Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2"

Transcript

1 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : Παρασκευή 10 Οκτωβρίου 2014 Ασκηση 1. Εστω (G, ) µια οµάδα και υποθέτουµε ότι : a b c = e για κάποια a, b, c G, όπου e είναι το ουδέτερο στοιχείο της οµάδας. Να δείξετε ότι : b c a = e. Λύση. Εχουµε: a b c = e = a 1 (a b c) = a 1 e = (a 1 a) (b c) = a 1 = e (b c) = a 1 = b c = a 1 = b c a = a 1 a = b c a = e και άρα δείξαµε πράγµατι ότι: b c a = e. Ασκηση 2. Εστω (G, ) µια οµάδα µε ταυτοτικό στοιχείο e. Αν το σύνολο G έχει άρτιο πλήθος στοιχείων, να δείξετε ότι υπάρχει ένα στοιχείο a e στην G τέτοιο ώστε a a = e. Λύση. Αφού η G έχει άρτιο πλήθος στοιχείων τότε G = 2λ, µε λ 1, και άρα το σύνολο G \ {e} έχει 2λ 1 στοιχεία. Θεωρούµε το σύνολο X = { x G \ {e} x x 1} Το πλήθος των στοιχείων του X είναι άρτιο, διότι αν x X τότε και x 1 X. Επίσης, το X είναι γνήσιο υποσύνολο του G \ {e}, δηλαδή X G \ {e} και X G \ {e}, αφού το X έχει άρτιο πλήθος στοιχείων ενώ το G \ {e} έχει περιττό πλήθος στοιχείων. Άρα υπάρχει στοιχείο a G \ {e} και a / X. Αυτό όµως σηµαίνει ότι a e και a = a 1, δηλαδή a a = e. Ασκηση 3. Εστω R = R \ {0} το σύνολο των µη-µηδενικών πραγµατικών αριθµών. Ορίζουµε τη διµελή πράξη : R R R επί τού R, ως εξής : Λύση. a b := a b (1) είξτε ότι η προσεταιριστική. (2) είξτε ότι υπάρχει ένα αριστερό ταυτοτικό στοιχείο και ένα δεξιό αντίστροφο στοιχείο για την πράξη. (3) Είναι το Ϲεύγος (R, ) οµάδα ; (4) Ποιά είναι η σηµασία της άσκησης ; και (1) Εστω a, b, c G. Θα δείξουµε ότι (a b) c = a (b c). Εχουµε: (a b) c = ( a b) c = a b c = ab c a (b c) = a ( b c) = a b c = ab c Συνεπώς η είναι µια προσεταιριστική διµελής πράξη.

2 2 (2) Για κάθε a R έχουµε: 1 a = 1 a = 1 a = a και άρα το e = 1 είναι αριστερό ταυτοτικό στοιχείο για την πράξη. Οµως, το e = 1 δεν είναι ταυτοτικό στοιχείο διότι δεν είναι δεξιό ταυτοτικό στοιχείο. Για παράδειγµα για a = 1 έχουµε: ( 1) 1 = 1 1 = 1 1 = 1 ( 1) = 1 ( 1) Επίσης για κάθε a R υπάρχει το στοιχείο b = 1 a R έτσι ώστε a b = a b = a 1 a = 1 Εποµένως για κάθε a R το στοιχείο b = 1 a R είναι ένα δεξιό αντίστροφο για την πράξη. (3) Το Ϲεύγος (R, ) δεν είναι οµάδα διότι δεν υπάρχει ουδέτερο στοιχείο. (4) Η σηµασία αυτής της άσκησης είναι ότι µπορεί ένα Ϲεύγος (G, ) να µην είναι οµάδα, αλλά αυτό δεν σηµαίνει όπως είδαµε ότι δεν ϑα έχει αριστερό ή δεξιό ουδέτερο και αριστερό ή δεξιό αντίστροφο στοιχείο. Εποµένως αν έχουµε µια προσεταιριστική πράξη, ένα αριστερό ουδέτερο στοιχείο e και κάθε στοιχείο έχει δεξιό αντίστροφο τότε δεν συνεπάγεται ότι το (G, ) ϑα είναι οµάδα. Οµως στην Ά- σκηση 13 αυτού του ϕυλλαδίου δείχνουµε ότι αν έχουµε µια προσεταιριστική πράξη, ένα αριστερό ουδέτερο στοιχείο e και κάθε στοιχείο έχει αριστερό αντίστροφο τότε το Ϲεύγος (G, ) είναι οµάδα. Ασκηση 4. Εστω (G, ) µια οµάδα µε ταυτοτικό στοιχείο e. Αν ισχύει δείξτε ότι η G είναι αβελιανή. Λύση. Αφού x x = e, x G, έχουµε: x x = e, x G x x x 1 = e x 1 = x e = x 1 = x = x 1 ( ) δηλαδή το αντίστροφο κάθε στοιχείου x G είναι το ίδιο το στοιχείο. Τότε για x = a b έχουµε: (a b) 1 = a b b 1 a 1 = a b b a = a b ( ) αφού γνωρίζουµε ότι γενικά ισχύει (a b) 1 = b 1 a 1 και αφού εδώ, λόγω της υπόθεσης, είναι a = a 1 και b = b 1. Η ( ) ισχύει a, b G, συνεπώς η οµάδα G είναι αβελιανή. Ασκηση 5. Να δείξετε ότι το ανοιχτό διάστηµα ( 1, 1) := { x R 1 < x < 1 } της πραγµατικής ευθείας αποτελεί οµάδα µε πράξη : x y = x + y 1 + xy Λύση. Παρατηρούµε ότι x ( 1, 1) x < 1. Εστω x, y ( 1, 1). Θα δείξουµε πρώτα ότι το x y ( 1, 1), δηλαδή ότι η είναι διµελής πράξη. Καταρχήν, αφού x < 1 και y < 1, έπεται xy < 1 και γι αυτό 1 + xy 0. Συνεπώς, έχει νόηµα το κλάσµα x y = x+y 1+xy. Θα δείξουµε ότι x+y 1+xy < 1. Είναι : x + y 1 + xy < 1 x + y < 1 + xy (x + y)2 < (1 + xy) 2 x 2 + y 2 < 1 + x 2 y 2 x 2 1 < y 2 (x 2 1) και επειδή x 2 1 < 0, αφού x < 1 έχουµε : Αλλά η 1 > y 2 είναι αληθής, αφού y < 1. x 2 1 < y 2 (x 2 1) 1 > y 2.

3 3 Συνεπώς, η πράξη είναι καλά ορισµένη. Εστω x, y, z ( 1, 1). Εχουµε: Η πράξη είναι προσεταιριστική: x (y z) = x ( y + z ) x + y+z 1+yz = 1 + yz 1 + x y+z 1+yz = x + y + z + xyz 1 + xy + yz + xz και (x y) z = ( x+y x + y ) 1+xy + z z = 1 + xy 1 + x+y 1+xy z = x + y + z + xyz 1 + xy + yz + xz Άρα η πράξη είναι προσεταιριστική. Ουδέτερο στοιχείο: Εστω στοιχείο e ( 1, 1) έτσι ώστε x e = x = e x, x ( 1, 1). Τότε x + e 1 + xe = x = x + e = x + x2 e = e (1 x 2 ) = 0 = e = 0 ή x = ±1 και άρα e = 0 διότι x ( 1, 1). Το στοιχείο e = 0 ( 1, 1) και x 0 = x x 0 = x 1 = x = x 1 = 0 + x x = 0 x για κάθε x ( 1, 1). Συνεπώς το e = 0 είναι το ουδέτερο στοιχείο της πράξης. Αντίστροφο στοιχείο: Εστω x ( 1, 1) και υποθέτουµε ότι υπάρχει ένα y ( 1, 1) έτσι ώστε x y = 0. Τότε x + y = xy = x + y = 0 = y = x και άρα έχουµε x ( x) = x + ( x) 1 + x( x) = 0 1 x 2 = 0 = 0 1 x 2 = x + x 1 + ( x)x = ( x) x Εποµένως για κάθε x ( 1, 1) το αντίστροφο στοιχείο της πράξης είναι x = x ( 1, 1). Άρα το Ϲεύγος ( ( 1, 1), ) είναι οµάδα. Ασκηση 6. Εστω (G, ) µια οµάδα µε ταυτοτικό στοιχείο e. Αν το σύνολο G έχει πεπερασµένο πλήθος στοιχείων, να δείξετε ότι για κάθε a G, υπάρχει ακέραιος n Z +, ο οποίος γενικά εξαρτάται από το a, έτσι ώστε : a n := a a a = e (το a εµφανίζεται σαν παράγοντας n ϕορές). Επιπλέον να δείξετε ότι υπάρχει N Z + : a N = e, a G. Λύση. Εστω a G. Θεωρούµε το σύνολο: H = { a n n Z } = {, a 2, a 1, e, a, a 2, } G το οποίο είναι πεπερασµένο σύνολο αφού είναι υποσύνολο της οµάδας G και G <. Άρα τα στοιχεία του H δεν είναι όλα διαφορετικά µεταξύ τους, δηλαδή υπάρχουν i, j Z µε i j έτσι ώστε a i = a j. Τότε και a i = a j = a i (a j ) 1 = a j (a j ) 1 = a i (a j ) 1 = e Συνδυάζοντας τις δυο παραπάνω σχέσεις έχουµε: ιακρίνουµε δυο περιπτώσεις: a j a j = a j j = a 0 = e = (a j ) 1 = a j a i a j = e = a i j = e ( ) (1) Αν i j τότε ϑέτοντας n = i j Z +, από τη σχέση ( ) έπεται ότι a n = e. (2) Αν i < j τότε ϑέτοντας n = j i Z + και χρησιµοποιώντας τη σχέση ( ) έχουµε: a n = e = a n a n = a n e = a n = a n = a n n = a 0 = e

4 4 Άρα πράγµατι για κάθε a G υπάρχει n Z + έτσι ώστε a n = e. Αφού η οµάδα G είναι πεπερασµένη γράφουµε G = { e = a 1, a 2, a 3,, a m } Αποδείξαµε παραπάνω ότι για κάθε i = 1,, m υπάρχει n i Z + έτσι ώστε a n i i N = n 1 n 2 n m Τότε για κάθε a i G έχουµε: a N i = a n 1n 2 n m i και άρα έχουµε το Ϲητούµενο. = a n in 1 n 2 n i 1 n i+1 n m i = e. Θέτουµε = (a n i i ) n 1n 2 n i 1 n i+1 n m = e n 1n 2 n i 1 n i+1 n m = e Ασκηση 7. Εστω (G, ) µια οµάδα και a, b G. Να δείξετε ότι (a b) 1 = a 1 b 1 αν και µόνον αν a b = b a. Να συµπεράνετε ότι η G είναι αβελιανή αν και µόνον αν (a b) 1 = a 1 b 1, a, b G. Λύση. Είναι : (a b) 1 = a 1 b 1 ( (a b) 1) 1 = ( a 1 b 1) 1 a b = (b 1 ) 1 (a 1 ) 1 a b = b a. Αν λοιπόν η οµάδα G είναι αβελιανή, τότε a, b G είναι a b = b a, άρα a, b G είναι (a b) 1 = a 1 b 1. Αντίστροφα, αν a, b G είναι (a b) 1 = a 1 b 1, τότε a, b G είναι a b = b a και η G είναι µια αβελιανή οµάδα. Ασκηση 8. Εστω (M, ) ένα µονοειδές, δηλαδή είναι µια προσεταιριστική πράξη επί του συνόλου M, και υπάρχει ουδέτερο στοιχείο e στο σύνολο M για την πράξη. (1) Να δείξετε ότι το Ϲεύγος (U(M), ), όπου U(M) = { x M x M : x x = e = x x } είναι το σύνολο των αντιστρεψίµων στοιχείων του µονοειδούς (M, ), είναι οµάδα. (2) Να ϐρεθούν οι οµάδες (U(N), ), (U(Z), ) και (U(Z n, ) των µονοειδών (N, ), (Z, ), (Z n, ), όπου είναι ο συνήθης πολλαπλασιασµός. (3) είξτε ότι το Ϲεύγος (Z Z, ), όπου (x 1, x 2 ) (y 1, y 2 ) = (x 1 y 1, x 2 y 2 ) ένα ένα µεταθετικό µονοειδές και προσδιορίστε την αβελιανή οµάδα (U(Z Z), ). Λύση. (1) Θα δείξουµε πρώτα ότι το υποσύνολο U(M) είναι κλειστό στην πράξη. Εστω x, y U(M). Τότε : x M & y M : x x = e = x x & y y = e = y y Εποµένως χρησιµοποιώντας την προσεταιριστική ιδιότητα ϑα έχουµε : (x y) (y x ) = x (y y ) x = x e x = x x = e (y x ) (x y) = y (x x) y = y e y = y y = e Αυτό σηµαίνει ότι ϑα έχουµε x y U(M). Ετσι το σύνολο U(M) είναι εφοδιασµένο µε την πράξη και η προφανώς η πράξη είναι προσεταιριστική επί του U(M) διότι είναι προσεταιριστική επί του M, και το στοιχείο e είναι ουδέτερο στοιχείο της πράξης επί του U(M). Ετσι έχουµε το µονοειδές (U(M), ), το οποίο είναι οµάδα, αν κάθε στοιχείο του είναι αντιστρέψιµο. Αυτό όµως ισχύει από τον ορισµό του υποσυνόλου U(M): αν x U(M), τότε υπάρχει x M έτσι ώστε : x x = e = x x, και τότε το στοιχείο x είναι το αντίστροφο του x. Άρα το Ϲεύγος (U(M), ) είναι οµάδα. (2) Υπολογίζουµε εύκολα ότι : (αʹ) U(N) = {1}. ιότι αν n N και υπάρχει n N έτσι ώστε n n = 1 = n n, τότε αναγκαστικά n = 1.

5 5 (ϐʹ) U(Z) = {1, 1}. ιότι αν n Z και υπάρχει n Z έτσι ώστε n n = 1 = n n, τότε αναγκαστικά n = 1 ή n = 1. (γʹ) U(Z n ) = {[k] n Z n 1 k n & (k, n) = 1}. Πράγµατι : Z n = {[0] n, [1] n,, [n 1] n } και αν [k] n U(Z n ), τότε υπάρχει [k ] n Z n έτσι ώστε : [k] n [k ] n = [1] n = [k k ] n = [1] n = n 1 k k = 1 = k k + n n για κάποιο n Z Τότε όµως, όπως γνωρίζουµε από την Θεωρία Αριθµών : (k, n) = 1. Αντίστροφα αν (k, n) = 1, τότε υπάρχουν ακέραιοι k, n mathbbz έτσι ώστε : 1 = k k + n n = [1] n = [k k ] n + [n n ] n = [1] n = [k] n [k ] n + [n] n [n ] n = [1] n = [k] n [k ] n Επειδή η πράξη του πολλαπλασιασµού επί του συνόλου Z n είναι µεταθετική, η τελευταία σχέση δείχνει ότι [k] n U(Z n ). Σηµειώνουµε ότι U(Z n ) = ϕ(n), όπου ϕ είναι η συνάρτηση του Ευλερ. (3) Εύκολα ϐλέπουµε ότι η πράξη επί του Z Z είναι µεταθετική και προσεταιριστική. Επίσης : (x, y) Z Z : (x, y) (1, 1) = (x, y) = (1, 1) (x, y) ηλαδή το στοιχείο (1, 1) είναι ουδέτερο στοιχείο για την πράξη επί του συνόλου Z Z. Εποµένως το Ϲεύγος (U(Z Z), ) είναι ένα µεταθετικό µονοειδές. Εστω (x, y) U(Z Z). Τότε υπάρχει στοιχείο (z, w) Z Z έτσι ώστε (x, y) (z, w) = (1, 1). Ισοδύναµα, επειδή οι αριθµοί x, y, z, w είναι ακέραιοι, ϑα έχουµε : Εποµένως (xz, yw) = (1, 1) = xz = 1 & yw = 1 = x = ±1 & z = ±1 U(Z Z) = { (1, 1), (1, 1), ( 1, 1), ( 1, 1) } και ο πίνακας Cayley της οµάδας είναι ο ακόλουθος : (1, 1) (1, 1) ( 1, 1) ( 1, 1) (1, 1) (1, 1) (1, 1) ( 1, 1) ( 1, 1) (1, 1) (1, 1) (1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) ( 1, 1) (1, 1) (1, 1) ( 1, 1) ( 1, 1) ( 1, 1) (1, 1) (1, 1) Ασκηση 9. Βρείτε όλους τους πιθανούς πίνακες Cayley οµάδων µε 4 στοιχεία. Λύση. Εστω (G, ) µια οµάδα µε 4 στοιχεία. Ας πούµε ότι G = {e, a, b, c}, όπου e είναι το ταυτοτικό στοιχείο της G. Θέλουµε να συµπληρώσουµε τον παρακάτω πίνακα: a a b b c c Παρατηρούµε ότι επειδή η G έχει άρτιο πλήθος στοιχείων οφείλει, λόγω της Άσκησης 2, να έχει ένα στοιχείο e, το οποίο υψούµενο στο τετράγωνο δίνει το e. Χωρίς περιορισµό της γενικότητας 1 µπορούµε να δεχθούµε ότι αυτό το στοιχείο είναι το a, δηλαδή a a = e. Ετσι ο πίνακας πράξης της οµάδας παίρνει τη µορφή : a a e b b c c 1 Καταλήγουµε σε παρόµοιους πίνακες, αν επιλέξουµε b b = e ή c c = e.

6 6 Επειδή, γενικώς γνωρίζουµε ότι όταν η G είναι (πεπερασµένη) οµάδα, τότε κάθε στήλη και κάθε γραµµή του αντίστοιχου πίνακα Cayley, οφείλει να περιέχει κάθε στοιχείο της G ακριβώς µία ϕορά, ο πίνακας Cayley παίρνει τη µορφή : a a e c b b b c c c b Τώρα για το γινόµενο b b υπάρχουν δύο επιλογές : e b b = ή a Η πρώτη περίπτωση δίνει τον πίνακα a a e c b b b c e c c b και η δεύτερη τον a a e c b b b c a c c b Τώρα όµως οι δύο παραπάνω πίνακες συµπληρώνονται κατά µοναδικό τρόπο και παίρνουµε : Πίνακας Α : a a e c b b b c e a c c b a e Πίνακας Β : a a e c b b b c a e c c b e a Η οµάδα που έχει ως πίνακα πράξης τον Πίνακα Α ονοµάζεται η οµάδα V 4 των τεσσάρων στοιχείων ή η οµάδα του Klein. Μια οµάδα που είναι «ισόµορφη» µε την οµάδα V 4 του Klein είναι το ευθύ γινόµενο της (Z 2, +) µε τον εαυτό της, δηλαδή η Z 2 Z 2 µε την επαγόµενη πράξη (εδώ [k] συµβολίζει την κλάση ισοτιµίας [k] 2 του ακεραίου k mod 2). Z 2 Z 2 = { ([0], [0]), ([0], [1]), ([1], [0]), ([1], [1]) } που έχει πίνακα Cayley: + ([0], [0]) ([1], [0]) ([0], [1]) ([1], [1]) ([0], [0]) ([0], [0]) ([1], [0]) ([0], [1]) ([1], [1]) ([1], [0]) ([1], [0]) ([0], [0]) ([1], [1]) ([0], [1]) ([0], [1]) ([0], [1]) ([1], [1]) ([0], [0]) ([1], [0]) ([1], [1]) ([1], [1]) ([0], [1]) ([1], [0]) ([0], [0]) Προσέξτε ότι η αντιστοιχία e ([0], [0]), a ([1], [0]), b ([0], [1]) και c ([1], [1]) µεταξύ των στοιχείων της G και των στοιχείων της Z 2 Z 2 µεταφέρεται και σε αντιστοιχία µεταξύ των στοιχείων του Πίνακα Α και των στοιχείων του πίνακα Cayley της Z 2 Z 2. Μια οµάδα που είναι «ισόµορφη» µε την οµάδα που έχει ως πίνακα Cayley τον Πίνακα Β είναι η (Z 4, +). Ο πίνακας Cayley της (Z 4, +) είναι ο : + [0] [1] [2] [3] [0] [0] [1] [2] [3] [1] [1] [2] [3] [0] [2] [2] [3] [0] [1] [3] [3] [0] [1] [2] Προσέξτε ότι η αντιστοιχία e [0], a [1], b [2] και c [3] µεταξύ των στοιχείων της G και των στοιχείων της Z 4 µεταφέρεται και µεταξύ των στοιχείων του Πίνακα Β και των στοιχείων του πίνακα Cayley της Z 4.

7 7 Ασκηση 10. είξτε µε ένα παράδειγµα, ότι είναι δυνατόν η εξίσωση x x = e να έχει περισσότερες από δύο λύσεις, σε κάποια οµάδα (G, ) µε ταυτοτικό στοιχείο e. Λύση. Η οµάδα των τεσσάρων στοιχείων V = {e, a, b, c} του Klein είναι ένα τέτοιο παράδειγµα, αφού έχουµε ότι a a = e, b b = e και c c = e. Ιδιαίτερα αν ταυτίσουµε την οµάδα του Klein V µε την οµάδα Z 2 Z 2 τότε (εδώ [k] συµβολίζει την κλάση ισοτιµίας [k] 2 του ακεραίου k mod 2): a = ([1], [0]) = ([1], [0]) + ([1], [0]) = ([0], [0]) b = ([0], [1]) = ([0], [1]) + ([0], [1]) = ([0], [0]) c = ([1], [1]) = ([1], [1]) + ([1], [1]) = ([0], [0]) Για άλλο ενδιαφέρον παράδειγµα δείτε την Άσκηση 13. Ασκηση 11. Θεωρούµε τους ακόλουθους αντιστρέψιµους πίνακες πραγµατικών αριθµών : A = , B = GL 4(R) και έστω G = { A n GL 4 (R) n Z } και G = { B n GL 4 (R) n Z } Να δείξετε ότι τα Ϲεύγη (G, ) και (G, ), όπου είναι ο πολλαπλασιασµός πινάκων, είναι αβελιανές οµάδες. Πόσα στοιχεία έχουν οι οµάδες G και G ; Λύση. Υπολογίζοντας τις δυνάµεις A n και B n ϐρίσκουµε ότι A 2 = I 4, B 2 = , B3 = , B4 = I Άρα τα σύνολα G και G είναι τα ακόλουθα: G = { I 4, A } και G = { I 4, B, B 2, B 3} Είναι ϕανερό ότι τα σύνολα G και G είναι οµάδες µε A 1 = A και B 1 = B 3. Η οµάδα G είναι προφανώς αβελιανή και αφού B i B j = B i+j = B j+i = B j B i έπεται ότι η οµάδα G είναι αβελιανή. Τέλος έχουµε G = 2 και G = 4. Ασκηση 12. Να συµπληρωθεί ο πίνακας Cayley + [0] [1] [2] [3] [4] [5] [0] [1] [2] [3] [4] [5] της οµάδας (Z 6, +). Στην παρούσα άσκηση [k] συµβολίζει την κλάση ισοτιµίας [k] 6 του ακεραίου k mod 6.

8 8 Λύση. Χρησιµοποιώντας ότι γενικά [k] n + [l] n = [k + l] n (αν k + l > n, [k + l] n = [m] n, όπου m είναι το υπόλοιπο m της διαίρεσης του k + l µε το n), εύκολα ϐλέπουµε ότι ο πίνακας Cayley της (Z 6, +) είναι ο ακόλουθος: + [0] [1] [2] [3] [4] [5] [0] [0] [1] [2] [3] [4] [5] [1] [1] [2] [3] [4] [5] [0] [2] [2] [3] [4] [5] [0] [1] [3] [3] [4] [5] [0] [1] [2] [4] [4] [5] [0] [1] [2] [3] [5] [5] [0] [1] [2] [3] [4] Ασκηση 13. Θεωρούµε το σύνολο απεικονίσεων G = { α 0, α 1, α 2, β 1, β 2, β 3 : Q \ {0, 1} Q \ {0, 1} } όπου : α 0 (x) = x, α 1 (x) = 1 1 x, α 2(x) = x 1 x β 1 (x) = 1 x, β 2(x) = 1 x, β 3 (x) = x x 1 Να δείξετε ότι το Ϲεύγος (G, ), όπου είναι πράξη της σύνθεσης απεικονίσεων, αποτελεί µια µη-αβελιανή οµάδα. Να συµπληρώσετε τον αντίστοιχο πίνακα της οµάδας G. Λύση. Ο πίνακας της G είναι ο ακόλουθος: α 0 α 1 α 2 β 1 β 2 β 3 α 0 α 0 α 1 α 2 β 1 β 2 β 3 α 1 α 1 α 2 α 0 β 3 β 1 β 2 α 2 α 2 α 0 α 1 β 2 β 3 β 1 β 1 β 1 β 2 β 3 α 0 α 1 α 2 β 2 β 2 β 3 β 1 α 2 α 0 α 1 β 3 β 3 β 1 β 2 α 1 α 2 α 0 Οι υπολογισµοί στο πίνακα δείχνουν ότι το σύνολο G είναι κλειστό στη πράξη της σύνθεσης και γνωρίζουµε ότι η σύνθεση απεικονίσεων είναι προσεταιριστική. Επίσης η απεικόνιση α 0 = Id Q\{0,1} είναι το ουδέτερο στοιχείο και τα αντίστροφα στοιχεία των απεικονίσεων α 0, α 1, α 2, β 1, β 2, β 3 είναι τα εξής: α 1 1 = α 2, α 1 2 = α 1, β 1 1 = β 1, β 1 2 = β 2, β 1 3 = β 3 Άρα το Ϲεύγος (G, ) είναι οµάδα. Να σηµειώσουµε ότι τα στοιχεία β 1, β 2, β 3 έχουν την ιδιότητα: β 2 1 = Id Q\{0,1}, β 2 2 = Id Q\{0,1}, β 2 3 = Id Q\{0,1} δηλαδή τα στοιχεία β 1, β 2, β 3 είναι λύσεις της εξίσωσης x 2 = Id Q\{0,1} στη G (ϐλέπε Άσκηση 10). Τέλος η οµάδα (G, ) δεν είναι αβελιανή, διότι για παράδειγµα: (x 1) 1 (β 1 α 2 )(x) = β 1 (α 2 (x)) = β 1 = x x 1 = x x 1 = β 3(x) x ( 1 ) 1 (α 2 β 1 )(x) = α 2 (β 1 (x)) = α 2 = x 1 1 x x x 1 = 1 = 1 x = β 2 (x) x x και άρα β 1 α 2 = β 3 β 2 = α 2 β 1. Ασκηση 14. Εστω µια προσεταιριστική πράξη επί του µη-κενού συνόλου G. Υποθέτουµε ότι : (1) Υπάρχει ένα στοιχείο e G: e x = x, x G.

9 9 (2) Για κάθε x G, υπάρχει ένα στοιχείο x G: x x = e. Να δείξετε ότι το Ϲεύγος (G, ) είναι οµάδα. Λύση. Αφού e x = x, x G, τότε για x = e έχουµε e e = e (3) Επίσης αφού για κάθε x G υπάρχει ένα στοιχείο x G έτσι ώστε x x = e, τότε έπεται ότι (x ) x = e (4) Εστω x G. Τότε από την υπόθεση (2) και τη σχέση (3) έχουµε: (x x) e = e e = e = x x = (x x) e = x x = (x ) [ (x x) e ] = (x ) (x x) = [ (x ) (x x) ] e = [ (x ) x ] x (4) = ( [(x ) x ] x ) e = e x (4) = (e x) e = e x Εποµένως δείξαµε ότι Εστω x G. Από την υπόθεση (2) έχουµε: (1) = x e = e x e x = x = x e, x G (5) x x = e = (x x) x = e x = x = (x ) [ (x x) x ] = (x ) x (4) = [ (x ) x ] (x x ) = e (4) = e (x x ) = e Άρα έχουµε ότι (1) = x x = e x G, x G: x x = e = x x (6) Συνεπώς από τις σχέσεις (5) και (6) συµπεραίνουµε ότι το Ϲεύγος (G, ) είναι οµάδα. Ασκηση 15. Γνωρίζουµε ότι αν (G, ) είναι µια οµάδα, τότε οι εξισώσεις a x = b και x a = b έχουν (µοναδική) λύση για κάθε a, b G. Αντίστροφα: να δείξετε ότι αν είναι µια προσεταιριστική πράξη επί του µη-κενού συνόλου G και οι παραπάνω εξισώσεις έχουν λύση για κάθε a, b G, τότε υπάρχει ταυτοτικό στοιχείο e G για την πράξη και το Ϲεύγος (G, ) είναι µια οµάδα.

10 και [(a1, b 1 ) (a 2, b 2 ) ] (a 3, b 3 ) = (a 1 a 2, a 1 b 2 + b 1 ) (a 3, b 3 ) = (a 1 a 2 a 3, a 1 a 2 b 3 + a 1 b 2 + b 1 ) 10 Λύση. Υποθέτουµε ότι οι εξισώσεις a x = b και x a = b έχουν λύση για κάθε a, b G. Εστω e λύση της εξίσωσης x a = a, δηλαδή e a = a µε a G. Θα δείξουµε ότι e b = b για κάθε b G. Εστω c λύση της εξίσωσης a x = b, δηλαδή a c = b. Τότε για κάθε b G έχουµε: e b = e (a c) = (e a) c = a c = b = e b = e, b G (1) Εστω a G και ϑεωρούµε την εξίσωση x a = e. Τότε έχουµε ότι υπάρχει a G έτσι ώστε a a = e. Εποµένως δείξαµε ότι a G, a G έτσι ώστε : a a = e (2) Από την Άσκηση 13 και τις σχέσεις (1) και (2) έπεται ότι το Ϲεύγος (G, ) είναι µια οµάδα. Ασκηση Στο σύνολο G = R R ορίζουµε µια πράξη ως εξής : Λύση. : G G G, (a, b) (c, d) = (ac, ad + b) Να δείξετε ότι το Ϲεύγος (G, ) είναι οµάδα. 2. Να δείξετε ότι το σύνολο G = { f : R R f(x) = ax + b, a, b R, a 0 } εφοδιασµένο µε την πράξη της σύνθεσης απεικονίσεων είναι οµάδα. 3. Παρατηρείτε κάποια σχέση µεταξύ των οµάδων, G και G ; 1. Εστω (a 1, b 1 ), (a 2, b 2 ), (a 3, b 3 ) G = R R. Εχουµε: Η πράξη είναι προσεταιριστική: (a 1, b 1 ) [ (a 2, b 2 ) (a 3, b 3 ) ] = (a 1, b 1 ) (a 2 a 3, a 2 b 3 + b 2 ) = (a 1 a 2 a 3, a 1 a 2 b 3 + a 1 b 2 + b 1 ) Άρα η πράξη είναι προσεταιριστική. Ουδέτερο στοιχείο: Εστω στοιχείο (e 1, e 2 ) G έτσι ώστε (a, b) (e 1, e 2 ) = (a, b) = (e 1, e 2 ) (a, b) για κάθε (a, b) G. Τότε ae 1 = a e 1 = 1 (ae 1, ae 2 + b) = (a, b) = ae 2 + b = b Το στοιχείο e = (e 1, e 2 ) = (1, 0) G = R R και a 0 = e 2 = 0 (a, b) (1, 0) = (a 1, a 0 + b) = (a, b) = (1 a, 1 b + 0) = (1, 0) (a, b) για κάθε (a, b) G. Συνεπώς το e = (1, 0) είναι το ουδέτερο στοιχείο της πράξης. Αντίστροφο στοιχείο: Εστω (a, b) G και υποθέτουµε ότι υπάρχει ένα (x, y) G έτσι ώστε (a, b) (x, y) = (1, 0). Τότε ax = 1 και άρα έχουµε (ax, ay + b) = (1, 0) = ay + b = 0 a 0 = x = 1 a y = b a (a, b) ( 1 a, b a ) = (a1 a, ba a + b) = (1, 0) = (1 a a, b a b a ) = (1 a, b ) (a, b) a Εποµένως για κάθε (a, b) G το αντίστροφο στοιχείο της πράξης είναι (a, b) = ( 1 a, b a ) G. Άρα το Ϲεύγος (G, ) είναι οµάδα. Παρατηρούµε ότι η οµάδα G δεν είναι αβελιανή διότι για παράδειγµα (1, 2) (2, 3) = (2, 5) (2, 7) = (2, 3) (1, 2).

11 2. Για κάθε f G ϑα γράφουµε f := f a,b : R R, όπου f a,b (x) = ax + b µε a 0. Εχουµε: Η πράξη είναι προσεταιριστική: Είναι γνωστό ότι η σύνθεση απεικονίσεων είναι προσεταιριστική. Ουδέτερο στοιχείο: Η ταυτοτική απεικόνιση f 1,0 = Id R : R R, Id R (x) = x = 1 x + 0 G, είναι το ουδέτερο στοιχείο της G. Αντίστροφο στοιχείο: Εστω f a,b G και υποθέτουµε ότι υπάρχει µια συνάρτηση f c,d G έτσι ώστε f a,b f c,d = f 1,0. Τότε για κάθε x R έχουµε: f a,b ( fc,d (x) ) = x = f a,b (cx + d) = x = a (cx + d) + b = x = acx + ad + b = x Άρα έχουµε = ad + b = 0 ac = 1 a 0 = d = b a c = 1 a f a,b ( f 1 a, b a (x) ) = f a,b ( 1 a x b a ) = a1 a x a b a + b = x = f a,b f 1 a, b a και όµοια δείχνουµε ότι f 1 a, b f a,b = f 1,0 a = f 1,0 G. Εποµένως για κάθε f a,b G το αντίστροφο στοιχείο είναι η συνάρτηση (f a,b ) = f 1 a, b a Άρα το σύνολο (G, ) είναι οµάδα, η οποία δεν είναι αβελιανή διότι γενικά η σύνθεση συναρτήσεων δεν είναι µεταθετική. 3. Παρατηρούµε ότι υπάρχει µια αντιστοιχία µεταξύ των στοιχείων, των πράξεων, των ουδέτερων στοιχείων και των αντίστροφων στοιχείων της G και G αντίστοιχα: G G 11 (a, b) f a,b (x) = ax + b (a, b) (c, d) = (ac, ad + b) f a,b f c,d = f ac,ad+b (1, 0) f 1,0 = Id R (a, b) = ( 1 a, b a ) (f a,b) = f 1 a, b a Αργότερα ϑα δείξουµε ότι αυτές οι οµάδες είναι ισόµορφες µεταξύ τους, δηλαδή ότι υπάρχει µια απεικόνιση από τη G στη G που διατηρεί τη πράξη των οµάδων και είναι ένας προς ένα και επί.

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012

ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012 ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai017/lai017html Παρασκευή 17 Νοεµβρίου 017

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt.html Σάββατο 20 Απριλίου 2013 Ασκηση 1. 1) είξτε ότι η

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου 2016

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις Επαναληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015/nt015.html Τρίτη Ιουνίου 015 Ασκηση 1. (1) Να λυθεί η γραµµική

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Τάξη στοιχείων και Οµάδων - Κυκλικές (Υπο-)Οµάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 222 3.1. ύναµη

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 10 Μαρτίου 2017

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 31 Μαρτίου 2016 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Α Μπεληγιάννης - Σ Παπαδάκης Ιστοσελιδα Μαθηµατος : http://usersuogr/abelga/numbertheory/nthtml Τετάρτη 10 Απριλίου 2013 Ασκηση 1 Θεωρούµε τις αριθµητικές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές»

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Το σύνολο των πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας) α)

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Παρασκευή 6 Δεκεμβρίου 2013

Παρασκευή 6 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 6 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi20/asi20.html, https://sites.google.com/site/mathsedu/home/algdom Παρασκευή 6 Δεκεμβρίου 20

Διαβάστε περισσότερα

Πρώτα και Μεγιστοτικά Ιδεώδη

Πρώτα και Μεγιστοτικά Ιδεώδη Κεφάλαιο 10 Πρώτα και Μεγιστοτικά Ιδεώδη Στο παρόν Κεφάλαιο ϑα µελετήσουµε ειδικούς τύπους ιδεωδών σε έναν δακτύλιο και την επίδραση που έχουν οι επιπλέον ιδιότητες τις οποίες ικανοποιούν τα ιδεώδη αυτά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt01b/nt01b.html Πέµπτη 1 Οκτωβρίου 01 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Οµάδες Μεταθέσεων. Κεφάλαιο Συνοπτική Θεωρία. S(X ) = { f : X X f : απεικόνιση «1-1» και «επί» }

Οµάδες Μεταθέσεων. Κεφάλαιο Συνοπτική Θεωρία. S(X ) = { f : X X f : απεικόνιση «1-1» και «επί» } Κεφάλαιο 4 Οµάδες Μεταθέσεων 4.1 Συνοπτική Θεωρία Οι οµάδες µεταθέσεων επί ενός συνόλου και ιδιαίτερα επί του πεπερασµένου συνόλου { 12 n } αποτελούν µια από τις ϐασικότερες κλάσεις οµάδων. Στην παρούσα

Διαβάστε περισσότερα

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα

ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 13 Οκτωβρίου 016 Ασκηση 1. είξτε ότι

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Κεφάλαιο 7 Βάσεις και ιάσταση

Κεφάλαιο 7 Βάσεις και ιάσταση Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε

Διαβάστε περισσότερα

Ασκησεις Βασικης Αλγεβρας

Ασκησεις Βασικης Αλγεβρας Ασκησεις Βασικης Αλγεβρας Αποστολος Μπεληγιαννης Απόστολος Μπεληγιάννης Καθηγητής Τµήµα Μαθηµατικών Πανεπιστήµιο Ιωαννίνων Ασκήσεις Βασικής Αλγεβρας Ιωαννινα εκεµβριος 2015 Ασκήσεις Βασικής Αλγεβρας Συγγραφή

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html ευτέρα 30 Μαρτίου 2015 Ασκηση 1. Να ϐρεθούν όλοι

Διαβάστε περισσότερα

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m ) 302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 5 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 5 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt206/nt206.html Πέµπτη 6 Νεµβρίου 206 Ασκηση. Να δειχθεί ότι

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 7

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 7 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n

G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n 236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Α Δ Ι Ε Υ Μ Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 28 Ι 2014 Το παρόν κείμενο

Διαβάστε περισσότερα

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0

f (x) = l R, τότε f (x 0 ) = l. = lim (0) = lim f(x) = f(x) f(0) = xf (ξ x ). = l. Εστω ε > 0. Αφού lim f (x) = l R, υπάρχει δ > 0 Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 5: Παράγωγος Α Οµάδα. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε πλήρως την απάντησή σας). (α) Αν η f είναι παραγωγίσιµη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 6 Μαρτίου 2013 Ασκηση 1. Βρείτε όλους τους

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 246 6. Οι Οµάδες τάξης

Διαβάστε περισσότερα

Σχέσεις Ισοδυναµίας και Πράξεις

Σχέσεις Ισοδυναµίας και Πράξεις Κεφάλαιο 1 Σχέσεις Ισοδυναµίας και Πράξεις Στο παρόν Κεφάλαιο ϑα αναπτύξουµε τα ϐασικά στοιχεία από τη ϑεωρία σχέσεων µερικής διάταξης, σχέσεων ισοδυναµίας και διαµερίσεων οι οποίες ορίζονται επί ενός

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν

Διαβάστε περισσότερα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα

ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Κεφάλαιο 7 ακτύλιοι : Βασικές Ιδιότητες και Παραδείγµατα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϑεµελιώδη έννοια του δακτυλίου, ϑα αναπτύξουµε τις ϐασικές ιδιότητες δακτυλίων και ϑα αναλύσουµε µια σειρά

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:

Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής: Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

ακτύλιοι και Υποδακτύλιοι

ακτύλιοι και Υποδακτύλιοι Κεφάλαιο 6 ακτύλιοι και Υποδακτύλιοι 6.1 Συνοπτική Θεωρία Στην παρούσα ενότητα υπενθυµίζουµε εν συντοµία την έννοια του δακτυλίου και υποδακτυλίου, και επικεντρωνόµαστε στις ϐασικές ιδιότητες και κατασκευές

Διαβάστε περισσότερα

Κεφάλαιο 4 ιανυσµατικοί Χώροι

Κεφάλαιο 4 ιανυσµατικοί Χώροι Κεφάλαιο 4 ιανυσµατικοί Χώροι 4 ιανυσµατικοί χώροι - Βασικοί ορισµοί και ιδιότητες ιανυσµατικοί Χώροι Ένας ιανυσµατικός Χώρος V (δχ) είναι ένα σύνολο από µαθηµατικά αντικείµενα (αριθµούς, διανύσµατα, πίνακες,

Διαβάστε περισσότερα

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Κεφάλαιο 6 Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Στο παρόν Κεφάλαιο ϑα µελετήσουµε τις ϐασικές ιδιότητες της οµάδας πηλίκο µιας οµάδας ως προς µια κανονική υποµάδα, ϑα αποδείξουµε τα ϐασικά ϑεωρήµατα

Διαβάστε περισσότερα

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K = Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Id A A, a Id A (a) := a, τ : A A, a b, όπου b είναι εκείνο το στοιχείο του A µε σ(b) = a. 7. Οµάδες µεταθέσεων (µετατάξεων)

Id A A, a Id A (a) := a, τ : A A, a b, όπου b είναι εκείνο το στοιχείο του A µε σ(b) = a. 7. Οµάδες µεταθέσεων (µετατάξεων) 250 7. Οµάδες µεταθέσεων µετατάξεων 7.1. Οι πρώτες έννοιες. Ας είναι A ένα µη κενό σύνολο και S A το σύνολο των «ένα προς ένα» και «επί» απεικονίσεων από το σύνολο A στον εαυτό του. Πρόταση 7.1. Το σύνολο

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος Αλγεβρικες οµες Ι Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 22

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οµάδες µεταθέσεων µετατάξεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 250 7. Οµάδες µεταθέσεων µετατάξεων

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R)

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R) Α Δ Ι Α - Φ 8 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 20 Δεκεμβρίου

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων

Διαβάστε περισσότερα

Οµάδες: Βασικές Ιδιότητες, Παραδείγµατα, και Κατασκευές

Οµάδες: Βασικές Ιδιότητες, Παραδείγµατα, και Κατασκευές Κεφάλαιο 2 Οµάδες: Βασικές Ιδιότητες, Παραδείγµατα, και Κατασκευές Στο παρόν Κεφάλαιο ϑα µελετήσουµε αναλυτικά την έννοια της οµάδας. Εν συντοµία, µια οµάδα είναι ένα µονοειδές κάθε στοιχείο του οποίου

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai217/lai217html Παρασκευή 17 Νοεµβρίου 217 Ασκηση

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα Αλγεβρικες οµες Ι Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 4 εκεµβρίου 2012

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Ολοκλήρωµα Lebesgue - Ασκήσεις Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα