Εισαγωγή στον προγραμματισμό γραφικών με ray tracing

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στον προγραμματισμό γραφικών με ray tracing"

Transcript

1 Εισαγωγή στον προγραμματισμό γραφικών με ray tracing Γιάννης Τσιομπίκας 18 August Εισαγωγή Σε αυτό το άρθρο, θα δούμε τον πιο απλό, αλλά συνάμα άκρως εντυπωσιακό αλγόριθμο rendering 3D γραφικών, γνωστό ως ray tracing. Αν και ο αλγόριθμος είναι απλός, το πλήρες πρόγραμμα δεν χωράει σε καμία περίπτωση στις σελίδες του περιοδικού. Κατεβάστε λοιπών τον συνοδευτικό κώδικα από την σελίδα: com/articles/introray_gr, μιας και θα αναφερόμαστε σε αυτόν για τις λεπτομέρειες της υλοποίησης. Ο αλγόριθμος πίσω από το ray tracing είναι τόσο απλός που μπορώ να τον περιγράψω περιληπτικά σε δυο-τρεις παραγράφους, και αυτή η περιγραφή θα ήταν αρκετή για τους πιο τολμηρούς αναγνώστες, με μια ελαφριά κλίση στα μαθηματικά, ώστε να τον υλοποιήσουν. Ο αλγόριθμός βασίζεται στην γεωμετρική οπτική. Θεωρώντας την οθόνη σαν ένα παράθυρο στον 3D κόσμο μπροστά από τον παρατηρητή, το ζητούμενο είναι: για κάθε pixel να υπολογίσουμε πόσο φως έρχεται από την κατεύθυνση που του αντιστοιχεί, και τι χρώμα έχει. Αυτό εξαρτάται από τα αντικείμενα από τα οποία έχει ανακλαστεί πριν φτάσει στον παρατηρητή, καθώς φυσικά και από τις ιδιότητες της φωτεινής πηγής από την οποία ξεκίνησε. Είναι μη-πρακτικό να ξεκινήσουμε από την φωτεινή πηγή και να αρχίσουμε να στέλνουμε φωτόνια προς όλες τις κατευθύνσεις, όπως συμβαίνει στην πραγματικότητα, μιας και απειροελάχιστα από αυτά θα κατέληγαν στον παρατηρητή. Ξεκινάμε λοιπών αντίστροφα, από τον παρατηρητή, και για κάθε pixel υπολογίζουμε την κατεύθυνση της ακτίνας που περνάει από αυτό. Ακολουθούμε την πορεία αυτής της πρωταρχικής ακτίνας (primary ray), και βρίσκουμε το πρώτο σημείο τομής της (intersection point), με τα αντικείμενα της σκηνής. Στο κοντινότερο intersection point λοιπών, υπολογίσουμε την ποσότητα και το χρώμα του φωτός που ανακλάται από αυτό το σημείο προς την κατεύθυνση από την οποία ήρθε η 1

2 ακτίνα. Αν το αντικείμενο που χτύπησε η ακτίνα είναι ανακλαστικό, μέρος αυτού του φωτός προέρχεται από αντανακλάσεις άλλων αντικειμένων (έμμεσος φωτισμός). Για να το υπολογίσουμε αυτό, βρίσκουμε την κατεύθυνση ανάκλασης της ακτίνας που ακολουθούσαμε, και επαναλαμβάνουμε την ίδια διαδικασία recursively προς τα εκεί, προσθέτοντας και αυτό το φως σε ότι υπολογίσαμε από αυτό που υπολογίσαμε ότι προέρχεται άμεσα από της φωτεινές πηγές της σκηνής. Σε κάθε περίπτωση το χρώμα που θα μας επιστρέψει το trace του primary ray που αντιστοιχεί σε κάθε pixel, θα το χρησιμοποιήσουμε για να βάψουμε το pixel αυτό στην τελική εικόνα (frame buffer). 2 Βασικές Δομές Για να υλοποιήσουμε τον αλγόριθμο που μόλις περιέγραψα, προφανώς θα χρειαστούμε μερικούς βασικούς μαθηματικούς τύπους στο πρόγραμμά μας. Λόγο περιορισμένου χώρου, θα παραθέσω μόνο το interface εδώ. Για την υλοποίηση δείτε τον συνοδευτικό κώδικα (vmath.h/vmath.inl). Κατ αρχάς χρειαζόμαστε τρισδιάστατα διανύσματα, που μας είναι απαραίτητα για να αναπαραστήσουμε σημεία και κατευθύνσεις στον 3D χώρο. Η κλάση Vector3 ορίζει ένα διάνυσμα ως μια τριάδα floating point αριθμών, και υλοποιεί κάποιες βασικές πράξεις που θα χρειαστούμε, όπως πρόσθεση, αφαίρεση, πολλαπλασιασμός με αριθμό (scaling), υπολογισμός μήκους, κανονικοποίηση, εσωτερικό και εξωτερικό γινόμενο, κ.α. class Vector3 { public: double x, y, z; Vector3(); Vector3( double x, double y, double z); Vector3 operator -() const; Vector3 & operator +=( const Vector3 &v); ; double length() const; double length_sq() const; void normalize(); Vector3 normalize( const Vector3 &v); Vector3 operator +( const Vector3 &a, const Vector3 &b); Vector3 operator -( const Vector3 &a, const Vector3 &b); Vector3 operator *( const Vector3 &v, double s); Vector3 operator /( const Vector3 &v, double s); double dot( const Vector3 &a, const Vector3 &b); 2

3 Vector3 cross( const Vector3 &a, const Vector3 &b); Vector3 reflect( const Vector3 &v, const Vector3 &n); Vector3 transform( const Vector3 &v, const Matrix4x4 &m); Για τις ακτίνες θα χρειαστούμε μια κλάση που να περιέχει την αρχή (origin) της ακτίνας, και την κατεύθυνση της (direction). struct Ray { Vector3 origin, dir; ; Τέλος χρειαζόμαστε πίνακες (matrices), που χρησιμεύουν για να μετασχηματίσουμε διανύσματα από ένα σύστημα συντεταγμένων σε ένα άλλο. Στον πολύ απλό εισαγωγικό ray-tracer που θα φτιάξουμε δεν θα χρησιμοποιήσουμε πολύ μετασχηματισμούς, μιας και όλα τα αντικείμενα μας θα τα ορίσουμε σε ένα κοινό σύστημα συντεταγμένων. Παρόλα αυτά, θα χρειαστούμε πίνακες για τον μετασχηματισμό της κάμερας που γεννά primary rays, όπως θα δούμε παρακάτω. Για να περιγράψουμε γραμμικούς μετασχηματισμούς σε 3 διαστάσεις, αρκεί ένας πίνακας 3x3. Θα μας βόλευε όμως να μπορούμε να περιγράψουμε affine μετασχηματισμούς, δηλαδή γραμμικούς συν παράλληλη μεταφορά. Αυτό μπορούμε να το πετύχουμε χρησιμοποιώντας μια επιπλέον διάσταση, θεωρώντας δηλαδή ότι τα διανύσματά μας είναι 4-διάστατα στο υπερεπίπεδο w = 1, και χρησιμοποιώντας πίνακες 4x4. Για περισσότερα πάνω σε αυτό το μαθηματικό τέχνασμα βλ. ομογενείς συντεταγμένες (homogeneous coordinates). Τέλος χρώματα θα αναπαραστήσουμε χρησιμοποιώντας ένα 3-διάστατο διάνυσμα, θεωρώντας ότι οι συντεταγμένες xyz αντιστοιχούν στα στοιχεία rgb (red green blue) του χρώματος. Έτσι, μια εικόνα, όπως ο framebuffer μπορεί να είναι απλά ένα array από τέτοια διανύσματα: typedef Vector3 Color; class Image { public: Color * pixels; int xsz, ysz; ; Image(); Image( int xsz, int ysz); ~Image(); bool save( const char * fname) const; 3

4 3 Σκηνή και αντικείμενα Ο απλοϊκός ray-tracer που θα φτιάξουμε, θα χρησιμοποιεί σκηνές φτιαγμένες από σφαίρες και επίπεδα. Αργότερα μπορούμε εύκολα να τον επεκτείνουμε να χειρίζεται και αντικείμενα φτιαγμένα από πολύγωνα για πλήρη ευελιξία, αλλά αυτό παρουσιάζει διάφορα άλλα ενδιαφέροντα προβλήματα που θα χρειαστούν ολόκληρο άρθρο από μόνα τους. Θα φτιάξουμε λοιπών μια ιεραρχία κλάσεων με βάση το class Object, και δύο υποκλάσεις: Sphere και Plane. Την κλάση Object θα την κάνουμε abstract base class, με pure virtual συνάρτηση intersect, την οποία θα υλοποιήσουν οι υποκλάσεις που αναφέραμε για να βρίσκουν εάν και πού τέμνει μια ακτίνα το αντικείμενο. class Object { public: Material material; ; virtual ~Object(); virtual bool intersect( const Ray &ray, HitPoint *pt) const = 0; Η συνάρτηση intersect επιστρέφει true/false αναλόγως αν η ακτίνα τέμνει το αντικείμενο η όχι, και στην πρώτη περίπτωση γεμίζει και ένα HitPoint structure με επιπλέον πληροφορίες για το σημείο τομής μέσω του pointer που περιμένει σαν δεύτερη παράμετρο. Το struct HitPoint περιέχει καταρχάς την παραμετρική απόσταση της τομής πάνω στην ακτίνα. Δηλαδή έναν αριθμό t που αν τον αντικαταστήσουμε στην παραμετρική εξίσωση της ευθείας origin + direction t (όπου origin και direction τα δύο διανύσματα που ορίζουν την ακτίνα μας όπως είπαμε παραπάνω), παίρνουμε το ακριβές σημείο της τομής στο σύστημα συντεταγμένων του 3D κόσμου μας. Αυτό τον υπολογισμό τον κάνει ή intersect, και αποθηκεύει στο δεύτερο πεδίο το διάνυσμα αυτού του σημείου. Το τρίτο πεδίο είναι το normal στο σημείο τομής, δηλαδή ένα μοναδιαίο διάνυσμα κάθετο στην επιφάνεια του αντικειμένου σε αυτό το σημείο, που θα μας χρειαστεί για να υπολογίσουμε τον φωτισμό και την γωνία ανάκλασης αργότερα. struct HitPoint { double dist; Vector3 pos; Vector3 normal; const Object * obj; ; Ένα επίπεδο ορίζεται από την εξίσωση Ax + By + Γz + = 0, όπου (A B Γ) είναι απλά το normal (κάθετο διάνυσμα) του επιπέδου, και 4

5 η απόσταση του από την αρχή του συστήματος συντεταγμένων. Οπότε στην κλάση Plane, απλώς έχουμε ένα Vector3 normal, και ένα double dist. Ο υπολογισμός της τομής μεταξύ ακτίνας και επιπέδου είναι πολύ απλός, χρησιμοποιώντας την γεωμετρική κατασκευή του σχήματος 1. Σχήμα 1: Τομή ακτίνας με επίπεδο. Αυτό που χρειαζόμαστε είναι να υπολογίσουμε το t = a b. Από το σχήμα είναι προφανές ότι a b = a b, όπου a είναι η απόσταση της αρχής της ακτίνας από το επίπεδο, και b η προβολή της κατεύθυνσης D, στην ευθεία που ορίζεται από το normal του επιπέδου N. Ξεκινάμε βρίσκοντας ένα οποιοδήποτε σημείο στο επίπεδο: P = N. Κατόπιν υπολογίζουμε το a ως το εσωτερικό γινόμενο του N με το διάνυσμα P O, μιας και το εσωτερικό γινόμενο μεταξύ δύο διανυσμάτων πρακτικά μας δίνει την προβολή του ενός στο άλλο επί το μήκος τους, και το μήκος του N είναι 1. Με παρόμοιο τρόπο υπολογίζουμε και το b με το εσωτερικό γινόμενο του N και του D. bool Plane:: intersect( const Ray &ray, HitPoint *pt) const { double ndotdir = dot( normal, ray. dir); if( fabs( ndotdir) < EPSILON) { return false; // ray is parallel Vector3 planept = normal * dist; 5

6 Vector3 pptdir = planept - ray. origin; double t = dot( normal, pptdir) / ndotdir; if(t < EPSILON) { // intersection behind the origin return false; // fill the HitPoint structure pt->obj = this; pt->dist = t; pt->pos = ray. origin + ray. dir * t; pt->normal = normal; return true; Για την αναπαράσταση μιας σφαίρας θα χρειαστούμε απλά την ακτίνα της, και ένα διάνυσμα για το κέντρο. Η σφαίρα με κέντρο (xyz) και ακτίνα r, ορίζεται ως ο γεωμετρικός τόπος των σημείων που ικανοποιούν την εξίσωση x 2 + y 2 + z 2 + r 2 = 0. Αντικαθιστώντας την παραμετρική εξίσωση της ακτίνας στην εξίσωση της σφαίρας, και κάνοντας μερικούς αλγεβρικούς μετασχηματισμούς, καταλήγουμε σε μια απλή δευτεροβάθμια εξίσωση που μπορεί να λυθεί ως προς t με τον γνωστό τρόπο. (O x + D x t C x ) 2 + (O y + D y t C y ) 2 + (O z + D z t C z ) 2 r 2 = 0 Ox 2 + D x t Cx 2 + 2O x D x t 2O x C x 2D x tc x + Oy 2 + D y t Cy 2 + 2O y D y t 2O y C y 2D y tc y + Oz 2 + D z t Cz 2 + 2O z D z t 2O z C z 2D z tc z r 2 = 0 Συλλέγωντας τις δυνάμεις του t και απλοποιώντας: Dxt Dyt Dzt O x D x t 2D x tc x + 2O y D y t 2D y tc y + 2O z D z t 2D z tc z + Ox 2 + Oy 2 + Oz 2 + Cx 2 + Cy 2 + Cz 2 2O x C x 2O y C y 2O z C z r 2 = 0 D 2 xt 2 + D 2 yt 2 + D 2 zt 2 + 2D x (O x C x )t + 2D y (O y C y )t + 2D z (O z C z )t + O 2 x + O 2 y + O 2 z + C 2 x + C 2 y + C 2 z 2(O x C x + O y C y + O z C z ) r 2 = 0 Όπου: at 2 + bt + c = 0 a = D 2 x + D 2 y + D 2 z = D D 6

7 b = 2D x (O x C x ) + 2D y (O y C y ) + 2D z (O z C z ) c = Ox 2 + Oy 2 + Oz 2 + Cx 2 + Cy 2 + Cz 2 2(O x C x + O y C y + O z C z ) r 2 = O O + C C 2(O C) r 2 Η λύση της δευτεροβάθμιας εξίσωσης μας, δεν έχει πραγματικές λύσεις (αρνητική διακρίνουσα) όταν η ακτίνα δεν τέμνει την σφαίρα, έχει μία λύση όταν η ακτίνα εφάπτεται στην σφαίρα, ενώ όταν την τέμνει κανονικά μας δίνει δύο λύσεις, που αντιστοιχούν στην παραμετρική απόσταση της μπροστά και πίσω τομής (από τις οποίες προφανώς εμάς μας ενδιαφέρει η κοντινότερη). Δείτε την υλοποίηση της συνάρτησης Sphere::intersection στο αρχείο sphere.cc στον συνοδευτικό κώδικα. Τέλος η κλάση Scene κρατάει σε std::vector όλα τα αντικείμενα της σκηνής, τα φώτα που ορίζονται απλώς από ένα διάνυσμα θέσης, και την κάμερα που περιγράφεται απο έναν πίνακα μετασχηματισμού, και δουλειά της είναι να υπολογίζει το primary ray για κάθε pixel. class Scene { private: std:: vector <Object*> objects; std:: vector <Light*> lights; Camera * camera; public:... constructors/ destructors... bool intersect( const Ray &ray, HitPoint * hit) const; Color trace_ray( const Ray &ray, int rdepth) const; Color shade( const Ray &ray, const HitPoint &hit, int rdepth) const; ; Το σημαντικότερο κομμάτι σε αυτή την κλάση, είναι οι 3 συναρτήσεις που πρακτικά υλοποιούν σχεδόν όλο τον αλγόριθμο του ray tracing. H trace_ray καλείται από το κεντρικό rendering loop για κάθε pixel, ώστε να ακολουθήσει την ακτίνα και να μας επιστρέψει το φως που λαμβάνουμε από αυτή την κατεύθυνση, και άρα το χρώμα που πρέπει να βάψουμε το pixel. Για να το πετύχει αυτο, η trace_ray καλεί καταρχάς την intersect για να βρει το σημείο που τέμνει η ακτίνα την γεωμετρία της σκηνής, και εάν βρει τομή καλεί την shade με παράμετρο τις πληροφορίες της τομής που είδαμε παραπάνω (HitPoint), για να υπολογίσει το χρώμα που πρέπει να επιστρέψει. Η shade με τη σειρά της αφού υπολογίσει το φως που λαμβάνει αυτό το σημείο από τις φωτεινές πηγές (lights vector), μπορεί να ξανα-κινήσει την διαδικασία recursively προς την ανακλώμενη κατεύθυνση, καλώντας πάλι την trace_ray με άλλη ακτίνα. Color Scene:: trace_ray( const Ray &ray, int rdepth) const { HitPoint hit; if(intersect(ray, &hit)) { 7

8 return shade(ray, hit, rdepth); // not found, return background color return bgcolor; bool Scene:: intersect( const Ray &ray, HitPoint * nearest_hit) const { nearest_hit ->obj = 0; nearest_hit ->dist = DBL_MAX; // find the nearest hit (if any) for( Object * obj: objects) { HitPoint hit; if(obj ->intersect(ray, & hit) && hit. dist < nearest_hit ->dist) { * nearest_hit = hit; return nearest_hit ->obj!= 0; 4 Φωτισμός Όπως είπαμε παραπάνω, η δουλειά της shade είναι καταρχάς να υπολογίσει πόσο φως φτάνει από κάθε φωτεινή πηγή σε κάποιο σημείο, και πόσο από αυτό το φως ανακλάται προς την κατεύθυνση από την οποία έρχεται η ακτίνα. Για κάθε φωτεινή πηγή, πρώτα πρέπει να διαπιστώσουμε αν υπάρχει οπτική επαφή με την πηγή, ή βρισκόμαστε σε σημείο σκιασμένο από κάποιο ενδιάμεσο αντικείμενο. Για να το υπολογίσουμε αυτό, αρκεί να ρίξουμε μια ακτίνα προς την κατεύθυνση του φωτός (shadow ray) και να δούμε αν χτυπάει κάποιο αντικείμενο ενδιάμεσα ή όχι. Αν βρούμε τομή, απλώς αγνοούμε αυτή την φωτεινή πηγή μιας και δεν μπορεί να συνδράμει στον φωτισμό. Χωρίζουμε την αλληλεπίδραση του φωτός με την επιφάνεια των αντικειμένων σε δύο κατηγορίες, με βάση το υλικό της επιφάνειας που προσπαθούμε να προσεγγίσουμε: Οι τραχιές επιφάνειες διαχέουν το φως που λαμβάνουν ισόποσα προς όλες τις κατευθύνσεις του ημισφαιρίου που τις περιβάλλει. Αυτή η αλληλεπίδραση λέγεται diffuse, και συμπεριφέρεται σύμφωνα με τον νόμο του Lambert που λέει ότι το ποσό της ακτινοβολίας που διαχέεται προς οποιαδήποτε κατεύθυνση είναι ίσο με το συνημίτονο της προσπίπτουσας γωνίας από το normal. Οι λείες επιφάνειες ανακλούν το φως που λαμβάνουν προς μια μικρή δέσμη κατευθύνσεων γύρο από την κατεύθυνση ανάκλασης της προσπίπτουσας. Αυτή η αλληλεπίδραση λέγεται specular. 8

9 Πολλές επιφάνειες στην πραγματικότητα, παρουσιάζουν συνδυασμό των παραπάνω αλληλεπιδράσεων, είτε γιατί βρίσκονται κάπου ενδιάμεσα από τις δύο ακραίες περιπτώσεις που περιγράψαμε, είτε γιατί έχουν τραχιά επιφάνεια καλυμμένη από κάποια γυαλιστερή επίστρωση. Για να προσεγγίσουμε λοιπών αυτές τις επιφάνειες, υπολογίζουμε και τις δύο πιθανές αλληλεπιδράσεις (diffuse και specular), και χρησιμοποιούμε ένα σταθμικό άθροισμα τους, ως το τελικό χρώμα που θα επιστρέψει ο υπολογισμός του φωτισμού. Τα βάρη που θα χρησιμοποιήσουμε τα παίρνουμε από το material του αντικειμένου που περιέχει όλες τις παραμέτρους που χρειαζόμαστε για τους υπολογισμούς φωτισμού για την κάθε επιφάνεια (material.h). Σχήμα 2: Μοντέλο φωτισμού. Την diffuse αλληλεπίδραση την υπολογίζουμε σύμφωνα με τον νόμο του Lambert που προαναφέραμε. Για να υπολογίσουμε το συνημίτονο της γωνίας ανάμεσα στο διάνυσμα κατεύθυνσης του φωτός και το normal, αρκεί να υπολογίσουμε το εσωτερικό γινόμενο των δύο διανυσμάτων, αφού φροντίσουμε να είναι μοναδιαία. Για την specular αλληλεπίδραση, θα χρησιμοποιήσουμε το εμπειρικό μοντέλο του phong, που αν και δεν έχει κάποια εδραίωση στην φυσική, είναι απλό και βγάζει πιστευτά specular highlights. Υπολογίζουμε λοιπών καταρχήν την διεύθυνση ανάκλασης του φωτός, και κατόπιν σηκώνουμε σε κάποια δύναμη το εσωτερικό γινόμενο μεταξύ του διανύσματος αυτού, και του διανύσματος κατεύθυνσης του παρατηρητή (δηλαδή την αντίθετη κατεύθυνση από αυτή της ακτίνας). Όσο μεγαλύτερη αυτή η δύναμη, τόσο πιο συγκεντρωμένο το highlight, και άρα πιο λεία δείχνει η επιφάνεια. Αφού επαναλάβουμε αυτή τη διαδικασία για κάθε φως και προσθέσουμε τα αποτελέσματα, μένει να δούμε αν το αντικείμενο είναι ανακλαστικό (παράμετρος reflectivity στο material), και αν ναι, να υπολογίσουμε την κατεύθυνση ανάκλασης της ακτίνας, και να καλέσουμε την trace_ray recursively. Το χρώμα που θα πάρουμε από την ανακλώ- 9

10 μενη ακτίνα το προσθέτουμε στο τελικό χρώμα που θα επιστρέψουμε, αφού το πολλαπλασιάσουμε πρώτα με το reflectivity factor. Φυσικά πρέπει να φροντίσουμε να μην πέσουμε σε ατέρμονο recursion αν η ακτίνα πιαστεί ανάμεσα σε δυο ανακλαστικά αντικείμενα, οπότε φροντίζουμε να τερματίσουμε το recursion μετά από ένα όριο. Για την πλήρη υλοποίηση της shade δείτε το αρχείο scene.cc. 5 Συμπληρώνοντας το puzzle Αφού υλοποιήσουμε όλα τα παραπάνω, ας δούμε και πώς τα συνδυάζουμε για να κάνουμε render 3D σκηνές. Ξεκινώντας ο απλοϊκός ray-tracer μας, δημιουργεί τον framebuffer, και καλεί μια συνάρτηση create_test_scene, που φτιάχνει όλα τα αντικείμενα που θα περιέχει η σκηνή. Κατόπιν για κάθε pixel ζητά από την κάμερα το primary ray που του αντιστοιχεί, το οποίο και δίνει στην trace_ray για να υπολογιστεί το χρώμα αυτού του pixel. Image frame(width, height); Scene * scn = create_test_scene(); Camera * cam = scn ->get_camera(); // for every pixel... Color * pixel = frame. pixels; for( int i=0; i<frame. ysz; i++) { for( int j=0; j<frame. xsz; j++) { // construct a ray passing through the pixel Ray ray = cam ->get_primary_ray(j, i, frame.xsz, frame. ysz) ; // trace the ray and write the pixel * pixel ++ = scn ->trace_ray(ray, 0); frame. save(" output. ppm"); Το μόνο κομμάτι που δεν καλύψαμε είναι πώς υπολογίζεται το primary ray που αντιστοιχεί σε κάθε pixel. Δυστυχώς λόγο περιορισμένου χώρου δεν μπορούμε να το αναλύσουμε εκτενώς. Συνοπτικά υπολογίζουμε τη θέση του pixel σε ένα επίπεδο μπροστά από την αρχή του συστήματος συντεταγμένων τριγωνομετρικά, και από αυτό υπολογίζουμε την κατεύθυνση της ακτίνας. Τέλος μετασχηματίζουμε την ακτίνα με τον πίνακα μετασχηματισμού της κάμερας, που έχουμε υπολογίσει με βάση την επιθυμητή θέση και κατεύθυνση της (βλ. camera.cc για λεπτομέρειες). Το αποτέλεσμα του προγράμματός μας δεν είναι καθόλου άσχημο για την απλότητα του αλγορίθμου που υλοποιήσαμε, όπως φαίνεται στις επόμενες εικόνες. 10

11 Σχήμα 3: Αποτελέσματα αλγορίθμου. Σχήμα 4: Πιο ενδιαφέρουσα σκηνή. 11

12 Για οποιεσδήποτε απορίες η ερωτήσεις σχετικά με το ray tracing, και τον προγραμματισμό γραφικών γενικότερα, μην διστάσετε να επικοινωνήσετε στο Happy hacking! 12

Μοντέλο φωτισμού Phong

Μοντέλο φωτισμού Phong ΚΕΦΑΛΑΙΟ 9. Στο προηγούμενο κεφάλαιο παρουσιάσθηκαν οι αλγόριθμοι απαλοιφής των πίσω επιφανειών και ακμών. Απαλοίφοντας λοιπόν τις πίσω επιφάνειες και ακμές ενός τρισδιάστατου αντικειμένου, μπορούμε να

Διαβάστε περισσότερα

Υλικά, φωτισμός και χρωματισμός

Υλικά, φωτισμός και χρωματισμός Υλικά, φωτισμός και χρωματισμός Ζωγραφίζουμε, που; Είπαμε ότι ζωγραφίζουμε την σκηνή παίρνοντας κάθε σημείο και προβάλλοντας το στην οθόνη. Στην πραγματικότητα το αποθηκεύουμε σε μια περιοχή της μνήμης

Διαβάστε περισσότερα

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ)

ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ (ΘΕΩΡΙΑ) ΦΩΤΟΡΕΑΛΙΣΜΟΣ & ΚΙΝΗΣΗ ΔΙΔΑΣΚΩΝ : ΝΤΙΝΤΑΚΗΣ ΙΩΑΝΝΗΣ (MSC) Καθηγητής Εφαρμογών ΚΑΡΔΙΤΣΑ 2013 ΤΙ ΕΙΝΑΙ ΦΩΤΟΑΠΟΔΟΣΗ: ΕΝΝΟΟΥΜΕ ΤΗ ΔΙΑΔΙΚΑΣΙΑ ΚΑΘΟΡΙΣΜΟΥ ΟΛΩΝ ΕΚΕΙΝΩΝ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΩΣΤΕ ΝΑ ΕΧΟΥΜΕ

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y

ΛΥΣΕΙΣ 6. a2 x 2 y 2. = y ΛΥΣΕΙΣ 6. Οι ασκήσεις από το βιβλίο των Marsden - romba. 7.5. Θεωρούμε την παραμετρικοποίηση rx, y = x, y, a 2 x 2 y 2, όπου το x, y διατρέχει τον δίσκο στο xy-επίπεδο που ορίζεται από την x 2 +y 2 a 2.

Διαβάστε περισσότερα

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης

Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε 2Δ συσκευές. Θέση παρατηρητή. 3Δ Μετασχ/σμός Παρατήρησης Προβολές Προβολές Απαραίτητες αφού 3Δ αντικείμενα απεικονίζονται σε Δ συσκευές. Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3Δ Μαθηματικά Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Φωτισμός

Γραφικά Υπολογιστών: Φωτισμός 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Φωτισμός (llumination) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Μοντέλα φωτισμού στα γραφικά υπολογιστών

Διαβάστε περισσότερα

I λ de cos b (8.3) de = cos b, (8.4)

I λ de cos b (8.3) de = cos b, (8.4) Κεφάλαιο 8 Φωτισµός (Illumination) 8.1 Βασικοί ορισµοί και παραδοχές Με τον όρο Φωτισµός εννοούµε τι διαδικασία υπολογισµού της έντασης της ϕωτεινής ακτινοβολίας που προσλαµβάνει ο ϑεατής (π.χ. µία κάµερα)

Διαβάστε περισσότερα

Σηµερινό Μάθηµα! Γραφικά. Επιφάνεια µεκάθεταδιανύσµατα. Προσέγγιση εφαπτόµενου επιπέδου. Μοντέλα φωτισµού (Illumination models)

Σηµερινό Μάθηµα! Γραφικά. Επιφάνεια µεκάθεταδιανύσµατα. Προσέγγιση εφαπτόµενου επιπέδου. Μοντέλα φωτισµού (Illumination models) Σηµερινό Μάθηµα! Γραφικά Μοντέλα φωτισµού (Illumination models) Έµµεσος φωτισµός (Ambient Light) Είδη ανακλάσεων Κατευθυνόµενη ανάκλαση (Specularity) ιάχυτη ανάκλαση Κανόνας του Lambert Πολλαπλέςφωτεινέςπηγές

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

ΚΑΙ ΓΡΑΦΙΚΩΝ. Μοντέλα και Αλγόριθμοι Φωτισμού

ΚΑΙ ΓΡΑΦΙΚΩΝ. Μοντέλα και Αλγόριθμοι Φωτισμού ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Γ Ρ Α Φ Ι Κ Α Μοντέλα και Αλγόριθμοι Φωτισμού Φωτισμός Για την ρεαλιστική παράσταση γραφικών χρειάζονται τα εξής: Ένα μοντέλο φωτισμού απλοποιημένη αναπαράσταση των φυσικών

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΦΙΚΑ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 1 η Σειρά Ασκήσεων Πλαίσια, γεωμετρικοί μετασχηματισμοί και προβολές 1. Y B (-1,2,0) A (-1,1,0) A (1,1,0)

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering)

Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Υφή Η διαδικασία Παραγωγής Συνθετικής Εικόνας (Rendering) Θέσεις αντικειμένων και φωτεινών πηγών Θέση παρατηρητή 3D Μοντέλα 3Δ Μετασχ/σμοί Μοντέλου 3Δ Μετασχ/σμός Παρατήρησης Απομάκρυνση Πίσω Επιφανειών

Διαβάστε περισσότερα

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1

1 x m 2. degn = m 1 + m m n. a(m 1 m 2...m k )x m 1 1 Πολυώνυμα και συσχετικός χώρος Ορισμός 3.1 Ενα μονώνυμο N στις μεταβλητές x 1, x 2,..., x n είναι ένα γινόμενο της μορφής x m 1 2...x m n n, όπου όλοι οι εκθέτες είναι φυσικοί αριθμοί. Ο βαθμός του μονωνύμου

Διαβάστε περισσότερα

Μετασχηματισμοί Μοντελοποίησης (modeling transformations)

Μετασχηματισμοί Μοντελοποίησης (modeling transformations) Μετασχηματισμοί Δ Μετασχηματισμοί Μοντελοποίησης (modeling trnformtion) Καθορισμός μετασχηματισμών των αντικειμένων Τα αντικείμενα περιγράφονται στο δικό τους σύστημα συντεταγμένων Επιτρέπει την χρήση

Διαβάστε περισσότερα

Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου

Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ. 3ο Μάθημα Αποκοπή. Γραφικα. Ευάγγελος Σπύρου Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε 3Δ Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Αποκοπή ευθείας σε 2Δ Αποκοπή πολυγώνου σε 2Δ Αποκοπή σε

Διαβάστε περισσότερα

Οπτική Επικοινωνία 4 - Α.Ε Προτεινόμενες ρυθμίσεις V-Ray 3.4 για Rhino. Υλικά

Οπτική Επικοινωνία 4 - Α.Ε Προτεινόμενες ρυθμίσεις V-Ray 3.4 για Rhino. Υλικά Οπτική Επικοινωνία 4 - Α.Ε.2017-2018 Προτεινόμενες ρυθμίσεις V-Ray 3.4 για Rhino Υλικά Στα αρχεία Rhino που προορίζονται για Rendering συνιστάται να διαχωρίζετε τα αντικείμενα σε Layers ανάλογα με υλικό/υφή

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Ανίχνευση Ακτίνας (φωτός) (ray tracing)

Γραφικά Υπολογιστών: Ανίχνευση Ακτίνας (φωτός) (ray tracing) 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Ανίχνευση Ακτίνας (φωτός) (ray tracing) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Θα εξετάσουμε την

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 1

Σημειώσεις Μαθηματικών 1 Σημειώσεις Μαθηματικών 1 Διανύσματα Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Διανύσματα 3.1 Έννοια διανύσματος Ορισμός 1 Ονομάζουμε Διάνυσμα ΑΒ ένα προσανατολισμένο ευθύγραμμο τμήμα ΑΒ με αρχή το Α και πέρας

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Η Εξίσωση Euler-Lagrange Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Διανύσματα Ευθείες - Επίπεδα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Διάνυσμα ή Διανυσματικό μέγεθος (Vector) Μέγεθος που

Διαβάστε περισσότερα

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 4η - 3Δ γραφικά

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 4η - 3Δ γραφικά Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 4η - 3Δ γραφικά Ιόνιο Πανεπιστήμιο, Τμήμα Πληροφορικής, 2015 Κωνσταντίνος Οικονόμου, Επίκουρος Καθηγητής Βασίλειος Κομιανός, Υποψήφιος Διδάκτορας

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς

Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε

Διαβάστε περισσότερα

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

Κάθε φορά, που νιώθουμε τρελή λαχτάρα να μιλήσουμε για ευθείες, φανταζόμαστε εξισώσεις της παρακάτω μορφής : y = αx + β

Κάθε φορά, που νιώθουμε τρελή λαχτάρα να μιλήσουμε για ευθείες, φανταζόμαστε εξισώσεις της παρακάτω μορφής : y = αx + β ΕΥΘΕΙΕΣ Κάθε φορά, που νιώθουμε τρελή λαχτάρα να μιλήσουμε για ευθείες, φανταζόμαστε εξισώσεις της παρακάτω μορφής : y = αx + β Η εξίσωση αυτή θα πρέπει να γίνει στο μυαλό μας συνώνυμη της λέξης και του

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών

Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες

Διαβάστε περισσότερα

Αντικείμενα και γεωμετρικοί μετασχηματισμοί

Αντικείμενα και γεωμετρικοί μετασχηματισμοί Αντικείμενα και γεωμετρικοί μετασχηματισμοί Τα βασικά γεωμετρικά αντικείμενα και οι μεταξύ τους σχέσεις μπορούν να περιγραφούν με τρεις βασικές γεωμετρικές οντότητες: σημεία, βαθμωτά μεγέθη, διανύσματα

Διαβάστε περισσότερα

Διανύσματα στις 3 Διαστάσεις

Διανύσματα στις 3 Διαστάσεις project 2 Διανύσματα στις 3 Διαστάσεις Περιεχόμενα: Prj02.1 Το Πρόβλημα... 485 Prj02.2 Ο Τύπος Vector3 και οι Δημιουργοί... 486 Prj02.3 Οι Τελεστές Σύγκρισης... 487 Prj02.4 Οι Τελεστές +, -, *, ^... 488

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός

Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,

Διαβάστε περισσότερα

{(x, y) R 2 : f (x, y) = 0}

{(x, y) R 2 : f (x, y) = 0} ΜΕΜ 102 Γεωμετρία και Γραμμική Άλγεβρα Διάλεξη 13 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης Οκτ 2014 Χ.Κουρουνιώτης (Παν.Κρήτης) ΜΕΜ 102-13 Οκτ 2014 1 / 10 Ενα θεμελιώδες πρόβλημα της Αναλυτικής Γεωμετρίας

Διαβάστε περισσότερα

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}

V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0} 1 Θεώρημα BEZOU T Ο δακτύλιος K[x 1,..., x n ] είναι περιοχή μονοσήμαντης ανάλυσης. Άρα κάθε πολυώνυμο f K[x 1,..., x n ] (που δεν είναι σταθερά, δηλαδή f / K) αναλύεται σε γινόμενο αναγώγων πολυωνύμων,

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods)

Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods) 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα

Διαβάστε περισσότερα

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι 21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB Αλγόριθμος Διαδικασία Παράμετροι Τι είναι Αλγόριθμος; Οι οδηγίες που δίνουμε με λογική σειρά, ώστε να εκτελέσουμε μια διαδικασία ή να επιλύσουμε ένα

Διαβάστε περισσότερα

τις αναδρομικές ακολουθίες (recursive sequences) στις οποίες ορίζαμε

τις αναδρομικές ακολουθίες (recursive sequences) στις οποίες ορίζαμε Κεφάλαιο 9: Αναδρομή Ο τρόπος με τον οποίο σκεφτήκαμε και σχεδιάσαμε τις συναρτήσεις στο προηγούμενο κεφάλαιο ακολουθούσε τη φιλοσοφία του προγραμματισμού που είχαμε αναπτύξει σε όλο το προηγούμενο βιβλίο.

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός.

1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. 1)Βρείτε την εξίσωση για το επίπεδο που περιέχει το σηµείο (1,-1,3) και είναι παράλληλο προς το επίπεδο 3x+y+z=a όπου a ένας αριθµός. ( Καρτεσιανή ) επιλέχθηκε για το σχήµα. Ο αριθµός a δεν επιρρεάζει

Διαβάστε περισσότερα

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή

7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή 7 ο Εργαστήριο Θόρυβος 2Δ, Μετακίνηση, Περιστροφή O θόρυβος 2Δ μας δίνει τη δυνατότητα να δημιουργίας υφής 2Δ. Στο παρακάτω παράδειγμα, γίνεται σχεδίαση γραμμών σε πλέγμα 300x300 με μεταβαλόμενη τιμή αδιαφάνειας

Διαβάστε περισσότερα

α) f(x(t), y(t)) = 0,

α) f(x(t), y(t)) = 0, Ρητές καμπύλες Μια επίπεδη αλγεβρική καμπύλη V (f) είναι το σύνολο όλων των σημείων του επιπέδου K 2 που μηδενίζουν κάποιο συγκεκριμένο ανάγωγο πολυώνυμο f K[x, y], δηλαδή V (f) = {(x 0, y 0 ) K 2 f(x

Διαβάστε περισσότερα

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski

Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski 1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ

1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Κεφάλαιο 1 ΔΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 ΟΡΙΣΜΟΙ, ΣΤΟΙΧΕΙΩΔΗΣ ΠΡΟΣΕΓΓΙΣΗ Στις θετικές επιστήμες και στις τεχνολογικές τους εφαρμογές συναντάμε συχνά μεγέθη που χαρακτηρίζονται μόνο από το μέτρο τους: τη μάζα,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 17/1/08

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 17/1/08 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 17/1/08 Constructors (Κατασκευαστές) Ειδικός τύπος μεθόδων που δημιουργούν αντικείμενα μιας κλάσης και: Εκτελούνται κατά την αρχικοποίηση των αντικειμένων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Α. Στόχοι Οι μαθητές: Να παρατηρήσουν το φαινόμενο της συμβολής / περίθλασης Να αξιοποιήσουν το φαινόμενο της περίθλασης

Διαβάστε περισσότερα

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις

Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις Κεφάλαιο 5 ΔΙΔΙΑΣΤΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ενα αυτόνομο δυναμικό σύστημα δύο διαστάσεων περιγράφεται από τις εξισώσεις ẋ 1 f 1 (x 1 x 2 ) ẋ 2 f 2 (x 1 x 2 ) (501) Το σύστημα αυτό γράφεται σε διανυσματική

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ

ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΑΝΑΚΛΑΣΗ ΕΠΙΠΕΔΟΙ ΚΑΘΡΕΦΤΕΣ ΕΙΔΩΛΟ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η ικανότητα χρήσης καθρέφτη και πηγής laser. Η κατανόηση

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ

ΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί

Διαβάστε περισσότερα

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων)

Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Μέθοδος Ελαχίστων Τετραγώνων (για την προσαρμογή (ή λείανση) δεδομένων/μετρήσεων) Στην πράξη, για πολύ σημαντικές εφαρμογές, γίνονται μετρήσεις τιμών μιας ποσότητας σε μια κλινική, για μια σφυγμομέτρηση,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής

Απεικόνιση Υφής. Μέρος B Δημιουργία Συντεταγμένων Υφής Απεικόνιση Γραφικά ΥφήςΥπολογιστών Απεικόνιση Υφής Μέρος B Δημιουργία Συντεταγμένων Υφής Γ. Γ. Παπαϊωάννου, - 2008 Γενικά Είδαμε ότι μπορούμε να αποθηκεύσουμε συντεταγμένες υφής στις κορυφές των τριγώνων

Διαβάστε περισσότερα

από t 1 (x) = A 1 x A 1 b.

από t 1 (x) = A 1 x A 1 b. Σύνοψη Κεφαλαίου 2: Ομοπαραλληλική Γεωμετρία Γεωμετρία και μετασχηματισμοί 1. Μία ισομετρία του R 2 είναι μία απεικόνιση από το R 2 στο R 2 που διατηρεί αποστάσεις. Κάθε ισομετρία του R 2 έχει μία από

Διαβάστε περισσότερα

Παράδειγμα «Ημίτονο και ζωγραφική!»: Έχει δει στα μαθηματικά τη γραφική παράσταση της συνάρτησης του ημιτόνου; Σας θυμίζει κάτι η παρακάτω εικόνα;

Παράδειγμα «Ημίτονο και ζωγραφική!»: Έχει δει στα μαθηματικά τη γραφική παράσταση της συνάρτησης του ημιτόνου; Σας θυμίζει κάτι η παρακάτω εικόνα; Τελεστές, συνθήκες και άλλα! Όπως έχει διαφανεί από όλα τα προηγούμενα παραδείγματα, η κατασκευή κατάλληλων συνθηκών στις εντολές εάν, εάν αλλιώς, για πάντα εάν, περίμενε ώσπου, επανέλαβε ώσπου, είναι

Διαβάστε περισσότερα

3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting)

3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting) Εργαστήριο 3: 3.1 Αριθμητικοί και Λογικοί Τελεστές, Μετατροπές Τύπου (Casting) Η C++, όπως όλες οι γλώσσες προγραμματισμού, χρησιμοποιεί τελεστές για να εκτελέσει τις αριθμητικές και λογικές λειτουργίες.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΣΩΝ ΚΑΙ ΓΡΑΦΙΚΩΝ Εισαγωγή /4 Το σχήμα και το μέγεθος των δισδιάστατων αντικειμένων περιγράφονται με τις καρτεσιανές συντεταγμένες x, y. Με εφαρμογή γεωμετρικών μετασχηματισμών στο μοντέλο

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Δημιουργία Κλάσεων και Αντικειμένων

ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ. Δημιουργία Κλάσεων και Αντικειμένων ΤΕΧΝΙΚΕΣ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΑΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Δημιουργία Κλάσεων και Αντικειμένων Κλάση Μια κλάση είναι μία αφηρημένη περιγραφή αντικειμένων με κοινά χαρακτηριστικά και κοινή συμπεριφορά. Ένα καλούπι/πρότυπο

Διαβάστε περισσότερα

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000

Διαβάστε περισσότερα

Απάντηση. // We write in a header file named my_header.h #ifndef my_header_h #define my_header_h #define divides(x,y) (((y)%(x)==0)?

Απάντηση. // We write in a header file named my_header.h #ifndef my_header_h #define my_header_h #define divides(x,y) (((y)%(x)==0)? Θέμα 1. Γράψτε τον κώδικα ενός header file που να περιέχει: 1) Ένα macro με όνομα divides που, αν του μεταβιβάσουμε δύο ακέραιους αριθμούς επιστρέφει 1 αν ο πρώτος αριθμός διαιρεί τον δεύτερο, αλλιώς,

Διαβάστε περισσότερα

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1

Προγραμματιστικές Ασκήσεις, Φυλλάδιο 1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ C Προγραμματιστικές Ασκήσεις, Φυλλάδιο Εκφώνηση: 9/3/0 Παράδοση: 5/4/0,.59 Άσκηση 0 η : Το πρόβλημα της βελόνας του Buffon Θέμα της εργασίας

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim

a ) a ) = lim f( a + h u ) f( a ) = lim (2) h = 0 f( a + h u ) f( a ) hdf( a )( u ) lim = 0 lim u ) f( a + h lim = 0 u ) = 0 lim = Df( a )( u ) lim 1 ΑΝΑΛΥΣΗ ΙΙ Κατευθυνόμενη Παράγωγος Κατευθυνόμενη Παράγωγος: Ορισμός 1: Εστω f : U R 2 R μία πραγματική συνάρτηση δύο μεταβλητών με U ανοικτό, a = (a, b) U και u = (u, v) μία κατεύθυνση του R 2 (δηλαδή

Διαβάστε περισσότερα

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ του Υποπυραγού Αλέξανδρου Μαλούνη* Μέρος 2 ο - Χαρτογραφικοί μετασχηματισμοί Εισαγωγή Είδαμε λοιπόν ως τώρα, ότι η γη θα μπορούσε να χαρακτηρισθεί και σφαιρική και αυτό μπορεί να γίνει εμφανές όταν την

Διαβάστε περισσότερα

Προγραμματισμός Ι. Κλάσεις και Αντικείμενα. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Προγραμματισμός Ι. Κλάσεις και Αντικείμενα. Δημήτρης Μιχαήλ. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Προγραμματισμός Ι Κλάσεις και Αντικείμενα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Κλάσεις Η γενική μορφή μιας κλάσης είναι η εξής: class class-name { private data and

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Η έννοια του μιγαδικού Το σύνολο των μιγαδικών. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα

Μαθηματικό υπόβαθρο. Κεφάλαιο 3. Μαθησιακοί στόχοι. 3.1 Εισαγωγή. 3.2 Σημεία και διανύσματα Κεφάλαιο 3 Μαθηματικό υπόβαθρο Μαθησιακοί στόχοι Μετά την ολοκλήρωση αυτού του κεφαλαίου, ο αναγνώστης θα είναι σε θέση: Να γνωρίζει τις βασικές ιδιότητες και να πραγματοποιεί πράξεις των σημείων και των

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

πυθαγόρειες τριάδες, τριγωνομετρία και υπολογισμός ολοκληρωμάτων.

πυθαγόρειες τριάδες, τριγωνομετρία και υπολογισμός ολοκληρωμάτων. πυθαγόρειες τριάδες, τριγωνομετρία και υπολογισμός ολοκληρωμάτων. Αριστείδης Κοντογεώργης -Τμήμα Μαθηματικών ΕΚΠΑ Πρότυπο Λύκειο Ευαγγελικής Σχολής Σμύρνης 21 Οκτωβρίου 2015 1 το τελευταίο θεώρημα του

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Δημιουργώντας γραφικά στο περιβάλλον Blender

Δημιουργώντας γραφικά στο περιβάλλον Blender Δημιουργώντας γραφικά στο περιβάλλον Blender Κατά τη διάρκεια των προηγούμενων ασκήσεων, μάθαμε να σχεδιάζουμε αντικείμενα, να τα επεξεργαζόμαστε και να τα μετακινούμε στη σκηνή, προσφέροντας παράλληλα

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

. Μονάδες 3 β) Τα διανύσματα και. τότε x1x2 y1y2. είναι κάθετα αν και μόνο αν 0 Μονάδες 3 γ) Το διάνυσμα,

. Μονάδες 3 β) Τα διανύσματα και. τότε x1x2 y1y2. είναι κάθετα αν και μόνο αν 0 Μονάδες 3 γ) Το διάνυσμα, ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΤΕΤΑΡΤΗ 8 ΜΑΙΟΥ 008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Τι ονομάζουμε έλλειψη με εστίες τα σημεία Ε και E Μονάδες 0 Β Να χαρακτηρίσετε

Διαβάστε περισσότερα

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί

ισδιάστατοι μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί ΚΕΦΑΛΑΙΟ 4: ισδιάστατοι γεωμετρικοί μετασχηματισμοί Πολλά προβλήματα λύνονται μέσω δισδιάστατων απεικονίσεων ενός μοντέλου. Μεταξύ αυτών και τα προβλήματα κίνησης, όπως η κίνηση ενός συρόμενου μηχανισμού.

Διαβάστε περισσότερα

1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα

1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1. Σύστημα Συντεταγμένων Το σύστημα συντεταγμένων που έχουμε συνηθίσει από το σχολείο τοποθετούσε το σημείο (0,0) στο σημείο τομής των δυο αξόνων Χ και Υ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις ΜΑΘΗΜΑΤΙΚΑ ΙΙ ΠΑΡΑΔΕΙΓΜΑΤΑ Διανύσματα - Διανυσματικές Συναρτήσεις Επιμέλεια: Ι. Λυχναρόπουλος a) Να βρεθεί η ευθεία που διέρχεται από το σημείο P (5,,3) και είναι παράλληλη προς το διάνυσμα iˆ+ 4ˆj kˆ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Θέση και Προσανατολισμός

Θέση και Προσανατολισμός Κεφάλαιο 2 Θέση και Προσανατολισμός 2-1 Εισαγωγή Προκειμένου να μπορεί ένα ρομπότ να εκτελέσει κάποιο έργο, πρέπει να διαθέτει τρόπο να περιγράφει τα εξής: Τη θέση και προσανατολισμό του τελικού στοιχείου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ

ΚΕΦΑΛΑΙΟ 2: ΟΡΙΖΟΥΣΕΣ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ :. ΕΙΣΑΓΩΓΗ Σε κάθε τετραγωνικό πίνακα ) τάξης n θα αντιστοιχίσουμε έναν πραγματικό ( ij αριθμό, τον οποίο θα ονομάσουμε ορίζουσα του πίνακα. Η ορίζουσα θα συμβολίζεται det ή Α ή n n

Διαβάστε περισσότερα

Κατακερματισμός (Hashing)

Κατακερματισμός (Hashing) Κατακερματισμός (Hashing) O κατακερματισμός είναι μια τεχνική οργάνωσης ενός αρχείου. Είναι αρκετά δημοφιλής μέθοδος για την οργάνωση αρχείων Βάσεων Δεδομένων, καθώς βοηθάει σημαντικά στην γρήγορη αναζήτηση

Διαβάστε περισσότερα

Εισαγωγή. Γιατί γραφικά υπολογιστών; Προσέγγιση «από πάνω προς τα κάτω» (top-down). Βαθµίδα διασύνδεσης προγραµµατιστή εφαρµογών (API)

Εισαγωγή. Γιατί γραφικά υπολογιστών; Προσέγγιση «από πάνω προς τα κάτω» (top-down). Βαθµίδα διασύνδεσης προγραµµατιστή εφαρµογών (API) Εισαγωγή Γιατί γραφικά υπολογιστών; Προσέγγιση «από πάνω προς τα κάτω» (top-down). Βαθµίδα διασύνδεσης προγραµµατιστή εφαρµογών (API) Γιατί OpenGL; Άλλα APIs: PHIGS (ANSI), GKS, Direct3D, VRML, JAVA-3D

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος

Διαβάστε περισσότερα