Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8"

Transcript

1 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1. Εστω (R, +, ) µια τριάδα η οποία ικανοποιεί όλα τα αξιώµατα του ορισµού δακτυλίου µε µονάδα, εκτός από την µεταθετικότητα της πρόσθεσης. Να δείξετε οτι ισχύει η µεταθετικότητα της πρόσθεσης και η τριάδα (R, +, ) είναι ένας δακτύλιος. Λύση. Εστω a, b R. Θα δείξουµε ότι : a + b b + a. Χρησιµοποιώντας την επιµεριστική ιδιότητα του πολλαπλασιασµού ως προς την πρόσθεση του R, υπολογίζουµε µε δύο τρόπους το γινόµενο : (a + 1 R )(b + 1 R ): (a + 1 R )(b + 1 R ) a(b + 1 R ) + 1 R (b + 1 R ) ab + a1 R + 1 R b + 1 R 1 R ab + a + b + 1 R (a + 1 R )(b + 1 R ) (a + 1 R )b + (a + 1 R )1 R ab + 1 R b + a1 R + 1 R 1 R ab + b + a + 1 R Χρησιµοποιώντας τον νόµο της διαγραφής στην οµάδα (R, +), ϐλέπουµε άµεσα ότι ϑα έχουµε : a, b R : a + b b + a Σχόλιο. Αν στην Άσκηση 1 για την τριάδα (R, +, ) δεν απαιτήσουµε την ύπαρξη µονάδας, τότε το συµπέρασµα της Άσκησης δεν ισχύει. Πράγµατι, έστω (R, +) µια (προσθετική) µη-αβελιανή οµάδα µε παραπάνω από ένα στοιχεία, για παράδειγµα η συµµετρική οµάδα S 3 τάξης 6. Ορίζουµε πράξη πολλαπλασιασµού ως εξής : r s 0 R, r, s R. Τότε η τριάδα (R, +, ) ικανοποιεί όλα τα αξιώµατα του ορισµού δακτυλίου χωρίς µονάδα (αν υπάρχει µονάδα 1 R, τότε 1 R 1 R 1 R 0 R και εποµένως R {0 R } το οποίο είναι άτοπο διότι R > 1), εκτός από την µεταθετικότητα της πρόσθεσης. Η τελευταία ιδιότητα δεν είναι δυνατόν να ισχύει, διότι η οµάδα R δεν είναι αβελίανή. Η παραπάνω ανάλυση δείχνει ότι κάθε αβελιανή οµάδα R µπορεί να ϑεωρηθεί ως δακτύλιος (χωρίς µονάδα αν R > 1) µε τετριµµένο πολλαπλασιασµό. Υπενθύµιση για υποδακτυλίους : υποδακτύλιος του R αν : (1) x, y S: x y S. (2) x, y S: xy S. Ενα µη-κενό υποσύνολο S R ενός δακτυλίου R, καλείται Αν S είναι ένας υποδακτύλιος του R, τότε επειδή το S είναι κλειστό στις πράξεις πρόσθεσης και πολλαπλασιασµού του R, οι πράξεις επάγουν πράξεις πρόσθεσης και πολλαπλασιασµού επί του S, και µε αυτές τις πράξεις το σύνολο S είναι ένας δακτύλιος. Επισηµαίνουµε κάποιες χρήσιµες πληροφορίες για υποδακτυλίους :

2 2 (1) Ενας δακτύλιος µε µονάδα R µπορεί να έχει υποδακτυλίους S µε µονάδα διαφορετική από την µονάδα του R: Πράγµατι ο δακτύλιος R M 2 (Z) έχει µονάδα τον πίνακα 1 0 I και το υποσύνολο S { a 0 M (Z) a Z } είναι ένας υποδακτύλιος του R µε µονάδα τον πίνακα 1 0 I (2) Ενας δακτύλιος µε µονάδα R µπορεί να έχει υποδακτυλίους S χωρίς µονάδα: Πράγµατι ο δακτύλιος Z έχει µονάδα, και το υποσύνολο 2Z είναι υποδακτύλιος του Z ο οποίος δεν έχει µονάδα. (3) Ενας δακτύλιος χωρίς µονάδα R µπορεί να έχει υποδακτυλίους S µε µονάδα: Πράγµατι ο δακτύλιος R { a b M (Z) a, b Z } δεν έχει µονάδα, και το υποσύνολο S { a M 2 (Z) a Z } είναι ένας υποδακτύλιος του R µε µονάδα τον πίνακα Ασκηση 2. Ποια από τα επόµενα σύνολα µαζί µε τις αναφερόµενες πράξεις αποτελούν δακτύλιους; (1) R {a + b 3 a, b Z} µαζί µε τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού πραγµατικών αριθµών (2) R {a + bi a, b Q}, όπου i 2 1, µαζί µε τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού {( µιγαδικών ) αριθµών } a b (3) R a, b R µαζί µε τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού 0 a πινάκων { } a b (4) R a, b R µαζί µε τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού b a πινάκων (5) R {A M 2 2 (R) det A 0} µαζί µε τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού πινάκων (6) R {m/n Q n περιττός } µαζί µε τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού ϱητών αριθµών (7) R {ri r R}, όπου i 2 1, µαζί µε τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού µιγαδικών αριθµών

3 Λύση. (1) Το σύνολο R {a + b 3 a, b Z} είναι ένα µη κενό υποσύνολο του σώµατος R των πραγµατικών αριθµών και εύκολα ϐλέπουµε ότι το R είναι κλειστό στις πράξεις πρόσθεσης και πολλαπλασιασµού. Εποµένως το σύνολο R είναι υποδακτύλιος του R και εποµένως είναι δακτύλιος. (2) Το σύνολο R {a + bi a, b Q}, είναι ένα µη-κενό υποσύνολο του σώµατος C των µιγαδικών αριθµών και εύκολα ϐλέπουµε ότι το R είναι κλειστό στις πράξεις πρόσθεσης και πολλαπλασιασµού. Εποµένως {( το σύνολο ) R είναι } υποδακτύλιος του C και εποµένως είναι δακτύλιος. a b (3) Το σύνολο R a, b R είναι ένα µη-κενό υποσύνολο του δακτυλίου M 0 a 2 (R) των 2 2 πινάκων µε στοιχεία πραγµατικούς αριθµούς και εύκολα ϐλέπουµε ότι το R είναι κλειστό στις πράξεις πρόσθεσης και πολλαπλασιασµού πινάκων. Εποµένως το σύνολο R είναι υποδακτύλιος του{( M 2 (R) και ) εποµένως } είναι δακτύλιος. a b (4) Το σύνολο R a, b R είναι ένα µη-κενό υποσύνολο του δακτυλίου M b a 2 (R) των 2 2 πινάκων µε στοιχεία πραγµατικούς αριθµούς και εύκολα ϐλέπουµε ότι το R είναι κλειστό στις πράξεις πρόσθεσης και πολλαπλασιασµού πινάκων. Εποµένως το σύνολο R είναι υποδακτύλιος του M 2 (R) και εποµένως είναι δακτύλιος. (5) Το σύνολο R {A M 2 (R) det A 0} µαζί µε τις συνήθεις πράξεις ( πρόσθεσης ) ( και ) πολλαπλασιασµού πινάκων δεν είναι δακτύλιος, διότι, π.χ., οι πίνακες και ανήκουν στο σύνολο R αλλά το άθροισµά τους είναι ο πίνακας ο οποίος δεν ανήκει στο 0 1 υποσύνολο R. (6) Το σύνολο R {m/n Q n περιττός } είναι ένα µη κενό υποσύνολο του σώµατος Q των ϱητών αριθµών και εύκολα ϐλέπουµε ότι το R είναι κλειστό στις πράξεις πρόσθεσης και πολλαπλασιασµού. Εποµένως το σύνολο R είναι υποδακτύλιος του Q και εποµένως είναι δακτύλιος. (7) Το σύνολο R {ri r R}, µαζί µε τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού µιγαδικών αριθµών δεν είναι δακτύλιος διότι, π.χ., ο µιγαδικός αριθµός i ανήκει στο R αλλά ii i 2 1 / R (ο µόνος πραγµατικός αριθµός ο οποίος ανήκει στο R είναι το 0). 3 { } u v Ασκηση 3. Να δειχθεί ότι το σύνολο H u, v C M v u 2 (C) µαζί µε τις συνήθεις πράξεις πρόσθεσης και πολλαπλασιασµού πινάκων αποτελεί έναν δακτύλιο διαίρεσης. Ο δακτύλιος H καλείται δακτύλιος διαίρεσης των τετρανίων του Hamilton. Λύση. Εύκολα ϐλέπουµε ότι το υποσύνολο H του δακτυλίου M 2 (C) των 2 2 πινάκων µιγαδικών αριθµών είναι κλειστό τσις πράξεις πρόσθεσης και πολλαπλασιασµού πινάκων. Εποµένως το σύνολο H είναι υποδακτύλιος του δακτυλίου( M 2 (C) ) και άρα είναι δακτύλιος. Επιπλέον ο δακτύλιος H έχει 1 0 µονάδα τον µοναδιαίο 2 2 πίνακα ο οποίος προφανώς ανήκει στο H. Μένει να δείξουµε ότι 0 1 κάθε µη-µηδενικό στοιχείο z w 0 A Z(H) w z είναι αντιστρέψιµο. Επειδή ο πίνακας A είναι αντιστρέψιµος ως στοιχείο του δακτυλίου M 2 (C) αν και µόνον αν η ορίζουσα det(a) 0, για να δείξουµε ότι ο µη-µηδενικός πίνακας A είναι αντιστρέψιµο στοιχείο του δακτυλίου H, αρκεί να δείξουµε διαδοχικά ότι : (1) det A 0, οπότε υπάρχει ο πίνακας A 1 M 2 (C), και

4 4 (2) Ο πίνακας A 1 ανήκει στο H. Υπολογίζοντας την ορίζουσα του πίνακα A ϐλέπουµε z w det zz + ww z w z 2 + w 2 και άρα det A 0 αν και µόνον αν z 2 + w 2 0 αν και µόνον αν z w 0 αν και µόνον αν A 0. Εποµένως, επειδή A 0, ϑα έχουµε ότι πράγµατι det A 0. Εποµένως υπάρχει ο αντίστροφος πίνακας A 1, ο οποίος όπως µπορούµε να υπολογίσουµε εύκολα είναι : A 1 1 z w z 2 + w 2 w z Ο πίνακας A 1 προφανώς ανήκει στον υποδακτύλιο H. Εποµένως δείξαµε ότι κάθε µη-µηδενικό στοιχείο του H είναι αντιστρέψιµο, και άρα ο δακτύλιος H είναι δακτύλιος διαίρεσης. Ο δακτύλιος διαίρεσης H δεν είναι σώµα διότι δεν είναι µεταθετικός, πχ. οι πίνακες i 0 0 i και ανήκουν στο H αλλά 0 i i 0 i 0 0 i i i 0 0 i i i 0 0 i Σχόλιο. Στον ορισµό του δακτυλίου H των τετρανίων του Hamilton, { } u v H u, v C M v u 2 (C) µπορούµε να χρησιµοποιήσουµε 4 4 πίνακες πραγµατικών αριθµών, και τότε µπορούµε να ταυτίσου- µε : a b c d H b a d c c d a b a, b, c, d R M 4 (C) d c b a a b όπου χρησιµοποιήσαµε την ταύτιση του µιγαδικού αριθµού a + bi µε τον 2 2 πίνακα και b a c d την ταύτιση του µιγαδικού αριθµού c + di µε τον 2 2 πίνακα. Επιπλέον ϑέτοντας d c I , I , J , K έπεται ότι : H { } ai 4 + bi + cj + dk a, b, c, d R M 4 (R)

5 5 Σχόλιο. Αν στον ορισµό του δακτυλίου H των τετρανίων του Hamilton στο παραπάνω σχόλιο όπου χρησιµοποιήσαµε 4 4 πίνακες πραγµατικών αριθµών, χρησιµοποιήσουµε το πεπερασµένο σώµα Z p, p: πρώτος, αντί του σώµατος των πραγµατικών αριθµών R, αποκτούµε έναν µη-µεταθετικό δακτύλιο µε µονάδα } H(Z p ) {ai 4 + bi + cj + dk a, b, c, d Z p M 4 (Z p ) ο οποίος έχει p 4 στοιχεία, και τα µόνα του ιδεώδη (έννοια την οποία ϑα συναντήσουµε στα επόµενα Κεφάλαια) είναι τα τετριµµένα : {0} και H(Z p ). Οµως σε αντίθεση µε τον δακτύλιο H των τετρανίων του Hamilton, ο δακτύλιος H(Z p ) δεν είναι δακτύλιος διαίρεσης. Αν ο δακτύλιος H(Z p ) ήταν δακτύλιος διαίρεσης, τότε επειδή το σύνολο H(Z p ) είναι πεπερασµένο, σύµφωνα µε ένα (δύσκολο) Θεώρηµα το οποίο οφείλεται στον Wedderburn (κά- ϑε πεπερασµένος δακτύλιος διαίρεσης είναι µεταθετικός, και άρα σώµα), ο δακτύλιος H(Z p ) ϑα ήταν µεταθετικός το οποίο είναι άτοπο. Μπορείτε να αποδείξετε, χωρίς τη χρήση του ϑεωρήµατος του Wedderburn, ότι ο δακτύλιος H(Z p ) δεν είναι δακτύλιος διαίρεσης ; Σύµφωνα µε την Άσκηση 15, αρκεί να δειχθεί ότι ο δακτύλιος H(Z p ) δεν έχει διαιρέτες τηου µηδενός. Ασκηση 4. Εστω ότι (R, +, ) είναι ένας δακτύλιος και ότι Z(R) είναι το υποσύνολο {r R r x x r, x R}. Να δειχθεί ότι το Z(R) αποτελεί έναν υποδακτύλιο του R. Ο υποδακτύλιος Z(R) καλείται κέντρο του δακτυλίου R. Λύση. Επειδή x0 R 0 R x0 R, x R, έπεται ότι 0 R Z(R) και ιδιαίτερα Z(R). Εστω r 1, r 2 Z(R), και x R. Τότε ϑα έχουµε : (1) (2) (r 1 r 2 )x r 1 x r 2 x xr 1 xr 2 x(r 1 r 2 ) r 1 r 2 Z(R) (r 1 r 2 )x r 1 (r 2 x) r 1 (xr 2 ) (r 1 x)r 2 (xr 1 )r 2 x(r 1 r 2 ) r 1 r 2 Z(R) Εποµένως το υποσύνολο Z(R) είναι ένας υποδακτύλιος του R. Σηµειώνουµε ότι αν ο δακτύλιος R έχει µονάδα, τότε επειδή 1 R x x x1 R, x R, ϑα έχουµε ότι 1 R Z(R). Ετσι ο υποδακτύλιος Z(R) έχει µονάδα, την µονάδα του δακτυλίου R: 1 Z(R) 1 R. Ασκηση 5. Να υπολογιστεί το κέντρο Z(H) του δακτυλίου των τετρανίων του Hamilton. Λύση. Εστω 1 1 Επειδή H, ϑα έχουµε : 1 1 ( z w w z z w A Z(H) w z ) ( z w w z Η παραπάνω ισότητα πινάκων δίνει άµεσα ότι : ) z + w z + w z + w w z w + z w + z z w w + z w w και z z z a R και w b R

6 6 Εποµένως : z w a b A M w z b a 2 (R) i 0 Από την άλλη πλευρά, επειδή H, ϑα έχουµε : 0 i a b i 0 i 0 a b ai bi ia bi b a 0 i 0 i b a bi ai bi ai bi bi b 0 και εποµένως z w a 0 A, a R w z 0 a z w a 0 Άρα αν ο πίνακας A ανήκει στο κέντρο Z(H), τότε A, για κάποιο a R. w z 0 a a 0 Αντίστροφα αν A H, a R, τότε εύκολα ϐλέπουµε ότι A Z(H). 0 a Άρα : Z(H) { } { } a a R a a R 0 a 0 1 Ασκηση 6. Να προσδιοριστούν όλοι οι διαιρέτες του µηδενός των επόµενων δακτυλίων : (1). Z 4, (2). Z 8, (3). Z 11, (4). Z 2 Z 2. Λύση. (1) Υπενθυµίζουµε ότι ένα στοιχείο [k] n Z n είναι διαιρέτης του µηδενός αν και µόνον αν (k, n) > 1. (Το µηδενικό στοιχείο ενός δακτυλίου δεν ϑεωρείται διαρέτης του µηδενός). Ετσι για τους δακτυλίους Z 4, Z 8, και Z 11, ϑα έχουµε : (α ) 1 k 3 και (k, 4) > 1 k 2. Άρα ο µόνος διαιρέτης του µηδενός στον δακτύλιο Z 4 είναι το στοιχείο [2] 4. (ϐ ) 1 k 8 και (k, 8) > 1 k 2, 4, 6. Άρα οι διαιρέτες το µηδενός στον δακτύλιο Z 8 είναι τα στοιχεία [2] 8, [4] 8, [6] 8. (γ ) 1 k 11 και (k, 11) > 1. Προφανώς κανένα στοιχείο του δακτυλίου Z 11 δεν είναι διαιρέτης του µηδενός. (2) Για τον δακτύλιο Z 2 Z 2, προφανώς οι διαιρέτες του µηδενός είναι τα στοιχεία : ([1] 2, [0] 2 ) και ([0] 2, [1] 2 ). Ασκηση 7. (1) Αν R είναι ένας δακτύλιος µε µονάδα και για κάθε r R ισχύει r 2 r, να δείξετε ότι ο R είναι µεταθετικός. ( Ενας δακτύλιος για τον οποίο ισχύει r 2 r, για κάθε r R, καλείται δακτύλιος του Boole). (2) Αν R είναι ένας δακτύλιος µε µονάδα και για κάθε r R ισχύει r 3 r, να δείξετε ότι ο R είναι µεταθετικός.

7 7 Λύση. (1) Εστω r R. Θα δείξουµε πρώτα ότι, r R: r + r 0 R ή ισοδύναµα : r r. (r + r) 2 r + r (r + r)(r + r) r + r r 2 + r 2 + r 2 + r 2 r + r r + r + r + r r + r Εποµένως από την τελευταία σχέση, µε χρήση του Νόµου ιαγραφής στην οµάδα (R, +), ϑα έχουµε : r R : r + r 0 R ή ισοδύναµα r r ( ) Εστω τώρα r, s R. Θα έχουµε : (r +s) 2 r +s (r +s)(r +s) r+s r 2 +rs+sr+s 2 r +s r +rs+sr+s r +s Εποµένως από την τελευταία σχέση, µε χρήση του Νόµου ιαγραφής στην οµάδα (R, +), ϑα έχουµε : r, s R : rs + sr 0 R ή ισοδύναµα rs sr ( ) Συνδυάζοντας τις σχέσεις ( ) και ( ), ϑα έχουµε : r, s R : rs sr δηλαδή ο δακτύλιος R είναι µεταθετικός Σχόλιο : Παρατηρούµε ότι στην παραπάνω απόδειξη δεν χρησιµοποιήσαµε πουθενά ότι ο δακτύλιος R έχει µονάδα. Ετσι η συνεπαγωγή r R : r 2 r r, s R : rs sr ισχύει και για δακτυλίους οι οποίοι δεν έχουν απαραίτητα µονάδα. Αυτό το συµπέρασµα ϑα µας ϕανεί χρήσιµο στο δεύτερο µέρος της Άσκησης. (2) Για κάθε x R έχουµε x 3 x. Συνεπώς : (x + x) 3 (x + x) x 3 + 3x 2 x + 3xx 2 + x 3 x + x x 3 + 3x 3 + 3x 3 + x 3 x + x 8x 3 2x 8x 2x Με χρήση του Νόµου διαγραφής στην αβελιανή οµάδα (R, +) ϑα έχουµε : x R : 6x 0 R (a) Χρησιµοποιώντας την ευκόλως αποδεικνυόµενη ταυτότητα σε τυχόντα δακτύλιο R: ϑα έχουµε : a, b R : (a b) 3 a 3 a 2 b aba + ab 2 ba 2 + bab + b 2 a b 3 (x 2 x) 3 x 6 x 5 x 5 + x 4 x 5 + x 4 x 3 x 6 3x 5 + 3x 4 x 3 (x 2 ) 3 3x 3 x 2 + 2x 3 x x 3 x 2 3xx 2 + 3xx x x 2 3x 3 + 2x 2 x x 2 3x + 3x 2 x 4x 2 4x Οµως από την υπόθεση έχουµε : (x 2 x) 3 x 2 x 4x 2 4x x 2 x και εποµένως από τον Νόµο ιαγραφής στην αβελιανή οµάδα (R, +) ϑα έχουµε : Θεωρούµε το σύνολο Τότε x, y R, ϑα έχουµε : και x R : 3x 2 3x (b) S { 3x x R } 3x + 3y 3(x + y) S (c 1 ) (3x)(3y) (x + x + x)(y + y + y) xy + xy + xy + xy + xy + xy + xy + xy + xy 9xy 6xy + 3xy

8 8 Επειδή από τη σχέση (α) έχουµε 6x 0 R, x R, από την παραπάνω σχέση έπεται ότι : (3x)(3y) 3xy S (c 2 ) Οι σχέσεις (c 1 ) και (c 2 ) δίνουν ότι το υποσύνολο S είναι ένας υποδακτύλιος του R. Επιπρόσθετα, χρησιµοποιώντας τις σχέσεις (a), (b), και (c 2 ), για κάθε z 3x S ϑα έχουµε z 2 (3x)(3x) 9x 2 3x 2 3x z Εποµένως σύµφωνα µε το πρώτο µέρος της Άσκησης, ο υποδακτύλιος S, ο οποίος δεν έχει απαραίτητα µονάδα, είναι µεταθετικός. Συνεπώς ϑα έχουµε : x, y R : (3x)(3y) (3y)(3x) 9xy 9yx 6xy + 3xy 6yx + 3yx Επειδή από τη σχέση (a) ισχύει : 6x 0 R, x R, από την παραπάνω σχέση έπεται ότι 3xy 3yx (d) Εργαζόµενοι όπως παραπάνω, αναπτύσσοντας τη σχέση (x + y) 3 x + y, µετά από αναγωγές οµοίων όρων, ϑα έχουµε ότι xy 2 + x 2 y + xyx + yx 2 + yxy + y 2 x 0 (e) και παρόµοια από την σχέση (x y) 3 x y ϑα έχουµε ότι xy 2 x 2 y xyx yx 2 + yxy + y 2 x 0 (f) Προσθέτοντας τις σχέσεις (e) και (f), παίρνουµε την εξής σχέση : 2xy 2 + 2yxy + 2y 2 x 0 (g) Πολλαπλασιάζουµε τη σχέση (g) πρώτα από αριστερά µε y και µετά από δεξιά µε y, και χρησιµοποιώντας ότι y 3 y, ϑα έχουµε τις σχέσεις 2xy + 2yxy 2 + 2y 2 xy 0 (h 1 ) Αφαιρώντας από την σχέση (h 1 ) την (h 2 ), ϑα έχουµε : 2yxy 2 + 2y 2 xy + 2yx 0. (h 2 ) 2xy 2yx (i) Τέλος αφαιρώντας την τελευταία σχέση από την (d), ϑα έχουµε, x, y R: xy yx Εποµένως ο δακτύλιος R είναι µεταθετικός. Ασκηση 8. Εστω (R, +, ) ένας δακτύλιος µε τουλάχιστον δύο στοιχεία και ο οποίος ικανοποιεί την επιπλέον ιδιότητα ότι για κάθε a R, a 0, υπάρχει ένα µοναδικό στοιχείο b R έτσι ώστε aba a. Να δειχθεί ότι : (1) ο R δεν διαθέτει διαιρέτες του µηδενός. (2) bab b.

9 9 Λύση. (3) ο R διαθέτει µοναδιαίο στοιχείο. (4) ο R είναι δακτύλιος διαίρεσης. (1) Εστω a, c R έτσι ώστε ac 0 R. Θα δείξουµε ότι : a 0 R ή c 0 R. Υποθέτουµε ότι a 0 R. Εστω b R το µοναδικό στοιχείο του δακτυλίου R έτσι ώστε aba a. Τότε ϑα έχουµε : a(b + c)a aba + aca aba + 0 R a(b + c)a aba a(b + c)a a Λόγω µοναδικότητας του στοιχείου b έτσι ώστε aba a, ϑα έχουµε b b + c και εποµένως από τον Νόµο ιαγραφής, έπεται ότι c 0 R. Παρόµοια δείχνουµε ότι αν c 0 R, τότε a 0 R. Άρα ο R δεν έχει διαιρέτες του µηδενός. (2) Επειδή, από το (1), ο R δεν έχει διαιρέτες του µηδενός, από τη Θεωρία γνωρίζουµε ότι ϑα ισχύουν οι Νόµοι της ιαγραφής στον R. Εποµένως για κάθε a R, a 0 R, ϑα έχουµε : aba a baba ba bab b (3) Θα δείξουµε ότι ο R έχει µοναδιαίο στοιχείο και µάλιστα αυτό είναι το στοιχείο ab, όπου 0 R a R και b R το µοναδικό στοιχείο έτσι ώστε : aba a. Εστω c R. Επειδή aba a, έπεται ότι ca caba και άρα c c(ab) ( ) Επειδή από το (2) έχουµε b bab, έπεται ότι bc babc και άρα c (ab) ( ) Από τις σχέσεις ( ) και ( ) έχουµε ότι (ab)c c c(ab), c R και άρα το ab R είναι το µοναδιαίο στοιχείο του R. (4) Εστω a 0. Τότε, επειδή aba a και λόγω του προηγούµενου ερωτήµατος (3) έπεται ότι ab 1 R, δηλαδή το στοιχείο b είναι ένα δεξιά αντίστροφο στοιχείο του a. Σηµειώνουµε ότι a, b 0 R, διότι διαφορετικά ϑα έχουµε 1 R 0 R και τότε ο R έχει µόνο ένα στοιχείο : R {0 R } το οποίο είναι άτοπο, διότι R > 1. Επίσης χρησιµοποιώντας τον Νόµο ιαγραφής (διότι a, b 0 R ), έχουµε : ab 1 R ab abab 1 R b b bab 1 R ba και άρα δείξαµε ότι ab 1 R ba, δηλαδή το στοιχείο a 0 R είναι αντιστρέψιµο και a 1 b είναι το αντίστροφό του. Συνεπώς κάθε µη-µηδενικό στοιχείο του R είναι αντιστρέψιµο και άρα ο δακτύλιος R είναι δακτύλιος διαίρεσης. Ασκηση 9. Να προσδιοριστούν τα αντιστρέψιµα στοιχεία των επόµενων δακτυλίων: (1). Z 10, (2). Z 2 Z 4, (3). Z[i], όπου i 2 1, (4). Z Z, (5). H. Λύση. Συµβολίζουµε µε U(R) την οµάδα των αντιστρεψίµων στοιχείων ενός δακτυλίου µε µοναδα R. (1) Ως γνωστόν ένα στοιχείο [k] n Z n είναι αντιστρέψιµο αν και µόνον αν (k, n) 1. Άρα για n 10 ϑα έχουµε : U(Z 10 ) { [1] 10, [3] 10, [7] 10, [9] 10 }

10 10 (2) Εύκολα ϐλέπουµε ότι ϑα έχουµε U(Z 2 Z 4 ) { ([1] 2, [1] 4 ), ([1] 2, [3] 4 ) } Γενικά ισχύει ότι αν R 1 R 2 είναι το ευθύ γινόµενο δύο δακτυλίων µε µονάδα, τότε εύκολα προκύπτει ότι : U(R 1 R 2 ) U(R 1 ) U(R 2 ) Επειδή U(Z 2 ) {[1] 2 } και U(Z 4 ) {[1] 4, [3] 4 }, έπεται πάλι ότι U(Z 2 Z 4 ) { ([1] 2, [1] 4 ), ([1] 2, [3] 4 ) }. (3) Εστω a + bi U(Z[i]). Τότε υπάρχει στοιχείο c + di Z[i] έτσι ώστε : (a + bi)(c + di) 1 Επειδή κάθε στοιχείο a + bi του δακτυλίου Z[i] είναι ιδιαίτερα ένας µιγαδικός αριθµός, µπο- ϱούµε να ϑεωρήσουµε το µέτρο του a + bi (a + bi)(a bi) a 2 + b 2. Ως γνωστόν ισχύει : Εποµένως (a + bi) (c + di) a + bi c + di (a + bi)(c + di) 1 (a + bi) (c + di) a + bi c + di 1 (a 2 + b 2 ) (c 2 + d 2 ) 1 Επειδή αναζητούµε ακέραιες λύσεις της εξίσωσης (a 2 +b 2 ) (c 2 +d 2 ) 1, προφανώς ϑα έχουµε ότι το στοιχείο a + bi είναι της µορφής 1 + 0i 1, 1 + 0i 1, 0 + 1i i, 0 1i i Αντίστροφα τα στοιχεία ±1, ±i είναι προφανώς αντιστρέψιµα στοιχεία του δακτυλίου Z[i]. Συνοψίζουµε : U(Z[i]) {1, 1, i, i} (4) Θα έχουµε : (n, m) U(Z Z) (k, l) Z Z : (n, m)(k, l) (1, 1) (k, l) Z Z : (nk, ml) (1, 1) Εποµένως : n ±1 και m ±1 U(Z Z) { (1, 1), (1, 1), ( 1, 1), ( 1, 1) } ιαφορετικά : U(Z Z) U(Z) U(Z) {1, 1} {1, 1} { (1, 1), (1, 1), ( 1, 1), ( 1, 1) }. (5) Τέλος ϑα έχουµε U(H) H διότι ο δακτύλιος H είναι δακτύλιος διαίρεσης, και άρα τα αντιστρέψιµα στοιχεία του είναι τα µη-µηδενικά στοιχεία του. Ασκηση 10. Ποιοι από τους επόµενους δακτύλιους είναι σώµατα; (1). Z[i], (2). Q Q, (3.) Z 13. Λύση. (1) Ο δακτύλιος Z[i] είναι µια ακέραια περιοχή η οποία δεν είναι σώµα διότι διαφορετικά κάθε µη-µηδενικό στοιχείο του ϑα ήταν αντιστρέψιµο. Σύµφωνα µε την προηγούµενη Άσκηση 9, τα µόνα αντιστρέψιµα στοιχεία του Z[i] είναι τα ±1, ±i. Άρα ο δακτύλιος Z[i] δεν είναι σώµα. (2) Ο δακτύλιος Q Q δεν είναι ακέραια περιοχή διότι έχει διαιρέτες του µηδενός, π.χ. τα µη- µηδενικά στοιχεία (1, 0) και (0, 1) τα οποία ικανοποιούν τη σχέση (1, 0)(0, 1) (0, 0). Εποµένως ο δακτύλιος Q Q δεν είναι σώµα.

11 11 (3) Επειδή ο δακτύλιος Z n είναι σώµα (αν και µόνον αν ο δακτύλιος Z n είναι ακέραια περιοχή) αν και µόνον αν n είναι πρώτος, έπεται ότι ο δακτύλιος Z 13 είναι σώµα. Ασκηση 11. Ποια είναι η χαρακτηριστική των επόµενων δακτυλίων; (1). Z 10 Z 8, (2). C, (3.) Z Z, (4). H, (5). Z 2 Z Z 3. Λύση. (1) Εστω ότι υπάρχει k 1 έτσι ώστε k1 Z10 Z 8 0 Z10 Z 8. Τότε : ([0] 10, [0] 8 ) 0 Z10 Z 8 k1 Z10 Z 8 k([1] 10, [1] 8 ) (k[1] 10, k[1] 8 ) ([k] 10, [k] 8 ) και εποµένως : [k] 10 [0] 10 και [k] 8 [0] 8 10 k και 8 k 40 [10, 8] k k 40 t, t 1 Αντίστροφα αν k 40 t 10(4 t) 8(5 t), t 1, τότε προφανώς [k] 10 [0] 10 και [k] 8 [0] 8, και τότε ϑα έχουµε k([1] 10, [1] 8 ) ([0] 10, [0] 8 ). Επειδή ο αριθµός k 40 είναι ο µικρότερος ϕυσικός µε αυτή την ιδιότητα, ϑα έχουµε : (2) Προφανώς char(z 10 Z 8 ) 40 char(c) 0 διότι δεν υπάρχει ϕυσικός n 1 έτσι ώστε nz 0, z C. (3) Προφανώς char(z Z) 0 διότι δεν υπάρχει ϕυσικός n 1 έτσι ώστε n(k, m) (0, 0), (k, m) Z Z. (4) Προφανώς char(h) 0 διότι δεν υπάρχει ϕυσικός n 1 έτσι ώστε na 0 H, A H. (5) Προφανώς char(z 2 Z Z 3 ) 0 διότι δεν υπάρχει ϕυσικός n 1 έτσι ώστε n([k] 2, l, [m] 3 ) ([0] 2, 0, [0] 3 ), ([k] 2, l, [m] 3 ) Z 2 Z Z 3. Υπενθυµίζουµε ότι µια απεικόνιση f : R S µεταξύ δακτυλίων R και S καλείται οµοµορφισµός δακτυλίων, αν : r, s R : f(r + s) f(r) + f(s) και f(rs) f(r)f(s) Ενας οµοµορφισµός δακτυλίων f : R S καλείται µονοµορφισµός, αντίστοιχα επιµορφισµός, αν η απεικόνιση f είναι 1-1, αντίστοιχα επί. Ο οµοµορφισµός δακτυλίων f καλείται ισοµορφισµός, αν ο f είναι µονοµορφισµός και επιµορφισµός. Ιδιαίτερα κάθε οµοµορφισµός δακτυλίων f : R S είναι οµοµορφισµός αβελιανών οµάδων f : (R, +) (S, +)

12 12 Ασκηση 12. Να προσδιοριστούν όλοι οι οµοµορφισµοί δακτυλίων φ: R 1 R 2, όπου: (1). R 1 Z, R 2 Z 3, (2). R 1 3Z, R 2 Z, (3). R 1 Z 4, R 2 Z 6, (4.) R 1 Z 6, R 2 Z 10, (5.) R 1 Z 12, R 2 Z 6, (6.) R 1 Q, R 2 Q. Λύση. (1) Εστω φ: Z Z 3, ένας οµοµορφισµός δακτυλίων. Τότε η φ είναι οµοµορφισµός των κυκλικών οµάδων Z 1 και Z 3 [1] 3. Επειδή ένας οµοµορφισµός απο µια κυκλική οµάδα καθορίζεται πλήρως από τις τιµές του στον γεννήτορα της κυκλικής οµάδας, για τον φ ϑα έχουµε τρείς επιλογές : και τότε ϑα έχουµε αντίστοιχα : φ(1) [0] 3 ή φ(1) [1] 3 ή φ(1) [2] 3 n Z : φ(n) [0] 3 ή φ(n) [n] 3 ή φ(n) [2n] 3 Οι δύο πρώτες επιλογές είναι ο µηδενικός οµοµορφισµός και ο ϕυσικός επιµορφισµός αντίστοιχα, και είναι προφανώς και οι δύο οµοµορφισµοί δακτυλίων. Η τελευταία επιλογή φ(n) [2n] 3 δεν είναι οµοµορφισµός δακτυλίων διότι διαφορετικά ϑα είχαµε : φ(4) φ(2 2) φ(2)φ(2) [2 4] 3 [2 2] 3 [2 2] 3 [8] 3 [4] 3 [4] 3 [2] 3 [1] 3 [1] 3 [2] 3 [1] το οποίο είναι άτοπο. Άρα υπάρχουνε δύο οµοµορφισµοί δακτυλίων Z Z 3 : φ(n) [0] 3 και φ(n) [n] 3 (2) Εστω φ: 3Z Z, ένας οµοµορφισµός δακτυλίων. Τότε η φ είναι οµοµορφισµός µεταξύ των κυκλικών οµάδων 3Z 3 και Z 1. Επειδή ένας οµοµορφισµός απο µια κυκλική οµάδα καθορίζεται πλήρως από τις τιµές του στον γεννήτορα της κυκλικής οµάδας, για τον φ ϑα έχουµε Θα πρέπει επίσης να έχουµε : φ(3) k, k Z, και τότε φ(3n) nφ(3) nk φ(3 3) φ(3) φ(3) 3k k k 3k k 2 k(k 3) 0 k 0 ή k 3 Εποµένως ϑα έχουµε, n Z: (α) για k 0: φ(n) 0 (ο µηδενικός οµοµορφισµός), και (β) για k 3: φ(3n) 3n. Από το Θεώρηµα των Θεωρητικών Θεµάτων, έπεται ότι η οµάδα Hom(Z n, Z m ) των οµοµορφισµών οµάδων Z n Z m είναι ισόµορφη µε την κυκλική οµάδα Z (n,m). (3) Επειδή (4, 6) 2, ϑα έχουµε ότι υπάρχουν δύο οµοµορφισµοί οµάδων Z 4 Z 6. Ο πρώτος είναι ο µηδενικός οµοµορφισµός φ([k] 4 ) [0] 6 και ο οποίος είναι προφανώς και οµοµορφισµός δακτυλίων, και δεύτερος είναι ο οµοµορφισµός φ([k] 4 ) [3k] 6 ο οποίος εύκολα ϐλέπουµε ότι είναι οµοµορφισµός δακτυλίων. Εποµένως ϑα έχουµε δύο οµοµορφισµούς δακτυλίων, [k] 4 Z 4 : φ([k] 4 ) [0] 6 και φ([k] 4 ) [3k] 6. (4) Επειδή (6, 10) 2, ϑα έχουµε ότι υπάρχουν δύο οµοµορφισµοί οµάδων Z 6 Z 10. Ο πρώτος είναι ο µηδενικός οµοµορφισµός φ([k] 6 ) [0] 6 και ο οποίος είναι προφανώς και οµοµορφισµός δακτυλίων, και δεύτερος είναι ο οµοµορφισµός φ([k] 6 ) [5k] 10 ο οποίος εύκολα ϐλέπουµε ότι είναι οµοµορφισµός δακτυλίων. Εποµένως ϑα έχουµε δύο οµοµορφισµούς δακτυλίων, [k] 6 Z 6 : φ([k] 6 ) [0] 10 και φ([k] 6 ) [5k] 10.

13 13 (5) Επειδή (12, 6) 6, ϑα έχουµε ότι υπάρχουν έξι οµοµορφισµοί οµάδων Z 12 Z 6, οι οποίοι ορίζονται ως εξής : φ i ([k] 12 ) [ik] 6, 0 i 5. Εύκολα ϐλέπουµε ότι από αυτούς τους έξι οµοµορφισµούς οµάδων, εκείνοι οι οποίοι είναι οµοµορφισµοί δακτυλίων είναι οι φ 0, φ 1, φ 3, και φ 4. (6) Εστω φ: Q Q, ένας οµοµορφισµός δακτυλίων. Τότε : n m Q, m 0 : φ( n m ) φ(n 1 m ) nφ( 1 m ) mφ( n m ) nmφ( 1 m ) Οµως : mφ( n m ) nφ(m 1 m ) nφ(1) φ( n m ) n m φ(1) φ(1) φ(1 1) φ(1) φ(1) φ(1) 2 φ(1) φ(1) 0 ή φ(1) 1 Άρα ϑα έχουµε, r Q: (α) για φ(1) 0: φ(r) 0 (ο µηδενικός οµοµορφισµός), και (β) για φ(1) 1: φ(r) r (ο ταυτοτικός οµοµορφισµός). Ασκηση 13. Εστω R ένας δακτύλιος, όχι απαραίτητα µε µονάδα. Να δείξετε ότι το σύνολο Z R { (n, r) n Z & r R } εφοδιασµένο µε τις πράξεις : (n, r) + (m, s) (n + m, r + s) και (n, r) (m, s) (nm, ns + rm + rs) είναι ένας δακτύλιος µε µονάδα και η απεικόνιση είναι ένας µονοµορφισµός δακτυλίων. f : R Z R, f(r) (0, r) Λύση. Είναι πολύ εύκολο να διαπιστωθεί ότι το σύνολο Z R εφοδιασµένο µε τις παραπάνω πράξεις ικανοποιεί τα αξιώµατα δακτυλίου. Σηµειώνουµε ότι rm συµβολίζει το στοιχείο mr, δηλαδή rm mr r+ +r (m παράγοντες αν m 1), r0 0r 0 R (αν m 0), και rm mr ( r)+ +( r) ( m παράγοντες αν m < 0). Επιπρόσθετα το στοιχείο (1, 0 R ) είναι η µονάδα του δακτυλίου Z R διότι : (n, r) Z R : (n, r)(1, 0 R ) (n1, n0 R + r1 + r0 R ) (n, r) (1, 0 R )(n, r) Η απεικόνιση f : R Z R, f(r) (0, r) είναι οµοµορφισµός διότι : f(r 1 ) + f(r 2 ) (0, r 1 ) + (0, r 2 ) (0, r 1 + r 2 ) f(r 1 + r 2 ) f(r 1 )f(r 2 ) (0, r 1 )(0, r 2 ) (0, 0r 2 + r r 1 r 2 ) (0, r 1 r 2 ) f(r 1 r 2 ) Τέλος ο οµοµορφισµός f είναι µονοµορφισµός διότι : f(r 1 ) f(r 2 ) (0, r 1 ) (0, r 2 ) r 1 r 2 Ασκηση 14. Θεωρούµε τον δακτύλιο πινάκων M 2 (Z 2 ). (1) Βρείτε το πλήθος των στοιχείων του δακτυλίου M 2 (Z 2 ). (2) Βρείτε όλα τα αντιστρέψιµα στοιχεία του δακτυλίου M 2 (Z 2 ). (3) Να ϐρεθεί η χαρακτηριστική του δακτυλίου M 2 (Z 2 ).

14 14 Λύση. Είναι εύκολο να δεί κανείς ότι αν V είναι ένας διανυσµατικός χώρος διάστασης n υπεράνω ενός πεπερασµένου σώµατος Z p, p: πρώτος, τότε V p n. Επειδή ο δακτύλιος M 2 (Z 2 ) είναι διανυσµατικός χώρος υπεράνω του σώµατος Z 2 διάσταση 2 2 4, µε ϐάση τους πίνακες E 11 [1]2 [0] 2, E [0] 2 [0] 12 2 [0]2 [1] 2, E [0] 2 [0] 21 2 [0]2 [0] 2, E [1] 2 [0] 22 2 έπεται ότι το πλήθος των στοιχείων του δακτυλίου M 2 (Z 2 ) είναι [0]2 [0] 2 [0] 2 [1] 2 Τα αντιστρέψιµα στοιχεία του M 2 (Z 2 ) είναι όλοι οι αντιστρέψιµοι 2 2 πίνακες µε στοιχεία από το σώµα Z 2, δηλαδή όλοι οι πίνακες A M 2 (Z 2 ) έτσι ώστε det(a) [0] 2. Εύκολα ϐλέπουµε ότι οι αντιστρέψιµοι πίνακες είναι οι εξής : [1]2 [0] 2, [0] 2 [1] 2 [1]2 [1] 2, [0] 2 [1] 2 [1]2 [0] 2, [1] 2 [1] 2 [0]2 [1] 2, [1] 2 [0] 2 [1]2 [1] 2, [1] 2 [0] 2 [0]2 [1] 2 [1] 2 [1] 2 Παρατηρώντας ότι 2 [0]2 [1] 2 [1]2 [0 2 [1] 2 [0] 2 [0] 2 [1] 2 και 3 [1]2 [1] 2 [1]2 [0] 2 [1] 2 [0] 2 [0] 2 [1] 2 εύκολα ϐλέπουµε ότι η οµάδα των αντιστρεψίµων στοιχείων του δακτυλίου M 2 (Z 2 ) είναι ισόµορφη µε την συµµετρικη οµάδα S 3 : U ( M 2 (Z 2 ) ) S3 ( Μπορείτε να κατασκευάσετε έναν ισοµορφισµό f : U ( M2 (Z 2 ) ) S 3 ; ) Τέλος αν A a11 a 12 a 21 a 22 M 2 (Z 2 ) τότε επειδή 2a ij 0 Z2, έπεται άµεσα ότι 2A 0 M2 (Z 2 ) και εποµένως : char(m 2 (Z 2 )) 2 Σχόλιο. Γενικότερα το πλήθος των στοιχείων του δακτυλίου M 2 (Z p ), p: πρώτος, είναι p 4 και η τάξη της οµάδας των αντιστρεψίµων στοιχείων του δακτυλίου M 2 (Z p ) είναι : o ( U ( M 2 (Z 2 ) )) (p 2 1)(p 2 p) Μπορείτε να ϐρείτε το πλήθος των στοιχείων του δακτυλίου πινάκων M n (Z p ) υπεράνω του σώµατος Z p και (κυρίως) της οµάδας των αντιστρεψίµων στοιχέιων του U ( M n (Z p ) ) ; Ασκηση 15. Εστω R ένας πεπερασµένος δακτύλιος µε µονάδα. Να δείξετε ότι ο R είναι δακτύλιος διαίρεσης αν και µόνον ο R δεν έχει διαιρέτες του µηδενός. Λύση. Εστω ότι ο R είναι δακτύλιος διαίρεσης. Εστω r, s R έτσι ώστε rs 0. Αν r 0, τότε, επειδή ο R είναι δακτύλιος διαίρεσης, υπάρχει το αντίστροφο r 1 R. Εποµένως r 1 (rs) 0 (r 1 r)s 0 1 R s 0 s 0 Παρόµοια αν s 0, τότε δείχνουµε ότι r 0. Εποµένως ο δακτύλιος R δεν έχει διαιρέτες του µηδενός.

15 15 Εστω r 0 R και r 0 0. Ορίζουµε απεικόνιση f : R R, f(r) rr 0 Χρησιµοποιώντας ότι r 0 0 R και ότι ο R δεν έχει διαιρέτες του µηδέν, ϑα έχουµε : f(r) f(s) rr 0 sr 0 (r s)r 0 0 R r s και άρα η απεικόνιση f είναι 1-1. Επειδή το σύνολο R είναι πεπερασµένο έπεται ότι η f είναι επί 1. Τότε όµως 1 R f(r) και άρα υπάρχει ακριβώς ένα x R έτσι ώστε : f(x) 1 R, δηλαδή xr 0 1 R Επιπλέον χρησιµοποιώντας ότι η f είναι 1-1, ϑα έχουµε : f(r 0 x) (r 0 x)r 0 r 0 (xr 0 ) r 0 1 R r 0 1 R r 0 f(1 R ) r 0 x 1 R Εποµένως το r 0 είναι αντιστρέψιµο, και άρα ο R είναι δακτύλιος διαίρεσης. Ασκηση 16. Εστω R ένας δακτύλιος µε µονάδα. Αν ένα στοιχείο a R έχει περισσότερα από ένα δεξιά αντίστροφα στοιχεία (δηλαδή στοιχεία a R έτσι ώστε aa 1 R ) τότε να δείξετε ότι το a έχει άπειρα δεξιά αντίστροφα στοιχεία. Λύση. Σταθεροποιούµε ένα στοιχείο a R, και υποθέτουµε ότι το a έχει περισσότερα από ένα δεξιά αντίστροφα στοιχεία. Συµβολίζουµε µε X(a) το σύνολο των δεξιά αντίστροφων στοιχείων του a: X(a) { a R aa 1 R } Τότε X(a) 2. Θα δείξουµε ότι το σύνολο X(a) είναι άπειρο. Αρκεί να δείξουµε ότι υπάρχει 1-1 απεικόνιση από το X(a) στο X(a) η οποία δεν είναι επί (ϐλέπε την υποσηµείωση 1 ). Σταθεροποιούµε ένα στοιχείο a 0 X(a), δηλαδή aa 0 1 R, και ορίζουµε απεικόνιση f : X(a) X(a), f(a ) a a 1 R + a 0 Η απεικόνιση f είναι καλά ορισµένη, δηλαδή f(a ) X(a), a X(a). Πράγµατι : af(a ) a(a a 1 R + a 0 ) a(a a) a1 R + aa 0 (aa )a a + aa 0 1 R a a + 1 R a a + 1 R 1 R Η απεικόνιση f είναι 1-1 διότι : f(a ) f(a ) a a 1 R + a 0 a a 1 R + a 0 a a a a (a a)a (a a)a a (aa ) a (aa ) a 1 R a 1 R a a Η απεικόνιση f δεν είναι επί. Πράγµατικά το στοιχείο a 0 / X(a), διότι διαφορτετικά : a X(a) : f(a ) a 0 a a 1 R + a 0 a 0 a a 1 R 0 R a a 1 R Τότε όµως ϑα έχουµε a a 1 R aa και εποµένως το στοιχείο a είναι αντιστρέψιµο και a a 1. Τότε όµως για κάθε δύο δεξιά αντίστροφα a 1, a 2 X(a) του a, ϑα έχουµε : aa 1 1 R aa 2 a 1 (aa 1 ) a 1 (aa 2 ) (a 1 a)a 1 (a 1 a)a 2 1 R a 1 1 R a 2 a 1 a 2 Εποµένως υπάρχει ακριβώς ένα δεξιά αντίστροφο στοιχείο του a, δηλαδή X(a) 1. όµως είναι άτοπο διότι από την υπόθεση έχουµε X(a) 2. Συµπεραίνουµε ότι η απεικόνιση f δεν είναι επί. Αυτό 1 Χρησιµοποιούµε ότι : αν ένα σύνολο X είναι πεπερασµένο τότε κάθε 1-1 απεικόνιση f : X X είναι επί. Ισοδύναµα, αν σε ένα σύνολο X υπάρχει 1-1 απεικόνιση f : X X η οποία δεν είναι επί, τότε το σύνολο X είναι άπειρο.

16 16 Εποµένως επειδή κατασκευάσαµε µια 1-1 απεικόνιση επί του συνόλου X(a) η οποία δεν είναι επί, συνάγουµε ότι το σύνολο X(a) είναι άπειρο. Ασκηση 17. Εστω R µια ακέραια περιοχή και υποθέτουµε ότι : nr 0 R, για κάποιο r R, r 0 και κάποιο n Z +, n 0. Να δείξετε ότι : char(r) p για κάποιον πρώτο διαιρέτη p του n. Λύση. Χρησιµοποιώντας την υπόθεση, ϑα έχουµε nr 0 R n(1 R r) 0 R 1 R r + 1 R r 0 R (n παράγοντες) (1 R R )r 0 R (n παράγοντες) (n1 R )r 0 R Επειδή ο δακτύλιος R είναι ακέραια περιοχή και r 0 R, ϑα έχουµε n1 R 0 R. Αυτό σηµαίνει ότι char(r) <. Επειδή ο δακτύλιος R είναι ακέραια περιοχή, γνωρίζουµε ότι char(r) p, όπου p είναι ένας πρώτος αριθµός. Θα δείξουµε ότι p n. Θεωρούµε την προσθετική αβελιανή οµάδα (R, +). Επειδή nr 0 R, έπεται ότι κάθε στοιχείο r R έχει πεπερασµένη τάξη και µάλιστα o(r) n. Επειδή char(r) p, έπεται ότι o(r) p, r R, και άρα o(r) 1 ή o(r) p, r R. Επειδή ο δακτύλιος R είναι ακέραι περιοχή, έπεται ότι ο R έχει τουλάχιστον δύο στοιχεία, και άρα υπάρχει r 0 R έτσι ώστε o(r) p, και εποµένως p n. Ασκηση 18. Εστω R ένας δακτύλιος µε περισσότερα από ένα στοιχεία. Υποθέτουµε ότι η εξίσωση ax b έχει λύση για κάθε 0 a R και για κάθε b R. Να δείξετε ότι ο δακτύλιος R είναι δακτύλιος διαίρεσης. Λύση. Θα δείξουµε το Ϲητούµενο σε τρία ϐήµατα : (1) Ο δακτύλιος R δεν έχει διαιρέτες του µηδενός. Εστω a, b R έτσι ώστε : ab 0 R. Υποθέτουµε ότι a, b 0 R, και ϑα καταλήξουµε σε άτοπο. Θα έχουµε abx 0 R, x R. Επειδή b 0 R, η εξίσωση bx c έχει λύση για κάθε c R. Εποµένως ϑα έχουµε : ac 0 R, c R ( ) Οµως a 0 R, και άρα η εξίσωση ax a έχει λύση, την οποία συµβολίζουµε µε e: ae a. Θέτοντας c e στη σχέση ( ), ϑα έχουµε a ae 0 R και εποµένως a 0 R το οποίο είναι άτοπο. Στο άτοπο καταλήξαµε υποθέτοντας ότι a, b 0 R. Εποµένως είτε a 0 R ή b 0 R και άρα ο δακτύλιος R δεν έχει διαρέτες του µηδενός. (2) Ο δακτύλιος R έχει µονάδα. Επειδή ο δακτύλιος R έχει παραπάνω από ένα στοιχεία, έπεται ότι υπάρχει ένα στοιχείο a R, a 0 R. Τότε όπως παραπάνω, έστω e R η λύση της εξίσωσης ax a. Θα έχουµε ae a aee ae a ae 2 ae a(e 2 e) 0 R Επειδή από το (1) ο δακτύλιος R είναι ακέραια περιοχή και a 0 R, ϑα έχουµε e 2 e. Προφανώς e 0 R, διότι διαφορετικά ϑα έχουµε a ae a0 R 0 R το οποίο είναι άτοπο διότι a 0 R. Θα δείξουµε ότι το στοιχείο e R είναι η µονάδα του δακτυλίου R. Επειδή ο δακτύλιος R είναι ακέραι περιοχή και e 2 e 0, ϑα έχουµε x R : (xe x)e xe 2 xe xe xe 0 R xe x 0 R xe x x R : e(ex x) e 2 x ex ex ex 0 R ex x 0 R ex x

17 17 Εποµένως : x R : xe x ex το στοιχείο e R είναι η µονάδα του δακτυλίου την οποία από τώρα συµβολίζουµε µε e 1 R. (3) Ο δακτύλιος R είναι δακτύλιος διαίρεσης. ηλαδή ϑα δείξουµε ότι κάθε µη-µηδενικό στοιχείο a R είναι αντιστρέψιµο. Επειδή a 0 R, η εξίσωση ax 1 R έχει λύση a R: aa 1 R. Επιπρόσθετα ϑα έχουµε a(a a 1 R ) a(a a) a1 R (aa )a a 1 R a a a a 0 R. Επειδή a 0 R και ο δακτύλιος R είναι ακέραια περιοχή, έπεται ότι a a 1 R 0 R και άρα a a 1 R. Ετσι aa 1 R a a και το στοιχείο a είναι αντιστρέψιµο. Εποµένως ο δακτύλιος R είναι δακτύλιος διαίρεσης.

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ακτύλιοι και Υποδακτύλιοι

ακτύλιοι και Υποδακτύλιοι Κεφάλαιο 6 ακτύλιοι και Υποδακτύλιοι 6.1 Συνοπτική Θεωρία Στην παρούσα ενότητα υπενθυµίζουµε εν συντοµία την έννοια του δακτυλίου και υποδακτυλίου, και επικεντρωνόµαστε στις ϐασικές ιδιότητες και κατασκευές

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος Αλγεβρικες οµες Ι Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 22

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2015-2016 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2015/ringtheory2015.html 4 εκεµβρίου 2015 2 Περιεχόµενα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Α Δ Ι Ε Υ Μ Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 28 Ι 2014 Το παρόν κείμενο

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-)Οµάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 222 3.1. ύναµη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Θεωρια ακτυλιων. Ασκησεις

Θεωρια ακτυλιων. Ασκησεις Θεωρια ακτυλιων Ασκησεις Ακαδηµαϊκο Ετος 2016-2017 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/ringtheory/ringtheory2016/ringtheory2016.html 15 Φεβρουαρίου 2017 2 Περιεχόµενα

Διαβάστε περισσότερα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Κεφάλαιο 7 ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϑεµελιώδη έννοια του δακτυλίου, ϑα αναπτύξουµε τις ϐασικές ιδιότητες δακτυλίων και ϑα αναλύσουµε µια σειρά

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 11

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 11 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 11 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 26 Μαίου 2016 Ασκηση 1. Να

Διαβάστε περισσότερα

= s 2m 1 + s 1 m 2 s 1 s 2

= s 2m 1 + s 1 m 2 s 1 s 2 ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt206/nt206.html Πέµπτη 6 Νεµβρίου 206 Ασκηση. Να δειχθεί ότι

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Είδαµε στο προηγούµενο κεφάλαιο ότι κάθε ηµιαπλός δακτύλιος είναι δακτύλιος του Art. Επειδή υπάρχουν παραδείγµατα δακτυλίων του Art που δεν είναι ηµιαπλοί, πχ Z 2, > 1, τίθεται

Διαβάστε περισσότερα

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµική Ανεξαρτησία, Βάσεις και ιάσταση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Γραµµικη Ανεξαρτησια, Βασεις και ιασταση Στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιµοποιώντας τανυστικά γινόµενα και εφαρµόζοντας το θεώρηµα των Wedderbur-rt ( 33) θα αποδείξουµε δύο θεµελιώδη θεωρήµατα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Κεφάλαιο 6 Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Στο παρόν Κεφάλαιο ϑα µελετήσουµε τις ϐασικές ιδιότητες της οµάδας πηλίκο µιας οµάδας ως προς µια κανονική υποµάδα, ϑα αποδείξουµε τα ϐασικά ϑεωρήµατα

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Α Μπεληγιάννης - Σ Παπαδάκης Ιστοσελιδα Μαθηµατος : http://usersuogr/abelga/numbertheory/nthtml Τετάρτη 10 Απριλίου 2013 Ασκηση 1 Θεωρούµε τις αριθµητικές

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια. Κεφάαιο Πρότυπα Στο κεφάαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύιο που θα παίξει σηµαντικό ρόο στα επόµενα κεφάαια Στις σηµειώσεις αυτές όοι οι δακτύιοι περιέχουν µοναδιαίο στοιχείο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014

Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014 Α Δ Ι Α - Φ 11 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 24 Ιανουαρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Η οµή των Κυκλικών Οµάδων

Η οµή των Κυκλικών Οµάδων Κεφάλαιο 4 Η οµή των Κυκλικών Οµάδων Στο παρόν Κεφάλαιο ϑα µελετήσουµε την κλάση των κυκλικών οµάδων, η οποία είναι η απλούστερη µη τετριµµένη κλάση οµάδων. Ιδιαίτερα ϑα ταξινοµήσουµε τις κυκλικές οµάδες

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου. Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Απλές επεκτάσεις και Αλγεβρικές Θήκες

Απλές επεκτάσεις και Αλγεβρικές Θήκες Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R)

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R) Α Δ Ι Α - Φ 8 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 20 Δεκεμβρίου

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 5 Γραµµικες Απεικονισεις Στην άλγεβρα, και γενικότερα στα Μαθηµατικά,

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων.

Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων. Κεφάλαιο 4 Πεπερασµένα σώµατα Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων. 4.1 Βασικές Εννοιες Εστω F ένα

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k = ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2016 Χρήστος Α. Αθανασιάδης Συμβολίζουμε με Z m το δακτύλιο των ακεραίων modulo m, με ā Z m την κλάση (mod m) του a Z και με M n (R) το δακτύλιο

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Διανυσµατικοί Υποχώροι και Κατασκευές Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 ιανυσµατικοι Υποχωροι και Κατασκευες Το παρόν

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί

Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Κεφάλαιο 0 Προκαταρκτικές Εννοιες: Σύνολα και Αριθµοί Στο παρόν εισαγωγικό Κεφάλαιο, υπενθυµίζουµε, κατά κύριο λόγο χωρίς αποδείξεις, ϐασικές γνώσεις από : τη στοιχειώδη ϑεωρία συνόλων και απεικονίσεων,

Διαβάστε περισσότερα

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό

Κεφάλαιο 3. Ελεύθερα Πρότυπα. στοιχείων του Μ καλείται βάση του e λ παράγει το Μ, και ii) κάθε m M γράφεται κατά µοναδικό Κεφάαιο 3 Εεύθερα Πρότυπα 3.1 Εεύθερα Πρότυπα Έστω Μ ένα R-πρότυπο. Μια οικογένεια Μ αν ) το σύνοο { Λ} τρόπο ως άθροισµα της µορφής πεπερασµένο πήθος από τα ( e ) στοιχείων του Μ καείται βάση του e παράγει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα Αλγεβρικες οµες Ι Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 4 εκεµβρίου 2012

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Το Θεώρηµα των Cayley-Hamilton Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 15 3. Το Θεώρηµα των Cayley-Hamilton

Διαβάστε περισσότερα

ακτύλιοι Κυρίων Ιδεωδών και Περιοχές Μονοσήµαντης Ανάλυσης

ακτύλιοι Κυρίων Ιδεωδών και Περιοχές Μονοσήµαντης Ανάλυσης Κεφάλαιο 10 ακτύλιοι Κυρίων Ιδεωδών και Περιοχές Μονοσήµαντης Ανάλυσης 10.1 Συνοπτική Θεωρία Η παρούσα ενότητα είναι αφιερωµένη στην υπενθύµιση ϐασικών εννοιών και αποτελεσµάτων από τη ϑεωρία περιοχών

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html ευτέρα 30 Μαρτίου 2015 Ασκηση 1. Να ϐρεθούν όλοι

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 246 6. Οι Οµάδες τάξης

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οµοµορφισµοί Οµάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 287 13. Οµοµορφισµοί Οµάδων Στην παρούσα ενότητα

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Κανονική Μορφή Fitting Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 26 5. Κανονική Μορφή Fitting Εστω A M n

Διαβάστε περισσότερα

ακτύλιοι Κυρίων Ιδεωδών και Περιοχές Μονοσήµαντης Ανάλυσης

ακτύλιοι Κυρίων Ιδεωδών και Περιοχές Μονοσήµαντης Ανάλυσης Κεφάλαιο 11 ακτύλιοι Κυρίων Ιδεωδών και Περιοχές Μονοσήµαντης Ανάλυσης Στο παρόν Κεφάλαιο ϑα µελετήσουµε διεξοδικά δύο ϐασικές κλάσεις µεταθετικών δακτυλίων : τις περιοχές κυρίων ιδεωδών και τις περιοχές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ

ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 2013 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα