείµενο αποτελεί ένα σύνολο πρόχειρων σηµειώσεων για τις ανάγκες του µαθήµατος Αλγεβρικές οµές Ι, Χειµερινό Εξάµηνο Ακαδηµαϊκού Ετους , και τελεί υπο συνεχή επεξεργασία.

2 2 Περιεχόµενα Μέρος 1. Θεωρία Οµάδων 4 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Σχέσεις ισοδυναµίας ιαµερίσεις ιαµερίσεις και Σχέσεις Ισοδυναµίας Απεικονίσεις και Σχέσεις Ισοδυναµίας Πράξεις Πράξεις συµβιβαστές µε σχέσεις ισοδυναµίας 9 2. Υποοµάδες και το Θεώρηµα του Langrange Βασικές ιδιότητες υποοµάδων Οµάδες προερχόµενες από την οµάδα Z των ακεραίων Υποοµάδες και Σχέσεις Ισοδυναµίας Το Θεώρηµα του Langrange Οι Υποοµάδες της S Το αντίστροφο του Θεωρήµατος του Langrange και η Εναλλάσσουσα Οµάδα A Εφαρµογές του Θεωρήµατος Langrange (I Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-Οµάδες ύναµη Στοιχείου Κυκλικές Οµάδες Τάξη στοιχείου Τάξη Γινοµένου Στοιχείων µιας Οµάδας Εφαρµογές του Θεωρήµατος Langrange (II Χαρακτηρισµοί Πεπερασµένων Κυκλικών Οµάδων Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Υποοµάδες και Γεννήτορες Άπειρων Κυκλικών Οµάδων Υποοµάδες και Γεννήτορες Πεπερασµένων Κυκλικών Οµάδων Η Οµάδα των n-οστών ϱιζών της µονάδας Κυκλικές Οµάδες - Ευθέα Γινόµενα Ταξινόµηση Κυκλικών Οµάδων Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Οµάδες τάξης 2p Οµάδες τάξης pq Οµάδες µεταθέσεων (µετατάξεων Οι πρώτες έννοιες Τροχιές και ανάλυση σε κύκλους Εκτιµώντας τις τάξεις των µεταθέσεων (µετατάξεων της (S n,. ιαµερίσεις του n Άρτιες και περιττές µεταθέσεις (µετατάξεις ιεδρικές Οµάδες και Οµάδες Συµµετρίας* Οµάδες Παραγόµενες από Υποσύνολα και ιαγράµµατα Hasse* Κανονικές (Ορθόθετες Υποοµάδες Κανονικές Υποοµάδες Κανονικές Υποοµάδες και Σχέσεις Ισοδυναµίας Παραδείγµατα Κανονικών Υποοµάδων Τρία Χαρακτηριστικά (Αντι-Παραδείγµατα Οµάδες Hamilton Μεταβατική ιδιότητα κανονικότητας υποοµάδων 88

3 3 12. Οµάδες-πηλίκα Οµοµορφισµοί Οµάδων Βασικές ιδιότητες και Παραδείγµατα Οµοµορφισµοί και Υποοµάδες οµικές Ιδιότητες Οµάδων - Κριτήρια (Μη-Ισοµορφίας Οµοµορφισµοί και Κανονικές Υποοµάδες Το Θεώρηµα του Cayley Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Ταξινόµηση Άπειρων Κυκλικών Οµάδων Ταξινόµηση Πεπερασµένων Κυκλικών Οµάδων Κριτήριο Ισοµορφίας Κυκλικών Οµάδων Οµάδες Οµοµορφισµών Κυκλικών Οµάδων Οµάδες Αυτοµορφισµών Κυκλικών Οµάδων Τα Θεωρήµατα Ισοµορφισµών και οι Εφαρµογές τους Ευθέα Γινόµενα και Πεπερασµένες Αβελιανές Οµάδες Απλές Οµάδες Οµάδες Μικρής Τάξης 126 Μέρος 2. Θεωρία ακτυλίων Βιβλιογραφια 128

4 4 Μέρος 1. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα υποσύνολο R του καρτεσιανού γινοµένου X X: R X X το οποίο ικανοποιεί τις ακόλουθες ιδιότητες : 1. x X: (x, x R. (ανακλαστική ιδιόητα 2. x, y X: (x, y R = (y, x R (συµµετρική ιδιότητα 3. x, y, z X: (x, y R & (y, z R = (x, z R (µεταβατική ιδιότητα Συµβολισµός : x, y X, αν (x, y R, τότε ϑα γράφουµε ισοδύναµα : x R y ή x R y ή x y(r Εστω R µια σχέση ισοδυναµίας επί του συνόλου X. Αν x X, η κλάση ισοδυναµίας του x ως προς την R ορίζεται να είναι το ακόλουθο σύνολο : [x] R = { y X y R x } X Ενα τυχόν στοιχείο µιας κλάσης ισοδυναµίας, δηλαδή ενός υποσυνόλου του X της µορφής [x] R καλείται αντιπρόσωπος της κλάσης ισοδυναµίας. Επειδή x R x, ϑα έχουµε προφανώς ότι x [x] R και άρα το x είναι ένας αντιπρόσωπος της κλάσης ισοδυναµίας του. Θα δούµε αργότερα σε συγκεκριµµένα παραδείγµατα ότι πολλές ϕορές υπάρχει ϕυσική επιλογή αντιπροσώπου µιας κλάσης ισοδυναµίας. Το σύνολο X/R όλων των κλάσεων ισοδυναµίας των στοιχείων του X X/R = { [x] R x X } ως προς τη σχέση ισοδυναµίας R, καλείται σύνολο-πηλίκο του X ως προς την R. Ορίζουµε µια απεικόνιση π R : X X/R, π R (x = [x] R η οποία καλείται η κανονική προβολή του X στο σύνολο πηλίκο X/R του X ως προς τη σχέση ισοδυναµίας R. Παρατήρηση 1.2. Η απεικόνιση κανονικής προβολής π R : X X/R είναι προφανώς επί. Ενα ϕυσικό ερώτηµα το οποίο προκύπτει είναι ποιά είναι η σχέση µεταξύ δύο κλάσεων ισοδυναµίας. Λήµµα 1.3. Εστω R µια σχέση ισοδυναµίας επί του συνόλου X, και x, y X. 1. x R y [x] R = [y] R. 2. Είτε [x] R = [y] R ή [x] R [y] R =. Απόδειξη. 1. = Εστω x R y. Εστω z [x] R. Τότε z R x και άρα από την µαταβατική ιδιότητα ϑα έχουµε z R y. Εποµένως z [y] R και εποµένως [x] R [y] R. Αντίστροφα αν z [y] R, τότε z R y και άρα y R z. Από την µαταβατική ιδιότητα ϑα έχουµε x R z ή ισοδύναµα z R x. Εποµένως z [x] R και άρα [y] R [x] R. Ετσι δείξαµε ότι : [x] R = [y] R. = Εστω [x] R = [y] R. Τότε x [x] R = [y] R και εποµένως x R y. 2. Αρκεί να δείξουµε ότι αν [x] R [y] R, τότε [x] R = [y] R. Εστω z [x] R [y] R. Τότε z [x] R και z [y] R. Αυτό σηµαίνει ότι : z R x και z R y. Ισοδύναµα, επειδή η σχέση R είναι σχέση

5 5 ισοδυναµίας, x R z και z R y. Από την µεταβατική ιδιότητα τότε ϑα έχουµε x R y και άρα από το 1. ϑα έχουµε [x] R = [y] R. Πόρισµα 1.4. Εστω R µια σχέση ισοδυναµίας επί του µη-κενού συνόλου X. 1. x X: [x] R. 2. Είτε [x] R = [y] R ή [x] R [y] R =. 3. X = x X [x] R. Απόδειξη. 1. Εστω x X. Επειδή x [x] R έπεται ότι [x] R. 2. Το Ϲητούµενο προκύπτει από το 2. του Λήµµατος Επειδή x X, έχουµε x [x] R, έπεται ότι X = x X {x} x X [x] R και άρα ϑα έχουµε X = x X [x] R. Από το παραπάνω Πόρισµα 1.4 ϐλέπουµε ότι το σύνολο-πηλίκο X/R είναι ένα σύνολο υποσυνόλων του X, των κλάσεων ισοδυναµίας των στοιχείων του X ως προς τη σχέση ισοδυναµίας R, το οποίο ικανοποιεί την ακόλουθη ιδιότητα : κάθε στοιχείο του συνόλου X ανήκει σε µία και µόνο µία κλάση ισοδυναµίας. Αυτή η ιδιότητα µας οδηγεί στην έννοια της διαµέρισης ενός συνόλου ιαµερίσεις. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.5. Μια διαµέριση του X είναι µια συλλογή υποσυνόλων = { A i A i X } i I, όπου I είναι ένα σύνολο δεικτών, έτσι ώστε να ικανοποιούνται οι ακόλουθες ιδιότητης : (1 i I: A i. (2 i, j I: i j = A i A j =. (3 X = i I A i. Με άλλα λόγια µια διαµέριση του µη-κενού συνόλου X είναι µια συλλογή µη-κενών υποσυνόλων του X µε την ιδιότητα κάθε στοιχείο του συνόλου X ανήκει σε ένα και µόνο ένα σύνολο της συλλογής. Υπενθυµίζουµε ότι αν X είναι ένα σύνολο, τότε συµβολίζει το πλήθος των στοιχείων του X. X ή #(X Παρατήρηση 1.6. Εστω X ένα πεπερασµένο σύνολο και = { A i A i X } µια διαµέριση i I του συνόλου X. Τότε προφανώς το σύνολο δεικτών I και κάθε υπσύνολο A i της διαµέρισης είναι πεπερασµένα σύνολα και εποµένως επειδή το X είναι ξένη ένωση των A i : X = i I A i, και A i Aj =, i j ϑα έχουµε : X = i I A i Η επόµενη Πρόταση µας εξασφαλίζει ότι κάθε διαµέριση του συνόλου X ορίζει µια σχέση ισοδυνα- µίας R επί του X έτσι ώστε οι κλάσεις ισοδυναµίας των στοιχείων του X ως προς την R να συµπίπτουν µε τα υποσύνολα της διαµέρισης. Πρόταση 1.7. Εστω = { A i A i X } µια διαµέριση του µη-κενού συνόλου X. Τότε ορίζοντας i I R := { } (x, y X X i I : x, y A i αποκτούµε µια σχέση ισοδυναµίας R επί του X. Επιπλέον :

6 6 1. x X: [x] R = A i, για κάποιο i I (το i είναι ο µοναδικός δείκτης i I έτσι ώστε x A i. 2. X/R = ως συλλογές υποσυνόλων του X. Απόδειξη. Εστω x X. Επειδή η συλλογή υποσυνόλων είναι µια διαµέριση του X, έπεται ότι x X = i I A i και άρα υπάρχει δείκτης i I έτσι ώστε : x A i. Τότε προφανώς (x, x R, δηλαδή x R x και άρα ισχύει η ανακλαστική ιδιότητα. Εστω x, y X και υποθέτουµε ότι (x, y R, δηλαδή x R y. Τότε εξ ορισµού υπάρχει δείκτης i I έτσι ώστε x, y A i και προφανώς τότε y, x A i. Άρα (y, x R δηλαδή y R x και έτσι η σχέση R είναι συµµετρική. Εστω (x, y R και (y, z R, δηλαδή x R y και y R z. Τότε υπάρχουν δείκτες i, j I έτσι ώστε : x, y A i και y, z A j. Τότε όµως y A i A j. Επειδή όµως A i A j = αν i j, έπεται ότι αναγκαστικά ϑα έχουµε i = j και άρα A i = A j. Εποµένως x, y, z A i το οποίο σηµαίνει ότι (x, z R, δηλαδή x R z και έτσι η σχέση R είναι µεταβατική. 1. Εστω x X. Τότε υπάρχει µοναδικός δείκτης i I έτσι ώστε : x A i. Θα έχουµε : [x] R = { y X y R x } = { y X j I : x, y A j } Επειδή x A i και A i A j = αν i j, ϑα έχουµε αναγκαστικά i = j και άρα : [x] R = { y X j I : x, y A j } = { y X y Ai } = Ai 2. Επειδή X/R = { [x] R x X } και [x] R = A i, όπου i I είναι ο µοναδικός δείκτης για τον οποίο ισχύει x A i, ϑα έχουµε ότι : X/R = { [x] R x X } = { A i i I } = 1.3. ιαµερίσεις και Σχέσεις Ισοδυναµίας. Συνδυάζοντας το Πόρισµα 1.4 και την Πρόταση 1.7, έχουµε το ακόλουθο ϐασικό Θεώρηµα : Θεώρηµα 1.8. Εστω X ένα µη-κενό σύνολο. Τότε οι απεικονίσεις Φ : D := { ιαµερίσεις του X } S := { Σχέσεις ισοδυναµίας R επί του X }, Φ( = R Ψ : S := { Σχέσεις ισοδυναµίας R επί του X } D := { ιαµερίσεις του X }, Ψ(R = X/R ορίζουν µια 1-1 και επί αντιστοιχία µεταξύ του συνόλου D των διαµερίσων του X και του συνόλου S των κλασεων ισοδυναµίας επί του X. Απόδειξη. Από το Πόρισµα 1.4 και την Πρόταση 1.7 έπεται ότι οι αντιστοιχίες Φ και Ψ ορίζουν απεικονίσεις Φ: D S, Φ( = R και Ψ: S D, Ψ(R = R := X/R. Για την ολοκλήρωση της απόδειξης, αρκεί να δείξουµε ότι οι απεικονίσεις Φ και Ψ είναι η µία αντίστροφη της άλλης. Με άλλα λόγια αρκεί να δείξουµε ότι : ή ισοδύναµα : D : ΨΦ( = και R S : ΦΨ(R = R D : R = και R S : R R = R Από την Πρόταση 1.7, έπεται ότι για κάθε διαµέρσιη του X, έχουµε X/R = ως υποσύνολα του X. Ετσι ΨΦ( = Ψ(R = X/R = Για να δείξουµε τώρα ότι R S : ΦΨ(R = R, αρκεί να δείξουµε ότι R R = R. Υπενθυµίζουµε ότι η διαµέριση R, την οποία ορίζει η σχέση ισοδυναµίας R, αποτελείται από τις κλάσεις ισοδυναµίας [x] R των στοιχείων του X. Ετσι εξ ορισµού για την επαγόµενη σχέση ισοδυναµίας R R την οποία ορίζει η R ϑα έχουµε : x, y X: (x, y R R αν και µόνον αν τα στοιχεία x και y ανήκουν στο ίδιο σύνολο της διαµέρισης R, δηλαδή αν και µόνον αν υπάρχει z X έτσι ώστε x, y [z] R. Αυτό όµως

7 7 συµβαίνει αν και µόνον αν z R x και z R y και εποµένως αν και µόνον αν x R y αν και µόνον αν (x, y R. Συνοψίζοντας δείξαµε ότι : x, y X : (x, y R R (x, y R Εποµένως R R = R και άρα R S : ΦΨ(R = R. Ετσι δείξαµε ότι οι απεικονίσεις Φ και Ψ είναι 1-1 και επί και επιπλέον : Ψ = Φ Απεικονίσεις και Σχέσεις Ισοδυναµίας. Εστω f : X Y µια απεικόνιση µεταξύ των µηκενών συνόλων X, Y. Ορίζουµε µια σχέση επί του συνόλου X ως εξής : R f = { (x, y X X f(x = f(y } Η επόµενη πρόταση δείχνει ότι η σχέση R f είναι µια σχέση ισοδυναµίας επί του X. Πρόταση 1.9. Η σχέση R f είναι µια σχέση ισοδυναµίας επί του X. Επιπλέον, x X: [x] Rf = f 1{ f(x } = { x X f(x = f(x } και η απεικόνιση f επάγει µια 1-1 και επί απεικόνιση f : X/R f Im(f, f([x] Rf = f(x Επιπλέον αν g : X Z είναι µια απεικόνιση έτσι ώστε να ικανοποιείται η ακόλουθη συνθήκη : τότε υπάρχει µοναδική απεικόνιση x, y X : f(x = f(y = g(x = g(y ( g : X/R f Z, έτσι ώστε : g π f = g όπου π f : X X/R f είναι η απεικόνιση κανονικής προβολής. Απόδειξη. Εστω x X. Τότε x Rf x διότι f(x = f(x. Άρα η σχέση R f είναι ανακλαστική. Εστω x, y X και υποθέτουµε ότι x Rf y. Τότε f(x = f(y. Άρα f(y = f(x και εποµένως y Rf x, δηλαδή η σχέση R f είναι συµµετρική. Εστω x, y, z X και υποθέτουµε ότι x Rf y και y Rf z. Τότε f(x = f(y και f(y = f(z. Προφανώς τότε f(x = f(z και εποµένως x Rf z, δηλαδή η σχέση R f είναι µεταβατική. Ετσι η σχέση R f είναι µια σχέση ισοδυναµίας επί του X. Εστω x X. Τότε : [x] Rf = { y X y Rf x } = { y X f(y = f(x } = { y X y f 1 ({f(x} } = f 1 ({f(x} Ορίζουµε τώρα µια απεικόνιση f : X/R f Im(f, f([x] Rf = f(x Η f είναι καλά ορισµένη: Εστω [x] Rf = [y] Rf. Τότε όπως γνωρίζουµε ϑα ισχύει x Rf y και από τον ορισµό της R f : f(x = f(y. Ετσι f([x] Rf = f(x = f(y = f([y] Rf και η f([x] Rf είναι καλά ορισµένη. Η f είναι 1-1 και επί: Προφανώς η f είναι επί, διότι αν y Im(f, τότε y = f(x για κάποιο x X, και εποµένως f([x] Rf = f(x = y. Εστω τώρα ότι f([x] Rf = f([y] Rf και εποµένως f(x = f(y. Εξ ορισµού ϑα έχουµε τότε x Rf y και από το Λήµµα 1.3 έπεται ότι [x] Rf = [y] Rf. Αυτό δείχνει ότι η f είναι 1-1. Τέλος έστω g : X Z µια απεικόνιση για την οποία ισχύει η σχέση (. Ορίζουµε τότε απεικόνιση g : X/R f Z, g([x] Rf = g(x

8 8 Η g είναι καλά ορισµένη διότι αν [x] Rf = [y] Rf, τότε όπως γνωρίζουµε ϑα ισχύει x Rf y και από τον ορισµό της R f : f(x = f(y. Λόγω της συνθήκης ( ϑα έχουµε τότε και g(x = g(y, δηλαδή g([x] Rf = g(x = g(y = g([y] Rf και η g είναι καλά ορισµένη. Επιπλέον (g π f (x = g(π f (x = g([x] Rf = g(x, x X = g π f = g Αν h: X/R f Z είναι µια άλλη απεικόνιση έτσι ώστε h π f = g, τότε, x X: h([x] Rf = h(π f (x = (h π f (x = g(x = (g π f (x = g(π f (x = g([x] Rf = g = h και άρα η g είναι η µοναδική απεικόνιση : X/R f Z η οποία ικανοποιεί την ιδιότητα g π f = g. Ορισµός Η σχέση ισοδυναµίας R f η οποία ορίζεται στο σύνολο X µέσω µιας απεικόνισης f : X Y καλείται η επαγόµενη από την f σχέση ισοδυναµίας στο σύνολο X. Παράδειγµα Εστω R µια σχέση ισοδυναµίας επί του συνόλου X. Τότε η απεικόνιση κανονικής προβολής π R : X X/R, π R (x = [x] R επάγει στο X την ίδια σχέση ισοδυναµίας : R = R πr. Πράγµατικά : x RπR y π R (x = π R (y [x] R = [y] R x R y Από την Πρόταση 1.9 έπεται ότι κάθε απεικόνιση f : X Y µπορεί να γραφεί ως σύνθεση f = i f π Rf (1 µιας απεικόνισης «Επι» π Rf : X X/R f, π Rf (x = [x] Rf (2 µιας απεικόνισης «1-1 και Επι» f : X/R f Im(f, f([x] Rf = f(x (3 µιας απεικόνισης «1-1» Σχηµατικά : i : Im(f Y, X f i(y = y Y π Rf X/R f f i Im(f Παρατηρούµε ότι αν η f είναι απεικόνιση επί, τότε η επαγόµενη απεικόνιση f : X/R f Y είναι 1-1 και επί. Συµπερασµατικά : 1. Κάθε σχέση ισοδυναµίας R σε ένα σύνολο X ορίζει µια απεικόνιση επί, την π R : X X/R, της οποίας η επαγόµενη σχέση ισοδυναµίας επί του X συµπίπτει µε την R. 2. Κάθε απεικόνιση επί f : X Y ορίζει µια σχέση ισοδυναµίας επί του X, την R f, η ο- ποία επάγει µια απεικόνιση επί π Rf : X X/R f και υπάρχει µια 1-1 και επί απεικόνιση f : X/R f Y.

9 Πράξεις. Στην παρούσα παράγραφο ϑα µελετήσουµε σύντοµα την έννοια της πράξης επί ενός συνόλου καθώς και την έννοια της πράξης η οποία είναι συµβατή µε µια σχέση ισοδυναµίας. Ορισµός Μια (διµελής πράξη επί ενός συνόλου X είναι µια απεικόνιση µ : X X X, (x, y µ(x, y Συνήθως µια πράξης µ επι ενός συνόλου X παρίσταται µε ένα εκ των συµβόλων : µ =,,, #,, +,,,... Αντίστοιχα, το αποτέλεσµα της πράξης στο Ϲεύγος στοιχείων (x, y του X, συµβολίζεται ως εξής : µ(x, y = x y, x y, x y, x#y, x y, x + y, x y, x y,... Ορισµός Εστω X ένα µη-κενό σύνολο, και µια πράξη επί του X. : X X X, 1. Η πράξη καλείται προσεταιριστική αν ισχύει : x, y, z X : 2. Η πράξη καλείται µεταθετική αν ισχύει : x, y X : (x, y = x y x (y z = (x y z x y = y x 3. Υποθέτουµε ότι η πράξη επί του X είναι προσεταιριστική. α. Ενα στοιχείο e X καλείται ουδέτερο στοιχείο του X ως προς την πράξη, αν ισχύει : x X : x e = x = e x Υπενθυµίζουµε αν υπάρχει ουδέτερο στοιχείο για την πράξη στο σύνολο X, τότε αυτό είναι µοναδικό. ϐ. Αν e X είναι ένα ουδέτερο στοιχείο της πράξης, και x X, τότε ένα στοιχείο x X καλείται αντίθετο του x, αν ισχύει : x x = e = x x Υπενθυµίζουµε ότι επειδή η πράξη επί του X είναι προσεταιριστική, αν e είναι το ουδέτερο στοιχείο της, τότε αν υπάρχει το αντίθετο στοιχείο x του x X, τότε αυτό είναι µοναδικό Πράξεις συµβιβαστές µε σχέσεις ισοδυναµίας. Υποθέτουµε τώρα ότι : X X X είναι µια πράξη επί του συνόλου X. Εστω R X X µια σχέση ισοδυναµίας επί του συνόλου X. Στα επόµενα εδάφια σηµαντικό ϱόλο ϑα παίξουν πράξεις επί συνόλων οι οποίες είναι συµβιβαστές µε µια δοσµένη σχέση ισοδυναµίας µε την έννοια του ακόλουθου ορισµού. Ορισµός Η σχέση ισοδυναµίας R είναι συµβιβαστή µε την πράξη αν ισχύει : x, y, z, w X : x R z και y R w = x y R z w Πρόταση Εστω : X X X µια πράξη επί του συνόλου X, και έστω R X X µια σχέση ισοδυναµίας επί του συνόλου X η οποία είναι συµβιβαστή µε την πράξη. 1. Ορίζοντας : X/R X/R X/R, αποκτούµε µια πράξη επί του συνόλου-πηλίκο X/R. ([x] R, [y] R := [x] R [y] R = [x y] R

10 10 2. Αν η πράξη επί του X είναι προσεταιριστική ή µεταθετική, τότε η πράξη επί του X/R είναι προσεταιριστική ή µεταθετική αντίστοιχα. 3. Εστω e X ένα ουδέτερο στοιχείο για την πράξη επί του X. Τότε το [e] R X/R είναι ουδέτερο στοιχείο για την πράξη επί του X/R. 4. Υποθέτουµε ότι η πράξη έχει ένα ουδέτερο στοιχείο e X, και έστω x ένα στοιχείο του X για το οποίο υπάρχει ένα αντίθετο στοιχείο x X. Τότε το στοιχείο [x ] R είναι ένα αντίθετο στοιχείο του [x] R για την πράξη επί του X/R. Απόδειξη. 1. Αρκεί ο ορισµός [x] R [y] R = [x y] R να είναι ανεξάρτητος της επιλογής αντιπροσώπων των κλάσεων ισοδυναµίας. ηλαδή αρκεί να δείξουµε ότι : x, y, z, w X : [x] R = [z] R και [y] R = [w] R = [x y] R = [z w] R Ισοδύναµα αρκεί να δείξουµε ότι x, y, z, w X : x R z και y R w = x y R z w Η τελευταία συνεπαγωγή όµως ισχύει ακριβώς διότι η σχέση R είναι συµβιβαστή µε την πράξη. Τα υπόλοιπα µέρη της Πρότασης προκύπτουν άµεσα από τους ορισµούς και αφήνονται ως άσκηση. Η επαγόµενη πράξη στο σύνολο-πηλίκο X/R µιας συµβιβαστής µε την πράξη σχέσης ισοδυναµίας R επί του X σχηµατικά περιγράφεται µε το ακόλουθο µεταθετικό διάγραµµα X X X π R π R π R X/R X/R X/R δηλαδή : (π R π R = π R, όπου η απεικόνιση π R π R ορίζεται ως (π R π R (x, y = ([x] R, [y] R. Φυσικά δεν είναι όλες οι πράξεις σε ένα σύνολο συµβιβαστές µε µια δοσµένη σχέση ισοδυναµίας επί του συνόλου. Ας δούµε ένα παράδειγµα µιας σχέσης ισοδυναµίας R που ορίζεται επί ενός συνόλου X, η οποία δεν είναι συµβιβαστή µε µία από τις πράξεις του συνόλου : Παράδειγµα Επί του συνόλου των ακεραίων αριθµών ϑεωρούµε τις γνωστές πράξεις της πρόσθεσης και πολλαπλασιασµού : + : Z Z Z, (z 1, z 2 z 1 + z 2 : Z Z Z, (z 1, z 2 z 1 z 2. Επιπλέον, ϑεωρούµε την ακόλουθη διαµέριση του Z: Z = A B, όπου A = {0, ±1}, B = {±2, ±3, ±4,... }. Η προηγούµενη διαµέριση, χορηγεί τη σχέση ισοδυναµίας R = {(α, β α, β A} {(γ, δ γ, δ B}. Η πράξη της πρόσθεσης δεν είναι συµβιβαστή µε τη σχέση R, αφού [0] R = [1] R, ενώ [0] R = [0 + 0] R [2] R = [1 + 1] R. Αλλά η πράξη του πολλαπλασιασµού είναι συµβιβαστή µε τη σχέση R, αφού [0] R = [1] R = [ 1] R, όπως επίσης [±2] R = [±3] R = [±4] R =... και όλα τα δυνατά γινόµενα α β, όπου α, β A ή B αντιστοίχως δίνουν και πάλι στοιχείο από το A ή το B αντιστοίχως. Ισως το πιο χαρακτηριστικό παράδειγµα πράξης η οποία είναι συµβιβαστή µε µια σχέση ισοδυναµίας είναι το ακόλουθο :

11 11 Παράδειγµα Εστω n 1. Στο σύνολο Z ϑεωρούµε τη σχέση R n η οποία ορίζεται ως εξής : a, b Z : a Rn b n a b Τότε η R n είναι µια σχέση ισοδυναµίας επί του Z, και είναι εύκολο να διαπιστωθεί ότι η R n είναι συµβιβαστή µε την πράξη της πρόσθεσης και πολλαπλασιασµού ακεραίων. Παρατήρηση Εστω : X X X µια πράξη επί του συνόλου X, και έστω R X X µια σχέση ισοδυναµίας επί του συνόλου X η οποία είναι συµβιβαστή µε την πράξη. Τότε η πράξη [x] R [y] R := [x y] R επί του X/R είναι η µοναδική πράξη επί του X/R η οποία ικανοποιεί την παραπάνω σχέση. ηλαδή αν : X/R X/R X/R, ([x] R, [y] R := [x] R [y] R είναι µια πράξη επί του X/R για την οποία ισχύει : [x] R [y] R = [x y] R, [x] R, [y] R X/R, τότε : [x] R, [y] R X/R. = : X/R X/R X/R, δηλαδή : [x] R [y] R = [x] R [y] R Το παρακάτω πρόβληµα ϑα αναλυθεί διεξοδικά αργότερα - στην ϑεωρία (κανονικών υποοµάδων µιας οµάδας : Πρόβληµα Εστω : G G G µια πράξη επί του µη κενού συνόλου G. Εστω H G ένα µη-κενό υποσύνολο του G. Αν το Ϲεύγος (G, είναι οµάδα, και R H είναι η σχέση τότε : x, y G : x RH y x 1 y H (1 Πότε η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G; (2 Αν η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G, πότε η R H είναι συµβιβαστή µε την πράξη της G;

12 12 2. Υποοµάδες και το Θεώρηµα του Langrange Στο παρόν εδάφιο ενδιαφερόµαστε κυρίως για την έννοια της υποοµάδας, δηλαδή ένα υποσύνολο H G µιας οµάδας (G, το οποίο αποτελεί οµάδα µε πράξη τον περιορισµό της πράξης στο υποσύνολο H. Στη συνέχεια ϑα δούµε ότι κάθε υποοµάδα H ορίζει µια ενδιαφέρουσα σχέση ισοδυναµίας επί του συνόλου G, και επιπλέον, όταν το σύνολο G είναι πεπερασµένο, η επαγόµενη διαµέριση του G, δέιχνει ότι το πλήθος των στοιχείων της H διαιρεί το πλήθος των στοιχείων του G. Υπενθυµίζουµε πρώτα την έννοια της οµάδας. Ορισµός 2.1. Μια οµάδα είναι ένα Ϲεύγος (G,, όπου G είναι ένα σύνολο, και : G G G, (x, y = x y µια πράξη επί του G, για την οποία ικανοποιούνται τα ακόλουθα αξιώµατα : 1. Η πράξη είναι προσεταιριστική, δηλαδή ισχύει : x, y, z X : x (y z = (x y z 2. Υπάρχει ένα στοιχείο e G, το οποίο καλείται ουδέτερο ή ταυτοτικό στοιχείο της G, έτσι ώστε να ισχύει : x X : x e = x = e x 3. Για κάθε x G, υπάρχει ένα στοιχείο x G, το οποίο καλείται αντίστροφο ή αντίθετο στοιχείο του x, έτσι ώστε να ισχύει : x G, x G : Μια οµάδα (G, καλείται αβελιανή ή µεταθετική αν : 4. Η πράξη είναι µεταθετική, δηλαδή ισχύει : x, y X : x x = e = x x x y = y x Ορισµός 2.2. Η τάξη µιας οµάδας (G, ορίζεται να είναι το πλήθος G των στοιχείων του συνόλου G και από τώρα και στο εξής ϑα συµβολίζεται ως εξής : o(g := G Η οµάδα (G, καλείται πεπερασµένη, αν o(g <. ιαφορετικά η (G, καλείται άπειρη οµάδα. Συµβολισµός : Αν (G, είναι µια οµάδα, τότε συνήθως το αντίστροφο ή αντίθετο στοιχείο του x G ϑα το συµβολίζουµε µε x 1, δηλαδή ϑα γράφουµε : x = x 1. Επίσης για την πράξη της οµάδας συνήθως ϑα γράφουµε ή τίποτα. Για παράδειγµα ϑα γράφουµε : x y = x y 1 ή xy 1 Σε κάποιες περιπτώσεις το ουδέτερο στοιχείο e ϑα συµβολίζεται µε 1 ή 1 G προς αποφυγή σύγχυσης. Αν η οµάδα (G, είναι αβελιανή, τότε για την πράξη ϑα χρησιµοποιούµε (συνήθως αλλά όχι πάντα τον συµβολισµό «+». Επίσης το αντίστροφο ή αντίθετο στοιχείο του x G ϑα το συµβολίζουµε µε x, δηλαδή ϑα γράφουµε : x = x. Για παράδειγµα ϑα γράφουµε : x y = x + ( y := x y Τέλος το ουδέτερο στοιχείο e ϑα συµβολίζεται µε 0 ή 0 G προς αποφυγή σύγχυσης.

13 Βασικές ιδιότητες υποοµάδων. Από τώρα και στο εξής : (G, συµβολίζει µια οµάδα. Υπενθυµίζουµε ότι ένα υποσύνολο H της οµάδας G είναι κλειστό στην πράξη : G G G αν : a, b H : a b H Αν το υποσύνολο H είναι κλειστό στην πράξη της G, τότε η απεικόνιση επάγει µια πράξη : H H H στην H. Προφανώς η επαγόµενη πράξη είναι προσεταιριστική. Ορισµός 2.3. Εστω (G, µια οµάδα και H ένα υποσύνολο τής G. Το H καλείται υποοµάδα της G, αν : (1 Το υποσύνολο H G είναι κλειστό στην πράξη της G. (2 Το Ϲεύγος (H, αποτελεί οµάδα. Λήµµα 2.4. Εστω ότι (G, είναι µια οµάδα και ότι H είναι µια υποοµάδα της. (α Το ουδέτερο στοιχείο e H τής H συµπίπτει µε το ουδέτερο στοιχείο e G τής G. (ϐ Για κάθε a H, το αντίστροφό του a 1 H στην H συµπίπτει µε το αντίστροφό του a 1 στην G. Απόδειξη. (α Παρατηρούµε ότι e H e H = e H, επειδή το e H είναι το ουδέτερο τής H και e H e G = e H, επειδή το e G είναι το ουδέτερο τής G. Εποµένως, τα e H και e G είναι και τα δύο λύσεις τής εξίσωσης e H x = e H, ως προς x, στην οµάδα G. Αφού όµως η G είναι οµάδα, η προηγούµενη εξίσωση έχει ακριβώς µια λύση. Εποµένως, e H = e G. (ϐ Παρατηρούµε ότι a a 1 H = e G και a a 1 = e G. Συνεπώς, τα a 1 H και a 1 είναι και τα δύο λύσεις τής εξίσωσης a x = e G, ως προς x, στην οµάδα G. Αφού όµως η G είναι οµάδα, η προηγούµενη εξίσωση έχει ακριβώς µια λύση, εποµένως, a 1 H = a 1. Λήµµα 2.5. Εστω (G, µια οµάδα και H ένα υποσύνολό της. Τότε τα ακόλουθα είναι ισοδύναµα : (1 Το H αποτελεί µια υποοµάδα τής (G,. (2 H και : a, b H : a b 1 H Απόδειξη. (1 = (2 Εστω ότι το H είναι µια υποοµάδα. Τότε, σύµφωνα µε τον ορισµό τής υποοµάδας, το H δεν είναι το κενό σύνολο. Επιπλέον, αν το (a, b είναι στοιχείο τού H H, τότε το b ανήκει στην H και κατόπιν το b 1 ανήκει στην H, ϐλ. Λήµµα 2.4(ϐ και επειδή η H είναι υποοµάδα, το a b 1 είναι επίσης στοιχείο τής H. (2 = (1 Υπάρχει κάποιο a G µε a H, αφού το H. Οµως τότε, το (a, a είναι στοιχείο τού H H και γι αυτό, από την υπόθεση, το στοιχείο a a 1 = e G είναι στοιχείο τού H. Για κάθε a H, το στοιχείο (e G, a είναι στοιχείο τού H H και γι αυτό, σύµφωνα µε την υπόθεση, το στοιχείο e G a 1 = a 1 είναι στοιχείο τού H. Θα δείξουµε τώρα ότι ο περιορισµός τής στο H H ορίζει µια απεικόνιση από το H H στο H, δηλαδή ότι αν (a, b H H, τότε το a b είναι στοιχείο τού H. Οταν όµως (a, b H H, τότε b H και όπως είδαµε παραπάνω το b 1 H. Συνεπώς, το Ϲεύγος (a, b 1 ανήκει στο H H και γι αυτό εφαρµόζοντας και πάλι την υπόθεση, το στοιχείο a (b 1 1 ανήκει στο H. Αλλά (b 1 1 = b, και εποµένως το στοιχείο a b είναι στοιχείο τού H. Τέλος, επειδή η είναι µια προσεταιριστική πράξη επί των στοιχείων τής G, είναι ϕανερό ότι παραµένει προσεταιριστική και επί των στοιχείων τού υποσυνόλου H. Εποµένως, η H είναι µια υποοµάδα τής G.

14 14 Παράδειγµα 2.6. Είναι γνωστό ότι το σύνολο GL n (K = { A M n (K det(a 0 } των n n αντιστρέψιµων πινάκων µε συνιστώσες από ένα σώµα K εφοδιασµένο µε την πράξη του πολλαπλασιασµού πινάκων αποτελεί µια οµάδα. Θεωρούµε το υποσύνολο SL n (K = { A GL n (K det(a = 1 } Θα εφαρµόσουµε το Λήµµα 2.5 για να αποδείξουµε ότι το SL n (K είναι υποοµάδα της GL n (K. Πα- ϱατηρούµε πρώτα ότι το SL n (K, αφού ο ταυτοτικός n n πίνακας I n είναι στοιχείο του συνόλου SL n (K. Τώρα σύµφωνα µε το Λήµµα 2.5, αρκεί να αποδείξουµε ότι αν A, B SL n (K, τότε και ο πίνακας A B 1 ανήκει επίσης στο SL n (K. Πράγµατικά έχουµε det(a B 1 = det A det(b 1 = det A (det B 1 = 1 (1 1 = 1 Σε µερικές περιπτώσεις ο έλεγχος αν ένα υποσύνολο µιας υποοµάδας αποτελεί υποοµάδα, είναι εξαιρετικά απλός, όπως δείχνει το επόµενο Λήµµα : Λήµµα 2.7. Εστω (G, µια οµάδα και H ένα µη κενό υποσύνολό της µε πεπερασµένο το πλήθος στοιχεία. Αν το H είναι κλειστό ως προς την πράξη τής G, τότε το H αποτελεί µια υποοµάδα τής G. Απόδειξη. Το ότι το σύνολο H είναι κλειστό ως προς την πράξη σηµαίνει ότι a, b H, το στοιχείο a b ανήκει επίσης στην H και γι αυτό ορίζεται η πράξη : H H H, (a, b a b. Σύµφωνα µε τον Ορισµό 2.3 και το Λήµµα 2.4, για να είναι τώρα η H υποοµάδα τής G, πρέπει το ουδέτερο στοιχείο e G να ανήκει στο H και για κάθε a H, το αντίστροφό του a 1 (το οποίο υπάρχει στην G να ανήκει επίσης στο H. Αφού το H είναι πεπερασµένο σύνολο, µπορούµε να υποθέσουµε ότι H = {a 1, a 2,..., a n } µε n N. Ας είναι a ένα οποιοδήποτε αλλά συγκεκριµένο στοιχείο τής H. Θεωρούµε την απεικόνιση l a : H H, a i l a (a i := a a i. Η l a είναι µια «1 1» απεικόνιση, αφού αν a i, a j είναι στοιχεία τής H µε l a (a i = l a (a j, τότε a a i = a a j και εποµένως 1 a 1 (a a i = a 1 (a a j, δηλαδή a i = a j. Αλλά µια «1 1» απεικόνιση από το πεπερασµένο σύνολο H στον εαυτό του είναι και «επί». Συνεπώς, υπάρχει κάποιο a j H µε a = l a (a j, δηλαδή a = a a j. Άρα, e G = a j H. Ωστε το ουδέτερο στοιχείο τής G ανήκει στην H. Επιπλέον, αφού η l a είναι «επί» και αφού τώρα γνωρίζουµε ότι e G H, συµπεραίνουµε ότι υπάρχει a j H µε l a (a j = e G, δηλαδή a a j = e G. Συνεπώς, a j = a 1 και έτσι το a j H είναι το αντίστροφο τού στοιχείου a Οµάδες προερχόµενες από την οµάδα Z των ακεραίων. Θεωρούµε την οµάδα (Z, + των ακεραίων µε πράξη την πρόσθεση. Η (Z, + είναι µια άπειρη αβελιανή οµάδα. Στην παρούσα ενότητα ϑα δούµε κάποιες οµάδες οι οποίες προέρχονται από την οµάδα Z Η υποοµάδα (nz, +. Για κάθε n 1, το σύνολο nz = { nm Z m Z } ακεραίων πολλαπλασίων του n είναι προφανώς µια (άπειρη υποοµάδα του Z. 1 Το αντίστροφο a 1 τού a υπάρχει στην G, αφού η G είναι οµάδα.

15 Η προσθετική οµάδα (Z n, +. Εστω n 1. Στο σύνολο Z ϑεωρούµε τη σχέση R n η οποία ορίζεται ως εξής : a, b Z : a Rn b n a b Τότε η R n είναι µια σχέση ισοδυναµίας επί του Z, η οποία είναι συµβιβαστή µε την πράξη της πρόσθεσης και εποµένως από την Πρόταση 1.17 το σύνολο πηλίκο Z n = { [k] Z 0 k n 1 } αποτελεί οµάδα µε πράξη την πρόσθεση η οποία επάγεται από την πρόσθεση ακεραίων. (Z n, + είναι µια πεπερασµένη αβελιανή οµάδα µε n το πλήθος στοιχεία. Η οµάδα Η πολλαπλασιαστική οµάδα (U(Z n,. Η παραπάνω σχέση ισοδυναµίας R n είναι επίσης συµ- ϐατή µε την πράξη του πολλαπλασιασµού στο σύνολο Z των ακεραίων. Ετσι αποκτούµε µιοα καλά ορισµένη πράξη πολλαπλασιασµού : Z n Z n Z n, [a] n [b] n = [ab] n Προφανώς αυτή η πράξη είναι προσεταιριστική και µεταθετική και έχει το στοιχείο [1] n ως ταυτοτικό στοιχείο. Οµως το Ϲεύγος (Z n, δεν αποτελεί οµάδα διότι υπάρχουν στοιχεία του Z n τα οποία δεν έχουν αντίστροφο ως προς την πράξη του πολλαπασιασµού, π.χ. το [0] n. Αυτό που πρέπει λοιπόν να κάνουµε για να αποκτήσουµε δοµή οµάδας είναι να περιορισθούµε στο σύνολο των στοιχείων του Z n τα οποία έχουν αντίστροφο ως προς την πράξη του πολλαπλασιασµού. Οµως : το στοιχείο [k] n έχει πολλαπλασιαστικό αντίστροφο στο σύνολο Z n (k, n = 1 Πραγµατικά : αν (k, n = 1, τότε ως γνωστόν υπάρχουν ακέραιοι u, v Z: Z n ϑα έχουµε : uk + vn = 1. Τότε στο [u] n [k] n + [v] n [n] n = [1] n = [u] n [k] n + [v] n [0] n = [1] n = [u] n [k] n + [0] n = [1] n = [u] n [k] n = [1] n = [k] n [u] n Εποµένως το στοιχείο [k] n είναι αντιστρέψιµο µε αντίστροφο το στοιχείο [u] n. ισχύει, τότε Αντίστροφα αν αυτό [u] n [k] n = [uk] n = [1] n = n/1 uk = 1 uk = nv = uk+nv = 1 = (n, k = 1 Εποµένως το Ϲεύγος (U(Z n,, όπου : U(Z n = { [k] n Z n (k, n = 1 } αποτελεί µια, προφανώς πεπερασµένη αβελιανή, οµάδα. Η οµάδα U(Z n καλείται η οµάδα των αντιστρεψίµων στοιχείων του Z n και η τάξη της είναι ίση µε : ϕ(n = { k Z 1 k n & (k, n = 1 } την τιµή της συνάρτησης ϕ του Euler στο n.

16 Υποοµάδες και Σχέσεις Ισοδυναµίας. Εστω (G, µια οµάδα. Ως συνήθως συµβολίζουµε µε e το ουδέτερο στοιχείο της οµάδας G και µε a 1 το αντίστροφο του στοιχείου a G. Για κάθε υποσύνολο H G του συνόλου G, ορίζουµε τις ακόλουθες σχέσεις R H και H R επί του G: Πρόταση 2.8. Τα ακόλουθα είναι ισοδύναµα : x, y G : x RH y x 1 y H x, y G : x H R y x y 1 H (1 Το υποσύνολο H είναι υποοµάδα της (G,. (2 Η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G. (3 Η σχέση H R είναι σχέση ισοδυναµίας επί του συνόλου G. Απόδειξη. (1 = (2 Θα έχουµε : x G: x RH x διότι x 1 x = e H επειδή η H είναι υποοµάδα. x, y G, έστω x RH y και άρα x 1 y H. Επειδή η H είναι υποοµάδα, έπεται ότι (x 1 y 1 H = y 1 (x 1 1 = y 1 x H και άρα y RH x. x, y, z G, έστω x RH y και y RH z. Τότε x 1 y H και y 1 z H. Επειδή η H είναι υποοµάδα ϑα έχουµε : και άρα x RH z. (x 1 y (y 1 z = x 1 y y 1 z = x 1 e z = x 1 z H Εποµένως η σχέση R H είναι σχέση ισοδυναµίας επί του συνόλου G. (2 = (1 Θα έχουµε : Επειδή x G: x RH x και e G, ϑα έχουµε e RH e δηλαδή e 1 e = e H. Ετσι e H και ιδιαίτερα H. Εστω x, y H. Τότε : H x = e x = e 1 x = e RH x και H y = e y = e 1 y = e RH y Επειδή η σχέση R H είναι σχέση ισοδυναµίας, ϑα έχουµε : x RH e και e RH y, δηλαδή x 1 e = x 1 H και y 1 e = y 1 H. Ιδιαίτερα : x 1 H, x H. Τέλος από τις παραπάνω σχέσεις ϑα έχουµε x 1 RH e και e RH y 1. Λόγω της µεταβατικής ιδιότητας ϑα έχουµε : x 1 RH y 1 το οποίο σηµαίνει ότι (x 1 1 y 1 = x y 1 H. Απο το Λήµµα 2.5 τότε έπεται ότι το υποσύνολο H είναι υποοµάδα της G. Η απόδειξη (1 (3 είναι παρόµοια και αφήνεται ως άσκηση. Από τωρα και στο εξής υποθέτουµε ότι: το υποσύνολο H είναι µια υποοµάδα της οµάδας (G,. Τότε γνωρίζουµε ότι οι σχέσεις R H και H R είναι σχέσεις ισοδυναµίας επί του συνόλου G. Για κάθε x G, συµβολίζουµε µε : [x] H = { y G y RH x } και H[x] = { y G y H R x } την κλάση ισοδυναµίας του x G ως προς τις σχέσεις ισοδυναµίας R H και H R αντίστοιχα. Λήµµα 2.9. x G: [x] H = x H := { x h G h H } H[x] = H x := { h x G h H }

17 17 Απόδειξη. Για την πρώτη σχέση ϑα έχουµε (η δεύτερη αποδεικνύεται παρόµοια: [x] H = { y G y RH x } = { y G x RH y H } = { y G x 1 y H } = = { y G x 1 y = h H } = { y G y = x h, h H } = { x h G h H } = x H Ορισµός Η κλάση ισοδυναµίας [x] H του στοιχείου x G ως προς την σχέση ισοδυναµίας R H καλείται αριστερό σύµπλοκο του x ως προς την υποοµάδα H και συµβολίζεται ως εξής : x H. Η κλάση ισοδυναµίας H [x] του στοιχείου x G ως προς την σχέση ισοδυναµίας H R καλείται δεξιό σύµπλοκο του x ως προς την υποοµάδα H και συµβολίζεται ως εξής : H x. Λήµµα (1 x G: τα σύµπλοκα x H και H x έχουν το ίδιο πλήθος στοιχείων. (2 Τα σύνολα-πηλίκα G/R H και G/ H R έχουν το ίδιο πληθος στοιχείων, δηλαδή : Το πλήθος των διακεκριµµένων αριστερών συµπλόκων της H στην G συµπίπτει µε το πλήθος των διακεκριµµένων δεξιών συµπλόκων της H στην G. Απόδειξη. (1 Για κάθε x G, ορίζοντας φ : x H H x, φ(x h = h x ϐλέπουµε εύκολα ότι αποκτούµε µια καλά ορισµένη απεικόνιση η οποία είναι 1-1 και επί. (2 Ορίζοντας ψ : G/R H G/ H R, ψ(x H = H x 1 ϑα δείξουµε ότι η φ είναι µια 1-1 και επί απεοκόνιση. Κατ αρχήν η ψ είναι καλά ορισµένη : έστω x H = y H και άρα x RH y. Τότε x 1 y H. Εστω x 1 y = h H. Τότε x 1 = h y 1 H y 1 = H [y 1 ]. Οπως γνωρίζουµε τότε τα στοιχεία x 1 και y 1 ορίζουν την ίδια κλάση ισοδυναµίας ως προς την σχέση ισοδυναµίας H R και εποµένως ϑα έχουµε H [x 1 ] = H [y 1 ]. Αυτό όµως σηµαίνει ότι H x 1 = H y 1 και άρα ψ(x H = ψ(y H, δηλαδή η ψ είναι καλά ορισµένη. Εστω ψ(x H = ψ(y H, δηλαδή H x 1 = H y 1 ή ισοδύναµα H [x 1 ] = H [y 1 ]. Τότε όµως x 1 H R y 1 και άρα x 1 (y 1 1 H. ηλαδή x 1 y H και εποµένως x 1 y = h H. Τότε y = x h x H = [x] H και άρα [y] H = [x] H = y H = x H. Εποµένως η ψ είναι 1-1. Εστω H [z] = H z G/ H R. Τότε προφανώς ψ([z 1 ] H = ψ(z 1 H = H (z 1 1 = H z και άρα η ψ είναι επί. Από τώρα και στο εξής: εργαζόµαστε µε την σχέση ισοδυναµίας R H : x, y G : x RH y x 1 y H Ανάλογα συµπεράσµατα ισχύουν για την σχέση ισοδυναµίας H R. Λήµµα Εστω x, y G. Τότε οι κλάσεις ισοδυναµίας [x] H και [y] H έχουν το ίδιο πλήθος στοιχείων. Ακριβέστερα η απεικόνιση είναι 1-1 και επί. φ : [x] H = x H [y] H = y H, φ(x h = y h Απόδειξη. Εστω φ(x h 1 = φ(x h 2, δηλαδή y h 1 = y h 2. Τότε προφανώς, από τον Νόµο ιαγραφής, ϑα έχουµε h 1 = h 2 και άρα x h 1 = x h 2. Εποµένως η ψ είναι 1-1. Αν y h y H, τότε ψ(x h = y h και άρα η ψ είναι επί.

18 18 Πόρισµα Εστω (G, µια οµάδα και H G µια υποοµάδα της G. Τότε : x G : o(h = H = x H Απόδειξη. Θέτοντας y = e στο παραπάνω Λήµµα, ϑα έχουµε ότι τα σύµπλοκα e H και x H έχουνε το ίδιο πλήθος στοιχείων. Οµως προφανώς και εποµένως, x G: e H = { e h G h H } = { h G h H } = H o(h = H = x H 2.4. Το Θεώρηµα του Langrange. Εστω, όπως και πριν, (G, µια οµάδα και H G µια υποοµάδα της G. Συµβολίζουµε µε G/H = G/R H = { [x] H G x G } = { x H G x G } το σύνολο-πηλίκο της G ως προς τη σχέση ισοδυναµίας R H. Το σύνολο G/H καλείται το σύνολο των αριστερών συµπλόκων της H στην G. Οπως γνωρίζουµε το σύνολο υποσυνόλων G/H αποτελεί µια διαµέριση του G και άρα ϑα έχουµε : G = [x] H = x H x G Ορισµός Εστω (G, µια οµάδα και H G µια υποοµάδα της G. Το πλήθος των στοιχείων του συνόλου G/H καλείται ο δείκτης της H στην G και συµβολίζεται µε : [G : H]. Ετσι ο δείκτης [G : H] της H στην G είναι το πλήθος των διακεκριµµένων αριστερών συµπλόκων της H στην G. Σύµφωνα µε το Λήµµα 2.11 ο δείκτης [G : H] της H στην G είναι επίσης το πλήθος των διακεκριµ- µένων δεξιών συµπλόκων της H στην G. Ιδιαίτερα αν η οµάδα G είναι πεπερασµένη, τότε και η υποοµάδα H ϑα είναι πεπερασµένη και το σύνολο των διακεκριµµένων κλάσεων ισοδυναµίας των στοιχείων της ως προς τη σχέση ισοδυναµίας R H ϑα είναι πεπερασµένο. ηλαδή το σύνολο-πηλίκο G/H των αριστερών συµπλόκων της H στην G ϑα είναι πεπερασµένο. Είδαµε ότι το πλήθος των αριστερών συµπλόκων µιας υποοµάδας είναι ίσο µε το πληθος των δεξιών συµπλόκων της υποοµάδας. Αυτό δεν σηµαίνει ότι ένα αριστερό σύµπλοκο είναι και δεξιό : x G Παράδειγµα Θεωρούµε την συµµετρική οµάδα : S 3 = { (1, (12, (13, (23, (123, (132 } Τότε H = { (1, (12 } είναι µια υποοµάδα της S 3 και τα διεκεκριµµένα αριστερά σύµπλοκα της H στην S 3 είναι : { (1, (12 }, { (13, (123 }, { (23, (132 } Βλέπουµε ότι το δεξιό σύµπλοκο H(13 = { (13, (132 } δεν συµπίπτει µε κανένα αριστερό σύµπλοκο. Γενικότερα ϐλέπουµε ότι τα δεξιά σύµπλοκα της H της S 3 είναι { (1, (12 }, { (13, (132 }, { (23, (123 } άρα είναι όπως περιµένουµε τρία και κανένα δεξιό σύµλοκο (εκτός του H δεν συµπίπτει µε κανένα αριστερό σύµλοκο. Εστω τώρα (G, µια πεπερασµένη οµάδα και H µια υποοµάδα της G. Εστω :

19 (1 o(g = n (2 o(h = m (3 [G : H] = k και έστω G/H = { [x 1 ] H, [x 2 ] H,, [x k ] H } = { x1 H, x 2 H,, x k H }. Επειδή τα υποσύνολα [x 1 ] H, [x 2 ] H,, [x k ] H αποτελούν µια διαµέριση του G, έπεται ότι ϑα έχουµε : G = [x 1 ] H [x2 ] H [xk ] H και [x i ] H [xj ] H =, 1 i j k 19 Το ακόλουθο Θεώρηµα, το οποίο οφείλεται στον Langrange και είναι ϑεµελιώδες στην Θεωρία Ο- µάδων, δείχνει ότι µε τους παραπάνω συµβολισµούς : n = m k, δηλαδή η τάξη της H διαιρεί την τάξη της G: Θεώρηµα ( Langrange (1771 Εστω G µια πεπερασµένη οµάδα και H µια υποοµάδα της G. Τότε : o(g = o(h [G : H] Εποµένως η τάξη µιας υποοµάδας H µιας πεπερασµένης οµάδας G διαιρεί την τάξη της οµάδας : Απόδειξη. Επειδή o(h / o(g G = [x 1 ] H [x2 ] H [xk ] H είναι µια διαµέριση του συνόλου G, σύµφωνα µε την Παρατήρηση 1.6, ϑα έχουµε : k k G = [x i ] H = x i H i=1 Από το Πόρισµα 2.13, έχουµε : x i H = o(h, i = 1, 2,, k. Ετσι η παραπάνω σχέση δίνει : k o(g = G = x i H = k H = k o(h = [G : H] o(h i= Οι Υποοµάδες της S 3. Υπενθυµίζουµε ότι : S 3 = { (1, (12, (13, (23, (123, (132 } i=1 Πίνακας πολλαπλασιασµού της S 3 (1 (12 (13 (23 (123 (132 (1 (1 (12 (13 (23 (123 (132 (12 (12 (1 (132 (123 (23 (13 (13 (13 (123 (1 (132 (12 (23 (23 (23 (132 (123 (1 (13 (12 (123 (123 (13 (23 (12 (132 (1 (132 (132 (23 (12 (13 (1 (123 Τα ακόλουθα υποσύνολα είναι όλες οι υποοµάδες της S 3 : (1 Υποµοάδες Τάξης 1: H 0 = {(1}. (2 Υποµοάδες Τάξης 2: H 1 = {(1, (12}, H 2 = {(1, (13}, H 3 = {(1, (23}. (3 Υποµοάδες Τάξης 3: H 4 = {(1, (123, (132}. (4 Υποµοάδες Τάξης 6: H 5 = S 3.

20 20 Εποµένως ϐλέπουµε οτι για την S 3 ισχύει το αντίστροφο του Θεωρήµατος του Langrange, δηλαδή για κάθε διαιρέτη της o(s 3 υπάρχει (τουλάχιστον µια υποοµάδα της S 3 µε τάξη τον διαιρέτη Το αντίστροφο του Θεωρήµατος του Langrange και η Εναλλάσσουσα Οµάδα A 4. Το αντίστροφο τοθ Θεωρήµατος του Langrange γενικά δεν ισχύει. Οπως ϑα δούµε αργότερα, υπάρχουν πεπερασµένες οµάδες G και διαιρέτες k της τάξης της οµάδας έτσι ώστε η G να µην έχει υποοµάδες τάξης k. Η µικρότερη οµάδα για την οποία το αντίστροφο τοθ Θεωρήµατος του Langrange δεν ισχύει, είναι η εναλλάσσουσα οµάδα A 4 µε τάξη 12. Η A 4 έχει υποοµάδες τάξης 1, 2, 3, 4, 12 αλλά δεν έχει καµµία υποοµάδα τάξης 6. Υπενθυµίζουµε ότι η A 4 είναι η υποοµάδα της συµµετρικής οµάδας S 4 η οποία αποτελείται από τις άρτιες µεταθέσεις : A 4 = { (1, (123, (124, (134, (234, (132, (142, (143, (243, (12(34, (13(24, (14(23 } Ειδικότερα η A 4 αποτελείται, εκτός από την ταυτοτική µετάθεση (1, από τους οκτώ 3-κύκλους και τα τρία γινόµενα των ξένων 2-κύκλων. Παρακάτω, χάριν ευκολίας και για µεταγενέστερη χρήση, δίνουµε τον πίνακα πολλαλπασιασµού της οµάδας A 4 : Πίνακας πολλαπλασιασµού της A 4 (1 (123 (124 (134 (234 (132 (142 (143 (243 (12(34 (13(24 (14(23 (1 (1 (123 (124 (134 (234 (132 (142 (143 (243 (12(34 (13(24 (14(23 (123 (123 (132 (13(24 (234 (12(34 (1 (143 (14(23 (124 (134 (243 (142 (124 (124 (14(23 (142 (13(24 (123 (134 (1 (243 (12(34 (143 (132 (234 (134 (134 (124 (12(34 (143 (13(24 (14(23 (234 (1 (132 (123 (142 (243 (234 (234 (13(24 (134 (14(23 (243 (142 (12(34 (123 (1 (132 (143 (124 (132 (132 (1 (243 (12(34 (134 (123 (14(23 (142 (13(24 (234 (124 (143 (142 (142 (234 (1 (132 (14(23 (13(24 (124 (12(34 (143 (243 (134 (123 (143 (143 (12(34 (123 (1 (142 (243 (13(24 (134 (14(23 (124 (234 (132 (243 (243 (143 (14(23 (124 (1 (12(34 (132 (13(24 (234 (142 (123 (134 (12(34 (12(34 (243 (234 (142 (124 (143 (134 (132 (123 (1 (14(23 (13(24 (13(24 (13(24 (142 (143 (243 (132 (234 (123 (124 (134 (14(23 (1 (12(34 (14(23 (14(23 (134 (132 (123 (143 (124 (243 (234 (142 (13(24 (12(34 (1 Πρόταση Η εναλλάσσουσα οµάδα A 4 τάξης 12: (1 έχει υποοµάδες τάξης 1, 2, 3, 4, και 12. (2 δεν έχει υποοµάδα τάξης 6. Απόδειξη. (2 Υποθέτουµε ότι H είναι µια υποοµάδα της A 4 µε o(h = 6. Τότε προφανώς ο δείκτης [A 4 : H] = 2 και εποµένως η H έχει 2 διακεκριµµένα αριστερά σύµπλοκα στην A 4. Θα δείξουµε ότι κάθε στοιχείο της A 4 το οποίο είναι της µορφής g 2, όπου g A 4, ανήκει στην H: M = { g 2 A 4 g A 4 } H ( Πράγµατι : έστω g A 4. Αν g H, τότε g 2 H διότι η H είναι υποοµάδα της A 4. Αν g / H, τότε τα σύµπλοκα (1H = H και gh, δεν συµπίπτουν, διότι διαφορετικά αν H = gh, τότε g H που είναι άτοπο. Άρα επειδή τα σύµπλοκα (1H = H και gh είναι διαφορετικά και επειδή η H

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη

Σηµειώσεις Θεωρίας Αριθµών. Θ. Θεοχάρη-Αποστολίδη Σηµειώσεις Θεωρίας Αριθµών Θ. Θεοχάρη-Αποστολίδη Ευχαριστώ ιδιαίτερα τη ϕοιτήτριά µου Μαρίνα Παλαιστή για τη µεταφορά του χειρογράφου µου σε κείµενο "tex" Κεφάλαιο 1 Βασικές Ιδιότητες Ισοδυναµιών Η ϑεωρία

Διαβάστε περισσότερα

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 Περιεχόμενα 1 Βασικές Έννοιες 1 1.1 Ορισμοί - παραδείγματα.............................. 1 1.2 Υποομάδες και Σύμπλοκα..............................

Διαβάστε περισσότερα

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση

Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Η εξίσωση του Fermat για τον εκθέτη n=3. Μία στοιχειώδης προσέγγιση Αλέξανδρος Γ. Συγκελάκης 6 Απριλίου 2006 Περίληψη Θέµα της εργασίας αυτής, είναι η απόδειξη οτι η εξίσωση x 3 + y 3 = z 3 όπου xyz 0,

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις Σελίδα 1 από 6 Κεφάλαιο 5 Οι χώροι R και C Περιεχόµενα 5.1 Ο Χώρος R Πράξεις Βάσεις Επεξεργασµένα Παραδείγµατα Ασκήσεις 5. Το Σύνηθες Εσωτερικό Γινόµενο στο Ορισµοί Ιδιότητες Επεξεργασµένα Παραδείγµατα

Διαβάστε περισσότερα

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009

3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 3 o Καλοκαιρινό Μαθηµατικό σχολείο Ε.Μ.Ε. Λεπτοκαρυά Πιερίας 2009 ιαιρετότητα και Ισοτιµίες Β και Γ Λυκείου Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Ιούλιος 2009 1 ιαιρετοτητα και Ισοτιµιες ΠΡΟΛΟΓΟΣ Το

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

= L = L = L ( ) ( )( ) ( )( ) ( )( )

= L = L = L ( ) ( )( ) ( )( ) ( )( ) ΟΜΑ ΕΣ Σηµείωση Χρήσιµο είναι ο αναγνώστης να έχει υπόψη του τα παρατιθέµενα στην ενότητα Σύνολα, 7 Βασικό παράδειγµα οµάδας µε πεπερασµένο πλήθος στοιχεία, αποτελεί το σύνολο των µεταθέσεων στοιχείων

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a

ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Παρουσίαση εργασίας φοιτητή (x,a) 1) (xy)a=x(ya) x,y G και a A 1) a(xy)=(ax)y 2) ae=a ικτυωτά διαγράµµατα και οµάδες αυτοµορφισµών Ν. Λυγερός Παρουσίαση εργασίας φοιτητή Θα µιλήσουµε για το θεώρηµα του Lagrange. Αλλά προτού φτάσουµε εκεί, θα ήθελα να εισάγω ορισµένες έννοιες που θα µας

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 25 Μαιου 2013 2

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος

Ανάλυση Fourier και Ολοκλήρωµα Lebesgue. Απόστολος Γιαννόπουλος Ανάλυση Fourier και Ολοκλήρωµα Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αθηνών Αθήνα 2015 Περιεχόµενα 1 Μέτρο Lebesgue 3 1.1 Εξωτερικό µέτρο Lebesgue........................... 3

Διαβάστε περισσότερα

Σηµειώσεις στις συναρτήσεις

Σηµειώσεις στις συναρτήσεις Σηµειώσεις στις συναρτήσεις 4 Η έννοια της συνάρτησης Ο όρος «συνάρτηση» χρησιµοποιείται αρκετά συχνά για να δηλώσει ότι ένα µέγεθος, µια κατάσταση κτλ εξαρτάται από κάτι άλλο Και στα µαθηµατικά ο όρος

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις

Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις ΚΕΦΑΛΑΙΟ 2 Μετασχηµατισµοί Laplace, Αναλογικά Συστήµατα, ιαφορικές Εξισώσεις 2.1 ΕΙΣΑΓΩΓΗ Όπως έχουµε δει, για να προσδιορίσουµε τις αποκρίσεις ενός κυκλώµατος, πρέπει να λύσουµε ένα σύνολο διαφορικών

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2013-2014 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

τέτοιες συναρτήσεις «πραγµατικές συναρτήσεις µε µία πραγµατική µεταβλητή». Σε αυτή

τέτοιες συναρτήσεις «πραγµατικές συναρτήσεις µε µία πραγµατική µεταβλητή». Σε αυτή Κεφάλαιο Ορίζουσες Η Συνάρτηση Ορίζουσα Είµαστε όλοι εξοικειωµένοι µε συναρτήσεις όπως η f(x) sin x και η f(x) x οι οποίες αντιστοιχίζουν έναν πραγµατικό αριθµό f(x) σε κάθε πραγµατική τιµή της µετα- ϐλητής

Διαβάστε περισσότερα

Κεφάλαιο 0 Χρήσιµα στοιχεία σχετικά µε τα σύνολα

Κεφάλαιο 0 Χρήσιµα στοιχεία σχετικά µε τα σύνολα Κεφάλαιο 0 Χρήσιµα στοιχεία σχετικά µε τα σύνολα Υποθέτουµε ότι ο αναγνώστης είναι ήδη κάπως εξοικειωµένος µε τον συνηθισµένο καθηµερινό συνολοθεωρητικό εξοπλισµό. Παρ όλα αυτά, θα παρουσιάσουµε συνοπτικά

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Πέµπτη, 19/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1 Μαθηµατική

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συναρτήσεις, Ορια, Συνέχεια ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των συναρτήσεων,

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

Πρόβληµα 2 (15 µονάδες)

Πρόβληµα 2 (15 µονάδες) ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε

Διαβάστε περισσότερα

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος

Μαθηματικά. Γ'Γυμνασίου. Μαρίνος Παπαδόπουλος Μαθηματικά Γ'Γυμνασίου Μαρίνος Παπαδόπουλος ΠΡΟΛΟΓΙΚΟ ΣΗΜΕΙΩΜΑ Σας καλωσορίζω στον όµορφο κόσµο των Μαθηµατικών της Γ Γυµνασίου. Τα µαθηµατικά της συγκεκριµένης τάξης αποτελούν ίσως το αποκορύφωµα των

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Mathematics and its Applications, 5th

Mathematics and its Applications, 5th Μαθηµατικα για Πληροφορικη Εφαρµογες και τεχνικες Ηλιας Κουτσουπιάς Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών Σχετικα µε το µαθηµα Σχετικα µε το µαθηµα Το µαθηµα πραγµατευεται καποια ϑεµατα

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράγωγος

Κεφάλαιο 6 Παράγωγος Σελίδα από 5 Κεφάλαιο 6 Παράγωγος Στο κεφάλαιο αυτό στόχος µας είναι να συνδέσουµε µία συγκεκριµένη συνάρτηση f ( ) µε µία δεύτερη συνάρτηση f ( ), την οποία και θα ονοµάζουµε παράγωγο της f. Η τιµή της

Διαβάστε περισσότερα

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

Εφαρμοσμένη Κρυπτογραφία Ι

Εφαρμοσμένη Κρυπτογραφία Ι Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ησυνάρτησηφ(.) του Euler Για κάθε ακέραιο n> 0, έστω φ(n) το πλήθος των ακεραίων στο διάστημα

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις Σελίδα 1 από 9 Κεφάλαιο 8 1 Γραµµικές Απεικονίσεις Τα αντικείµενα µελέτης της γραµµικής άλγεβρας είναι σύνολα διανυσµάτων που χαρακτηρίζονται µε την αλγεβρική δοµή των διανυσµατικών χώρων. Όπως λοιπόν

Διαβάστε περισσότερα

Γεώργιος Δ Ακρίβης Τμήμα Πληροφορικής Πανεπιστήμιο Ιωαννίνων ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (πανεπιστημιακές παραδόσεις) ΙΩΑΝΝΙΝΑ, 2003 i Πρόλογος Η Γραμμική Άλγεβρα αποτελεί, μαζί με την Ανάλυση, το θεμέλιο των μαθηματικών

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

Shmei seic Paradìsewn Pragmatik c Anˆlushc (TrÐth èkdosh)

Shmei seic Paradìsewn Pragmatik c Anˆlushc (TrÐth èkdosh) ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Shmei seic Paradìsewn Pragmatik c Anˆlushc (TrÐth èkdosh) Σπύρος Αργυρός Μάρτιος 2011 1 2 Perieqìmena 1 Οι ϕυσικοί αριθμοί

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

e-mail: s97130@math.aegean.gr soviet@teivos.samos.aegean.gr http://iris.math.aegean.gr/software/kerkis/

e-mail: s97130@math.aegean.gr soviet@teivos.samos.aegean.gr http://iris.math.aegean.gr/software/kerkis/ A Π α ν ε π ι ς τ ή µ ι ο Α ι γ α ί ο υ Σ χ ο λ ή Θ ε τ ι κ ώ ν Ε π ι ς τ η µ ώ ν Τ µ ή µ α Μ α θ η µ α τ ι κ ώ ν Πτυχιακή εργασία Εκπονητής Χουσαΐνοβ Αλέξανδρος Α.Μ. 311/1997130 Σάµος, 2002 Τίτλος : Θεωρία

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ

ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ ΕΛΑΧΙΣΤΑ ΑΝΩ ΜΕΓΙΣΤΑ ΚΑΤΩ ΦΡΑΓΜΑΤΑ Κασαπίδης Γεώργιος Μαθηµατικός Στο άρθρο αυτό µελετάµε την πιο χαρακτηριστική ιδιότητα του συνόλου R των πραγµατικών αριθµών. ΟΡΙΣΜΟΣ 1 Ένα σύνολο Α από πραγµατικούς

Διαβάστε περισσότερα

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-

4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες,

ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ. Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, ΘΕΩΡΙΑ ΠΙΝΑΚΩΝ Ορισμός 1: Ένας πίνακας Α με m γραμμές και n στήλες, παριστάνεται με την εξής ορθογώνια διάταξη: α11 α12 α1n α21 α22 α2n A = αm1 αm2 αmn Ορισμός 2: Δύο πίνακες Α και Β είναι ίσοι, και γράφουμε

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών

5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Κεφάλαιο 5 ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 5.1 Συναρτήσεις δύο ή περισσοτέρων µεταβλητών Οταν ένα µεταβλητό µέγεθος εξαρτάται αποκλειστικά από τις µεταβολές ενός άλλου µεγέθους, τότε η σχέση που συνδέει

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ. Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Ασκήσεις και Θέµατα στη Μαθηµατική Ανάλυση Ι Γιάννης Σαραντόπουλος Αθήνα 7 Οκτωβρίου 5 Περιεχόµενα Συµβολισµός

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ

4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ 1 4.2 4.3 ΕΥΚΛΕΙ ΕΙΑ ΙΑΙΡΕΣΗ ΙΑΙΡΕΤΟΤΗΤΑ ΘΕΩΡΙΑ 1. Θεώρηµα Αν α, β ακέραιοι µε β 0, τότε υπάρχουν µοναδικοί ακέραιοι κ και υ, έτσι ώστε α = κβ + υ µε 0 υ < β. 2. Τέλεια διαίρεση Αν το υπόλοιπο υ της Ευκλείδειας

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι Σηµειώσεις. Γεώργιος Ραχώνης Αναπληρωτής καθηγητής Τµήµα Μαθηµατικών, Α.Π.Θ.

ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι Σηµειώσεις. Γεώργιος Ραχώνης Αναπληρωτής καθηγητής Τµήµα Μαθηµατικών, Α.Π.Θ. ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι Σηµειώσεις Γεώργιος Ραχώνης Αναπληρωτής καθηγητής Τµήµα Μαθηµατικών, Α.Π.Θ. Θεσσαλονίκη, 2014 2 Copyright c Γεώργιος Ραχώνης, 2014. All rights re reserved. Περιεχόµενα 1 Προκαταρκτικά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους Άσκηση 10.1: Στο παρακάτω σχήμα φαίνονται δέκα λατινικοί χαρακτήρες (A, F, K, M, R, S, T, V, X και Z) με τη μορφή γράφων. Ποιοι από αυτούς είναι ισομορφικοί;

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

of Mathematics των I.Stewart και D.Tall, Oxford University Press.

of Mathematics των I.Stewart και D.Tall, Oxford University Press. Σημειώσεις του Μαθήματος Μ1124 Θεμέλια των Μαθηματικών Βασισμένες στο βιβλίο των I.Stewart και D.Tall Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2012 Εισαγωγή Αρχίζοντας τη μελέτη των μαθηματικών

Διαβάστε περισσότερα

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ

2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ .3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m.

D 1 D, D n+1 D n, D n G n, diam(d n ) < 1 n. B := ρ(x n, x m ) diam(d m ) < 1 m. Σηµειώσεις Συναρτησιακής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Περιεχόµενα 1. Το ϑεώρηµα κατηγορίας του Baire 4 2. Χώροι Banach 5 3. Φραγµένοι γραµµικοί τελεστές 8 4. Χώροι πεπερασµένης

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά. Nικόλαος Aτρέας

Σηµειώσεις. Eφαρµοσµένα Μαθηµατικά. Nικόλαος Aτρέας Σηµειώσεις Eφαρµοσµένα Μαθηµατικά Nικόλαος Aτρέας ΘΕΣΣΑΛΟΝΙΚΗ Περιεχόµενα Eισαγωγή στους µιγαδικούς αριθµούς Στοιχειώδεις µιγαδικές συναρτήσεις 3 Οριο-Συνέχεια-Παράγωγος Αναλυτικές Συναρτήσεις 4 Μιγαδική

Διαβάστε περισσότερα

H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ»

H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ» H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ» Δημ. Ι. Μπουνάκης Σχ. Σύμβουλος Μαθηματικών (Δημοσιεύτηκε στο τεύχος 6, 2009, του περιοδικού «φ») Στο τελευταίο τεύχος (5 ο, 2008) του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός

Διαβάστε περισσότερα