Τίτλος Μαθήματος: Διαφορική Γεωμετρία II

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τίτλος Μαθήματος: Διαφορική Γεωμετρία II"

Transcript

1 Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Το Θεώρημα Gauss - Bonnet Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 39

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 40

3 Κεφάλαιο 5 Το Θεώρημα Gauss - Bonnet Το Θεώρημα των Gauss - Bonnet αποτελεί αναμφισβήτητα ένα από τα πιο σημαντικά (αν όχι το πιο σημαντικό) αποτελέσματα της διαφορικής γεωμετρίας των επιφανειών. Μέσω του θεωρήματος αυτού αναδεικνύεται μια απρόσμενη και βαθιά σχέση μεταξύ τοπικών ποσοτήτων μιας επιφάνειας, όπως η καμπυλότητα Gauss και η γεωδαισιακή καμπυλότητα και της τοπολογίας της επιφάνειας (ολική έννοια). Εχει επιπλέον, σημαντικές γενικεύσεις σε μεγαλύτερες διαστάσεις, δίνοντας ώθηση στη γεωμετρία και τοπολογία του εικοστού αιώνα. Το Θεώρημα των Gauss - Bonnet έχει δύο κύριες εκδοχές, μια τοπική και μια ολική. Η τοπική εκδοχή αφορά κανονικές περιοχές οι οποίες είναι απλές (δηλαδή ομοιομορφικές με έναν κλειστό δίσκο) και μικρές (δηλαδή βρίσκονται στην εικόνα μιας τοπικής παραμέτρησης της επιφάνειας). Η ολική εκδοχή του θεωρήματος αφορά οποιαδήποτε κανονική περιοχή σε μια επιφάνεια και ανάγεται μέσω μιας διαδικασίας κοψιμάτων της περιοχής αυτής σε απλές και μικρές περιοχές, ώστε να εφαρμοστεί η τοπική εκδοχή του θεωρήματος Gauss - Bonnet. Η διαδικασία αυτή χρησιμοποιεί την έννοια της τριγωνοποίησης μιας επιφάνειας όπου εδώ εισάγεται μια σημαντική τοπολογική αναλλοίωτη, η χαρακτηριστική των Euler - Poincaré. Η τριγωνοποίηση μιας επιφάνειας είναι μια μη τετριμμένη μαθηματική διαδικασία και μας οδηγεί στον σημαντικό κλάδο των μαθηματικών, την αλγεβρική τοπολογία. Σκοπός του κεφαλαίου αυτού είναι η παρουσίαση χωρίς απόδειξη του θεωρήματος των Gauss - Bonnet, κυρίως μέσω κατανόησης της διατύπωσής του, αλλά και κάποιων σημαντικών εφαρμογών που προκύπτουν από αυτό. Προτρέπουμε τους φοιτητές για εκπόνηση διπλωματικών εργασιών στα θέματα αυτά. Πριν διατυπώσουμε την πρώτη εκδοχή του θεωρήματος Gauss - Bonnet χρειαζόμαστε να θυμίσουμε από την ανάλυση την έννοια του ολοκληρώματος μιας πραγματικής συνάρτησης επί ενός ανοικτού χωρίου προσαρμοσμένη στην περίπτωση των επιφανειών (βλ. και arsen - Tromba: Διανυσματικός Λογισμός). Εστω ένα τμήμα μιας κανονικής επιφάνειας με παραμέτρηση X : U R 2 41

4 X(U) =, X(u, v) = (x(u, v), y(u, v), z(u, v)) και έστω f : R μια πραγματική συνάρτηση. (Στην περίπτωσή μας θα είναι f = K : R, η καμπυλότητα Gauss της ). Θέλουμε να ορίσουμε την έννοια ενός ολοκληρώματος της μορφής fda, όπου da το στοιχειώδες εμβαδό στο U. Γνωρίζουμε ότι X u X v 2 = X u 2 X v 2 (1 cos 2 θ) = X u 2 X v 2 X u, X v 2 = EG F 2, συνεπώς da = X u X v dudv = EG F 2 dudv. Εναλλακτικά, έχουμε ότι όπου (x,y) (u,v) da = ( (x, ) 2 y) + (u, v) ( ) 2 (x, z) + (u, v) ( ) 2 (y, z), (u, v) μια από τις τρείς ελάσσονες Ιακωβιανές ορίζουσες του 3 2 πίνακα [dx] t = (X u, X v ) (βλ. σχετικούς συμβολισμούς στο Ανοικτό Μάθημα Διαφορική Γεωμετρία). Θεωρούμε τη σύνθεση ˆf = f X : U R 2 R και ορίζουμε fda = ˆf(u, v) X u X v dudv. U Αποδεικνύεται ότι το παραπάνω ολοκλήρωμα δεν εξαρτάται από την παραμέτρηση X. Το παρακάτω θεώρημα, το οποίο είχε αποδειχθεί από τον Gauss, μπορούμε να πούμε ότι αποτελεί τον πρόγονο του θεωρήματος Gauss - Bonnet. Αφορά γεωδαισιακά τρίγωνα σε μια επιφάνεια, δηλαδή τρίγωνα των οποίων οι πλεύρες είναι τμήματα γεωδαισιακών καμπυλών. Θεώρημα 5.1. (Gauss) Εστω T ένα γεωδαισιακό τρίγωνο σε μια κανονική επιφάνεια με εσωτερικές γωνίες α, β, γ. Αν K είναι η καμπυλότητα Gauss της, τότε T KdA = (α + β + γ) π. 42

5 Παρατήρηση. Είναι προφανές ότι για την περίπτωση που = R 2 R 3 τότε K = 0, απ όπου προκύπτει η γνωστή ισότητα α+β+γ = π για επίπεδο τρίγωνο. Συνεπώς, η καμπυλότητα δημιουργεί μη Ευκλείδεια γεωμετρία. Θα διατυπώσουμε τώρα την τοπική εκδοχή του θεωρήματος Gauss - Bonnet και στη συνέχεια θα εξηγήσουμε τους όρους που εμφανίζονται στην διατύπωση αυτή. Θεώρημα 5.2. (Gauss - Bonnet, πρώτη τοπική εκδοχή) Εστω μια προσανατολίσιμη κανονική επιφάνεια με τοπική παραμέτρηση X : U τέτοια ώστε το σύνολο X(U) να είναι απλά συνεκτικό. Εστω γ : R μια κανονική, απλή, κλειστή και θετικά προσανατολισμένη καμπύλη στο X(U), με παραμέτρηση κατά μήκος τόξου. Εστω D = Int(γ) X(U) το εσωτερικό της γ και k g : R R η γεωδαισιακή καμπυλότητά της. Αν K είναι η καμπυλότητα Gauss της και L R + η περίοδος της γ, τότε ισχύει L k g (s)ds = 2π 0 D KdA. Πόρισμα 5.1. Εστω γ : R R 2 μια κανονική, απλή, κλειστή και θετικά προσανατολισμένη (επίπεδη) καμπύλη με παραμέτρηση κατά μήκος τόξου. Αν L R + είναι η περίοδος της γ και k g : R R η γεωδαισιακή της καμπυλότητα, τότε L 0 k g (s)ds = 2π. Επεξηγήσεις. Ολες οι παρακάτω έννοιες είναι δυνατόν να οριστούν αυστηρά. Ε- δώ δίνουμε απλώς διαισθητική περιγραφή. 1) Προσανατολίσιμη επιφάνεια. Την έννοια αυτή έχουμε χρησιμοποιήσει αρκετές φορές στο ανοικτό μάθημα Διαφορική Γεωμετρία. Σημαίνει ότι η επιφάνεια επιδέχεται μια απεικόνιση Gauss N : S 2. 2) Απλά συνεκτικό χωρίο του R 3. Είναι ένα συνεκτικό υποσύνολο του R 3 το ο- ποίο χαρακτηρίζεται από την ιδιότητα ότι δεν έχει οπές. Ισοδύναμα, κάθε απλή, κλεστή καμπύλη στο μπορεί να συρρικνωθεί σε ένα σημείο. Για παράδειγμα η σφαίρα = S 2 είναι απλά συνεκτικό σύνολο ενώ ο δακτύλιος (torus) = T 2 δεν είναι απλά συνεκτικό. 3) Απλή καμπύλη. Είναι μια καμπύλη η οποία δεν έχει αυτοτομές. 43

6 4) Κλειστή καμπύλη. Είναι μια καμπύλη γ : [a, b] τέτοια ώστε γ(a) = γ(b). 5) Θετικά προσανατολισμένη καμπύλη σε επιφάνεια. Ο προσανατολισμός αναφέρεται ως προς τη συγκεκριμένη παραμέτρηση X της επιφάνειας. Σχετίζεται με τον δείκτη στροφής (rotation index) της καμπύλης, έννοια που δεν έχουμε χρησιμοποιήσει. Για τις ανάγκες μας αρκεί η έννοια του προσανατολισμού καμπύλης όπως έχει χρησιμοποιηθεί στο μάθημα Πραγματική Ανάλυση IV (Θεώρημα Stokes κλπ). Εκεί, μια καμπύλη γ σε μια επιφάνεια ονομάζεται θετικά προσανατολισμένη όταν εφαρμόζοντας τον κανόνα των τριών δακτύλων το κάθετο διάνυσμα N της επιφάνειας δείχνει στην κατεύθυνση του αντίχειρα. 6) Περίοδος της καμπύλης. Δηλώνει το πόσες φορές διαγράφουμε το ίχνος της καμπύλης. Ορισμός 5.1. Εστω μια κανονική επιφάνεια. Μια συνεχής περιοδική συνάρτηση γ : R με περίοδο L R + αποτελεί παραμέτρηση μιας κατά τμήματα κανονικής καμπύλης (ή ενός καμπυλόγραμμου πολυγώνου) στην εάν υπάρχει μια διαμέριση 0 = t 0 < t 1 < t 2 < < t n 1 < t n = L του διαστήματος [0, L] τέτοια ώστε να ισχύουν τα εξής: 1. γ(t) = γ(t ) εάν και μόνο εάν (t t ) = kl, k Z, 2. η συνάρτηση γ ti,t i+1 : (t i, t i+1 ) R 2 είναι διαφορίσιμη για i = 0, 1,..., n 1, 3. οι μονόπλευρες παράγωγοι γ (t i ) = lim t t i γ(t 1 ) γ(t), γ + (t i ) = lim t i t t t + i γ(t 1 ) γ(t) t i t υπάρχουν, είναι μη μηδενικές και δεν είναι παράλληλες. 44

7 Για μια τέτοια καμπύλη ορίζονται οι εσωτερικές γωνίες ως οι γωνίες που σχηματίζουν οι εφπτόμενες σε κάθε κορυφή της καμπύλης. εξωτερικές γωνίες. Θεώρημα 5.3. (Gauss - Bonnet, δεύτερη τοπική εκδοχή) Αντίστοιχα, ορίζονται οι Εστω μια κανονική προσανατολίσιμη επιφάνεια με τοπική παραμέτρηση X : U τέτοια ώστε το σύνολο X(U) είναι απλά συνεκτικό. Εστω γ : R μια κατά τμήματα κανονική, απλή, κλειστή και θετικά προσανατολισμένη καμπύλη στην με παραμέτρηση κατά μήκος τόξου. Εστω D = Int(γ) το εσωτερικό της γ και k g : R R η γεωδαισιακή καμπυλότητα της γ σε κάθε κανονικό (λείο) τμήμα της. Αν L R + είναι η περίοδος της γ, K η καμπυλότητα Gauss της και α 1,..., α n οι εσωτερικές γωνίες των κορυφών της γ, τότε ισχύει L 0 k g (s)ds = n α i (n 2)π i=1 D KdA. Παρατήρηση. Αν οι εσωτερικές γωνίες αντικατασταθούν με τις εξωτερικές γωνίες τότε το δεξί μέλος παίρνει τη μορφή 2π n α i i=1 D KdA. Το θεώρημα αυτό έχει ενδιαφέροντα πορίσματα όπως θα δούμε στη συνέχεια. Πόρισμα 5.2. (Θεώρημα Gauss). Αν γ : R είναι ένα γεωδαισιακό τρίγωνο σε μια επιφάνεια με εσωτερικές γωνίες α 1, α 2, α 3, τότε KdA = α 1 + α 2 + α 3 π, T όπου T το εσωτερικό του τριγώνου και K η καμπυλότητα Gauss της. Απόδειξη. Στο προηγούμενο θεώρημα είναι n = 3 και σε κάθε τμήμα της γ η γεωδαισιακή καμπυλότητα είναι k g = 0. Πόρισμα 5.3. Εστω ένα κανονικό n-γωνο του επιπέδου του οποίου οι ακμές είναι ευθύγραμμα τμήματα και με εσωτερικές του γωνίες α 1,..., α n. Τότε ισχύει n α i = (n 2)π i=1 Απόδειξη. Είναι K = 0 και k g = 0, άρα το αποτέλεσμα προκύπτει από το Θεώρημα

8 Πόρισμα 5.4. Εστω ένα καμπυλόγραμμο n-γωνο D της σφαίρας S 2 του οποίου οι πλευρές είναι τόξα μέγιστων κύκλων (δηλαδή ένα γεωδαισιακό n-γωνο). Τότε ισχύει n α i > (n 2)π i=1 Απόδειξη. Είναι K = 1 για τη σφαίρα S 2 και k g = 0, άρα από το Θεώρημα εώρημα 5.3 προκύπτει ότι n α i = (n 2)π + i=1 από όπου προκύπτει η ζητούμενη ανισότητα. D 1dA = (n 2)π + Εμβαδό(D), Πόρισμα 5.5. Για n = 3 το Πόρισμα 5.4 μας λέει ότι το εμβαδό E ενός σφαιρικού τριγώνου με εσωτερικές γωνίες α, β, γ ισούται με α + β + γ π. Απόδειξη. Είναι α + β + γ = π + E άρα E = α + β + γ π. Η προηγούμενη σχέση για το εμβαδό σφαιρικού τριγώνου είναι χαρακτηριστική ισότητα της σφαιρικής (ή ελλειπτικής) γεωμετρίας. είναι επίπεδο, τότε ισχύει α + β + γ = E. Θυμίζουμε ότι αν το τρίγωνο Πόρισμα 5.6. Για ένα γεωδαισιακό n-γωνο της ψευδοσφαίρας (K = 1) ισχύει n i=1 α i < (n 2)π. Συνεπώς, το εμβαδό E ενός n-γωνου στην ψευδοσφαίρα είναι E = (n 2)π α 1 α 2 α n. Για n = 3 προκύπτει η κλασική σχέση E = π (α + β + γ) που αποτελεί την χαρακτηριστική ισότητα για το εμβαδό ενός τριγώνου στην υπερβολική γεωμετρία. Ερχόμαστε τώρα στην ολική εκδοχή του θεωρήματος Gauss - Bonnet. Οπως και προηγουμένως, θα δώσουμε εξηγήσεις για την ορολογία στη συνέχεια. Θεώρημα 5.4. (Gauss - Bonnet, ολική εκδοχή) Εστω μια προσανατολίσιμη, συμπαγής κανονική επιφάνεια με καμπυλότητα Gauss K και χαρακτηριστική του Euler X (). Τότε ισχύει KdA = 2πX (). Το αριστερό μέλος της παραπάνω ισότητας ονομάζεται ολική καμπυλότητα (total curvature) της. Σημειώνουμε ότι υπάρχει και άλλη εκδοχή του θεωρήματος αυτού, την οποία δεν θα αναφέρουμε εδώ. Επεξηγήσεις. 1) Συμπαγής επιφάνεια σημαίνει κλειστό υποσύνολο του R 3 και φραγμένο, δηλαδή η περιέχεται σε μια μπάλα του R 3. Καμμιά φορά χρησιμοποιείται στη βιβλιογραφία ο παραπλανητικός όρος κλειστή επιφάνεια χωρίς σύνορο. 46

9 2) Το αριστερό μέλος αφορά ολοκλήρωμα μιας συνάρτησης f : R σε ολόκληρη την συμπαγή επιφάνεια και όχι απλώς σε ένα τμήμα της X(U) μέσω μιας παραμέτρησης X : U. Στην ειδική περίπτωση όπου η f : R ικανοποιεί την συνθήκη f \X(U) 0, τότε ορίζουμε fda = f(x(u, v)) X u X v dudv. U Διαφορετικά ο ορισμός είναι πιο περίπλοκος (χρειαζόμαστε διαμέριση της μονάδας κλπ). 3) Η πιο σημαντική έννοια είναι εδώ η χαρακτηριστική του Euler για μια τριγωνοποίηση μιας επιφάνειας. Μια τριγωνοποίηση (triangulation) μιας επιφάνειας είναι μια κάλυψη της με εικόνες τριγώνων, οι οποίες έχουν την εξής ιδιότητα: Αν δύο τρίγωνα τέμνονται, τότε η τομή τους είναι είτε μια κοινή ακμή, είτε μια κοινή κορυφή και μόνο. Ισχύει το εξής Θεώρημα 5.5. Κάθε συμπαγής επιφάνεια επιδέχεται μια πεπερασμένη τριγωνοποίηση. Εστω K ο αριθμός των κορυφών, A ο αριθμός των ακμών και E ο αριθμός των ε- δρών μιας τριγωνοποίησης της συμπαγούς επιφάνειας. Η χαρακτηριστική του Euler (ή Euler - Poincaré) της είναι ο αριθμός X () = E A + K. Παράδειγμα 5.1. Παρακάτω φαίνονται δύο διαφορετικές τριγωνοποιήσεις της σφαίρας. Για την πρώτη τριγωνοποίηση είναι K = 6, A = 12, E = 8 άρα X (S 2 ) = K A+E = = 2. Για τη δεύτερη τριγωνοποίηση είναι K = 4, A = 6, E = 4, άρα X (S 2 ) = = 2. 47

10 Το αποτέλεσμα δεν είναι τυχαίο. Πράγματι, ισχύει το εξής σημαντικό θεώρημα: Θεώρημα ) Η χαρακτηριστική του Euler όπως ορίστηκε είναι ανεξάρτητη της τριγωνοποίησης της επιφάνειας. 2) Αν, είναι δύο ομοιομορφικές επιφάνειες, τότε X () = X ( ). Συνεπώς, η χαρακτηριστική του Euler είναι μια τοπολογική αναλλοίωτη. Σημειώστε επίσης ότι στο παραπάνω παράδειγμα, οι δύο τριγωνοποιήσεις της σφαίρας έγιναν με τριγωνοποιήσεις ομοιομορφικές με ένα κυρτό πολύτοπο (γενίκευση του κανονικού πολυέδρου). Θυμίζουμε ότι γενικά για ένα κυρτό πολύτοπο ισχύει ο τύπος του Euler K + E = A + 2, ο οποίος μνημονεύεται για ευκολία με την φράση Κωνσταντίνος και Ελένη Άγιοι και οι δύο. Παράδειγμα 5.2. Για τον δακτύλιο (torus) T 2 ισχύει X (T 2 ) = 0. Αυτό είναι λίγο πιο δύσκολο να αποδειχθεί. Παράδειγμα 5.3. Για τη σφαίρα S 2 με K = 1 είδαμε ότι X (S 2 ) = 2. Τότε από το Θεώρημα Gauss - Bonnet προκύπτει ότι Εμβαδό(S 2 ) = KdA = 4π. S 2 Αυτό δεν είναι ιδιαίτερα αξιοσημείωτο, αλλά το ενδιαφέρον είναι ότι αν παραμορφώσουμε τη σφαίρα S 2 κατά συνεχή τρόπο (δηλαδή προκύψει μια επιφάνεια ομοιομορφική με την σφαίρα S 2 ) τότε KdA = 4π. Με άλλα λόγια, η καμπυλότητα της νέας επιφάνειας αλλάζει, αλλά η ολική καμπυλότητα παραμένει σταθερή. Θα κλείσουμε τη σερά αυτή των Ανοικτών Μαθημάτων Διαφορική Γεωμετρία και Διαφορική Γεωμετρία ΙΙ διατυπώνοντας το σημαντικό θεώρημα ταξινόμησης των προσανατολίσιμων συμπαγών επιφανειών. 48

11 Ορισμός 5.2. Ενα χερούλι (handle) σε μια επιφάνεια είναι μια κανονική περιοχή H ομοιομορφική με έναν κλειστό (πεπερασμένο) κυκλικό κύλινδρο και τέτοια ώ- στε το σύνολο \ H να είναι συνεκτικό. Εστω g N 0. Μια σφαίρα με g το πλήθος χερούλια είναι μια επιφάνεια η οποία περιέχει g το πλήθος ξένων ανά δύο χερουλιών H 1,..., H g, κατά τέτοιον τρόπο ώστε, το σύνολο \ (H 1 H g ) να είναι ομοιομορφικό με μια σφαίρα στην οποία έχουν αφαιρεθεί 2g το πλήθος ξένες ανά δύο γεωδαισιακές μπάλλες. Σημείωση. 1) Μια γεωδαισιακή μπάλλα (geodesic ball) είναι το σύνολο B ɛp (p) = exp p (B ɛp (0)) (βλ. σχετικά με εκθετική απεικόνιση Κεφάλαιο 3). 2) Ο αριθμός g των χερουλιών ισούται με τον αριθμό των οπών μιας επιφάνειας και ονομάζεται γένος (genus) της. Θεώρημα 5.7. (Ταξινόμησης των προσανατολίσιμων συμπαγών επιφανειών) Κάθε προσανατολίσιμη συμπαγής και συνεκτική επιφάνεια είναι ομοιομορφική με μια σφαίρα με g 0 χερούλια και της οποίας η χαρακτηριστική του Euler ισούται με 2 2g. Ειδικότερα: 1. Δύο προσανατολίσιμες συμπαγείς επιφάνειες είναι ομοιομορφικές εάν και μόνο εάν έχουν την ίδια χαρακτηριστική του Euler. 2. Η σφαίρα είναι η μόνη προσανατολίσιμη συμπαγής επιφάνεια με θετική χαρακτηριστική του Euler. 3. Ο δακτύλιος (torus) είναι η μόνη προσανατολίσιμη συμπαγής επιφάνεια με χαρακτηριστική του Euler ίση με το μηδέν. Παρατήρηση. Στον R 3 δεν υπάρχουν συμπαγείς επιφάνειες οι οποίες να μην είναι προσανατολίσιμες. Υπάρχουν πολλές πηγές όπου μπορεί να αναζητήσει την απόδειξη του παραπάνω θεωρήματος, ανάλογα με τις λεπτομέρειες που επιθυμεί να δεί. Για παράδειγμα, οι παρακάτω P. Andrews: The classifications of surfaces, Amer. ath. onthly, 95 (1988) A. Armstrong: Basic Topology, c Graw Hill, 1979 J. Gallier - D. Xu: A Guide to the Classification Theorem for Compact Surface, Springer, 2013 C. Thomassen: The Jordan - Schönffies theorem and the classification of surfaces, Amer. ath. onthly, 99 (1992)

12 5.1 Λυμένα παραδείγματα Σημειώνουμε ότι οι παρακάτω λύσεις είναι σε κάποια σημεία συνοπτικές. Παράδειγμα 5.4. Εστω μια συμπαγής και συνεκτική επιφάνεια γένους g 1. Αποδείξτε ότι υπάρχει ένα σημείο της στο οποίο η καμπυλότητα Gauss μηδενίζεται. Λύση Από το Θεώρημα Gauss - Bonnet (ολική εκδοχη) έχουμε ότι KdA = 2πX () = 4π(1 g) 0. Λόγω της συμπάγειας της υπάρχει ένα σημείο p τέτοιο ώστε K(p) > 0, συνεπώς λόγω της συνέχειας της K : R υπάρχει μια περιοχή U του p ώστε K U > 0. Επιπλέον, ισχυριζόμαστε ότι υπάρχει ένα άλλο σημείο q ώστε K(q) < 0. Πράγματι, αν αυτό δεν συνέβαινε τότε θα είχαμε 0 KdA KdA > 0, U άτοπο. Συνεπώς, λόγω της συνεκτικότητας της η συνεχής συνάρτηση K πρέπει να μηδενίζεται σε κάποιο σημείο της. Παράδειγμα 5.5. Θεωρούμε τον δακτύλιο (torus) T 2 ως επιφάνεια εκ περιστροφής που προκύπτει περιστρέφοντας τον κύκλο (x α) 2 + z 2 = r 2 περί τον άξονα z: T 2 = {(x, y, z) : (x 2 + y 2 + z 2 + α 2 r 2 ) 2 4α 2 (x 2. + y 2 ) = 0} Περιγράψτε μια παραμέτρηση του δακτυλίου T 2, υπολογίστε την καμπυλότητα Gauss και επιβεβαιώστε αναλυτικά ότι KdA = 0. T Λύση Κατ αρχάς παρατηρούμε ότι η τιμή του ολοκληρώματος προκύπτει άμεσα από το Θεώρημα Gauss - Bonnet, επειδή για τον δακτύλιο το γένος είναι g = 1 άρα X (T 2 ) = 2 2g = 0, οπότε KdA = 2πX T (T2 ) = 0. Θα το υπολογίσουμε ό- μως χωρίς τη χρήση του Θεωρήματος Gauss - Bonnet. Μια τοπική παραμέτρηση του δακτυλίου T 2 είναι η X(u, v) = ( (α + r cos u) cos v, (α + r cos u) sin v, r sin u ), 0 < u, v < 2π. 50

13 Ενας άμεσος υπολογισμός δίνει ότι τα θεμελιώδη ποσά πρώτης και δεύτερης τάξης είναι: E = r 2, F = 0, G = (α + r cos u) 2 e = r, f = 0, g = cos u(α + r cos u). Συνεπώς, η καμπυλότητα Gauss K : T 2 R είναι K = eg f 2 EG F 2 = cos u r(α + r cos u). Το στοιχείο εμβαδού στον T 2 είναι da = EG F 2 dudv = r(α + r cos u)dudv συνεπώς, T 2 KdA = 2π 2π 0 0 cos ududv = 0. Παράδειγμα 5.6. Δώστε παράδειγμα συνεκτικής επιφάνειας η οποία περιέχει δύο σημεία τα οποία δεν μπορούν να συνδεθούν με μια γεωδαισιακή. Ποιά είναι η συνηθισμένη τοπολογική υπόθεση στην ώστε να αποφεύγεται αυτό το πρόβλημα; Λύση Εστω Π ένα επίπεδο στον R 3 και p, q δύο σημεία του Π. Θεωρούμε r ένα εσωτερικό σημείο του ευθύγραμμου τμήματος pq. Τότε η επιφάνεια Π \ {r} R 3 είναι το ζητούμενο παράδειγμα. Η συνηθισμένη τοπολογική υπόθεση προκειμένου να αποφεύγεται το παραπάνω πρόβλημα είναι η πληρότητα της (, d) όπου η συνάρτηση d : R + επάγεται από την μετρική της. Το σημαντικό θεώρημα των Hopf - Rinow αναφέρει ότι η συνθήκη αυτή ισοδυναμεί με τα εξής: 1. Για κάθε p η εκθετική απεικόνιση exp p : T p ορίζεται σε όλον τον εφαπτόμενο χώρο T p, 2. κάθε ζεύγος σημείων της μπορούν να συνδεθούν με μια γεωδαισιακή καμπύλη που ελαχιστοποιεί το μήκος. 3. Κάθε κλειστό και φραγμένο υποσύνολο της είναι συμπαγές. Παράδειγμα 5.7. Εστω μια συμπαγής επιφάνεια της οποίας η καμπυλότητα Gauss είναι παντού θετική. Αποδείξτε ότι η είναι αμφιδιαφορική με τη σφαίρα. Λύση 51

14 είναι Είναι K > 0 παντού άρα KdA > 0 συνεπώς από το Θεώρημα Gauss - Bonnet KdA = 4π(1 g) > 0, από όπου προκύπτει ότι g < 1. Επειδή οι δυνατές τιμές του γένους g μιας επιφάνειας είναι g = 0, 1, 2,..., προκύπτει ότι g = 0, συνεπώς η είναι αμφιδιαφορική με τη σφαίρα. Το αντίστροφο δεν ισχύει. Η κυλινδρική επιφάνεια-πούρο είναι αμφιδιαφορική με τη σφαίρα, αλλά στο κυλινδρικό της κομμάτι είναι K = 0. Παράδειγμα 5.8. Εστω μια προσανατολίσιμη επιφάνεια με καμπυλότητα Gauss K 0 και έστω γ 1, γ 2 δύο γεωδαισιακές με αρχή ένα σημείο p. Αποδείξτε ότι οι γ 1, γ 2 δεν μπορούν να ξανασυναντηθούν σε ένα σημείο q, έτσι ώστε τα ίχνη τους να περικλείουν ένα απλά συνεκτικό χωρίο D της. Λύση Ας υποθέσουμε το αντίθετο και έστω α 1, α 2 οι εξωτερικές γωνίες των σημείων τομής των γ 1, γ 2. Τότε από την δεύτερη εκδοχή του τοπικού Θεωρήματος Gauss - Bonnet έχουμε ότι D KdA = 2π α 1 α 2. Αλλά α 1, α 2 < π συνεπώς α 1 + α 2 < 2π, οπότε 2π α 1 α 2 > 0. Επειδή όμως K 0 παντού, είναι KdA 0, άτοπο. D 5.2 Βιβλιογραφία. Abate - F. Torena: Curves and Surfaces, Springer C. Bär: Elementary Differential Geometry, Cambridge Univ. Press P. do Carmo: Differential Geometry of Curves and Surface, Prentice-Hall J. Oprea: Differential Geometry and Its Applications, The athematical Assocation of America, Β. Ι. Παπαντωνίου: Διαφορική Γεωμετρία, Εκδ. Πανεπιστ. Πατρών, Πάτρα, A. Pressley: Elementary Differential Geometry, Second Edition, Springer Μετάφραση: Στοιχειώδης Διαφορική Γεωμετρία, Πανεπιστημιακές Εκδόσεις Κρήτης, Κρήτη

X u X v 2 = X u 2 X v 2 (1 cos 2 θ) = X u 2 X v 2 X u, X v 2 = EG F 2, da =

X u X v 2 = X u 2 X v 2 (1 cos 2 θ) = X u 2 X v 2 X u, X v 2 = EG F 2, da = Κεφάλαιο 1 Το Θεώρημα Gauss-Bonnet Σύνοψη Το Θεώρημα των Gauss - Bonnet αποτελεί ένα από τα πιο σημαντικά (αν όχι το πιο σημαντικό) αποτελέσματα της διαφορικής γεωμετρίας των επιφανειών. Μέσω του θεωρήματος

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Σσναλλοίωτη παράγωγος και παράλληλη μεταφορά Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 17 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Επαναληπτικά θέματα Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών x Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία

Τίτλος Μαθήματος: Διαφορική Γεωμετρία 71 Τίτλος Μαθήματος: Διαφορική Γεωμετρία Ενότητα: Λσμένα Παραδείγματα Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 71 72 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία

Τίτλος Μαθήματος: Διαφορική Γεωμετρία 33 Τίτλος Μαθήματος: Διαφορική Γεωμετρία Ενότητα: Ο εφαπτόμενος χώρος Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 33 34 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1 C k 1 = 1 C 2 sin 2 t, k 2 =

1 C k 1 = 1 C 2 sin 2 t, k 2 = Κεφάλαιο 11 Επιφάνειες σταθερής καμπυλότητας Gauss Σύνοψη Παρουσιάζουμε χωρίς απόδειξη την ταξινόμηση των επιφανειών του R 3 με σταθερή καμπυλότητα Gauss, θετική, μηδέν, ή αρνητική. Εξετάζουμε χωριστά

Διαβάστε περισσότερα

X u, X u. Z = X u. W EG F 2 (X v F E X u). X u, X v X v, X v

X u, X u. Z = X u. W EG F 2 (X v F E X u). X u, X v X v, X v Κεφάλαιο 6 Το Θαυμαστό Θεώρημα Σύνοψη Στο Κεφάλαιο αυτό αποδεικνύουμε ένα από τα δύο κεντρικά θεωρήματα της θεωρίας επιφανειών το άλλο είναι το Θεώρημα των auss-bonnet. Το θεώρημα αυτό είναι γνωστό ως

Διαβάστε περισσότερα

= DX(0, 0)(ae 1 + be 2 ) = adx(0, 0)e 1 + bdx(0, 0)e 2 = ax u (0, 0) + bx v (0, 0).

= DX(0, 0)(ae 1 + be 2 ) = adx(0, 0)e 1 + bdx(0, 0)e 2 = ax u (0, 0) + bx v (0, 0). Κεφάλαιο 3 Ο εφαπτόμενος χώρος Σύνοψη Ο εφαπτόμενος χώρος μιας κανονικής επιφάνειας αποτελεί τη βέλτιση γραμμική προσέγγιση της επιφάνειας σε ένα σημείο της. Αποτελείται από όλα τα εφαπτόμενα διανύσματα

Διαβάστε περισσότερα

X v (q) = ( x v (q), y v (q), z v (q) ) x u (q) y u (q) z u (q) x v (q) y v (q) z v (q) X 1 u (q) X 1. det. X 2 u (q) X 2. v (q)

X v (q) = ( x v (q), y v (q), z v (q) ) x u (q) y u (q) z u (q) x v (q) y v (q) z v (q) X 1 u (q) X 1. det. X 2 u (q) X 2. v (q) Κεφάλαιο 2 Κανονικές επιφάνειες Σύνοψη Προκειμένου να ορίσουμε την έννοια της επιφάνειας στον R 3, έχουμε δύο δυνατές προσεγγίσεις. Με την πρώτη μπορούμε να ορίσουμε μια επιφάνεια ως ένα υποσύνολο του

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Γεωδαιζιακές καμπύλες Όνομα Καθηγηηή: Ανδρέας Αρβανιηογεώργος Τμήμα: Μαθημαηικών 23 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

[4], [5], [6], [7], [8], [9], [10], [11].

[4], [5], [6], [7], [8], [9], [10], [11]. Κεφάλαιο 8 Συναλλοίωτη παράγωγος και παραλληλία Σύνοψη Ορίζουμε την έννοια του διανυσματικού πεδίου σε μια επιφάνεια και τη συναλλοίωτη παράγωγο αυτού κατά μήκος μιας λείας καμπύλης. Ενα διανυσματικό πεδίο

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία

Τίτλος Μαθήματος: Διαφορική Γεωμετρία 48 Τίτλος Μαθήματος: Διαφορική Γεωμετρία Ενότητα: Καμπσλότητα Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 48 49 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 4. Ασκήσεις. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών Α.Π.Θ.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 4. Ασκήσεις. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών Α.Π.Θ. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 4 Ασκήσεις Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών Α.Π.Θ. Θεσσαλονίκη, Οκτώβριος 23 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. 4. Να βρεθεί η κάθετη καμπυλότητα του υπερβολικού παραβολειδούς. 5. Να βρεθεί η κάθετη καμπυλότητα της ελικοειδούς επιφάνειας.

ΑΣΚΗΣΕΙΣ. 4. Να βρεθεί η κάθετη καμπυλότητα του υπερβολικού παραβολειδούς. 5. Να βρεθεί η κάθετη καμπυλότητα της ελικοειδούς επιφάνειας. ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙΙ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Kαθηγητής Στυλιανός Σταματάκης URL: http://stamata.webpages.auth.gr/geometry/ ΑΣΚΗΣΕΙΣ 1. Να εξεταστεί πώς αλλάζει

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT Αρβανιτογεώργος Ανδρέας Πατέρας Ιωάννης ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ Στόχος Εργασίας Η εύρεση των γεωδαισιακών καμπυλών πάνω σε μια επιφάνεια.

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 18

Λογισμός 4 Ενότητα 18 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Το Θεώρημα του Stokes. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 13

Λογισμός 4 Ενότητα 13 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Το επικαμπύλιο ολοκλήρωμα. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα

Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα 33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 19

Λογισμός 4 Ενότητα 19 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Το Θεώρημα του Gauss. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Η μέθοδος του κινουμένου τριάκμου

Η μέθοδος του κινουμένου τριάκμου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Πρόγραμμα Μεταπτυχιακών Σπουδών Ειδίκευση Θεωρητικών Μαθηματικών Σ Σταματάκη Η μέθοδος του κινουμένου τριάκμου Σημειώσεις

Διαβάστε περισσότερα

I p : T p M R +, I p (Z) = Z, Z p = Z 2.

I p : T p M R +, I p (Z) = Z, Z p = Z 2. Κεφάλαιο 4 Η πρώτη θεμελιώδης μορφή Σύνοψη Ενας από τους κεντρικούς στόχους της διαφορικής γεωμετρίας είναι η ανάπτυξη ενός αποτελεσματικού τρόπου μέτρησης της καμπυλότητας γεωμετρικών αντικειμένων τα

Διαβάστε περισσότερα

X vu = Γ 1 21X u + Γ 2 21X v + fn. X vv = Γ 1 22X u + Γ 2 22X v + gn, (7.2) X u = (cos u cos v, cos u sin v, sin u)

X vu = Γ 1 21X u + Γ 2 21X v + fn. X vv = Γ 1 22X u + Γ 2 22X v + gn, (7.2) X u = (cos u cos v, cos u sin v, sin u) Κεφάλαιο 7 Οι εξισώσεις Codazzi και Gauss Σύνοψη Στο κεφάλαιο αυτό θα ασχοληθούμε με μια βαθύτερη κατανόηση της καμπυλότητας Gauss. Θα ορίσουμε τα σύμβολα του Christoffel, τα οποία είναι πραγματικές συναρτήσεις

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΠΑΡΑΔΕΙΓΜΑΤΑ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2 η : Εισαγωγικές Ένvοιες Ι Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος).

Όταν δεν υπάρχει κίνδυνος σύγχυσης γράφουμε συνήθως ο τοπολογικός χώρος X και χρησιμοποιούμε την σύντμηση τ.χ. (= τοπολογικός χώρος). 4 Τοπολογικοί χώροι. Στοιχειώδεις έννοιες της τοπολογίας Στην παράγραφο αυτή εισάγουμε τις βασικές έννοιες της τοπολογίας, δηλαδή αυτές του ανοικτού και κλειστού συνόλου, της κλειστότητας και του εσωτερικού

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 11

Λογισμός 4 Ενότητα 11 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Θεώρημα αλλαγής μεταβλητών. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.

14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.4: Υπολογισμός Όγκων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου

Διαβάστε περισσότερα

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Χρήστος Θ. Αναστασίου Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

x 2 + y 2 + z 2 = R 2.

x 2 + y 2 + z 2 = R 2. Σημειώσεις μαθήματος Μ2324 Γεωμετρική Τοπολογία Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2011 Εισαγωγή Η Γεωμετρική Τοπολογία είναι ο κλάδος των μαθηματικών που μελετάει τα ολικά χαρακτηριστικά

Διαβάστε περισσότερα

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1.

ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο Ασκήσεις 1. ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙΙ Χειμερινό εξάμηνο -7 Ασκήσεις Αποδείξτε την ανισότητα Cuch-Schwr Για R Δείξτε ότι η ισότητα ισχύει αν και μόνο αν τα διανύσματα και είναι συγγραμμικά Αποδείξτε την τριγωνική ανισότητα

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative

Διαβάστε περισσότερα

ds ds ds = τ b k t (3)

ds ds ds = τ b k t (3) Γενικά Μαθηματικά ΙΙΙ Πρώτο σετ ασκήσεων, Λύσεις Άσκηση 1 Γνωρίζουμε ότι το εφαπτόμενο διάνυσμα ( t), ορίζεται ως: t = r = d r ds (1) και επιπλέον το διάνυσμα της καμπυλότητας ( k), ορίζεται ως: d t k

Διαβάστε περισσότερα

γ(0) = γ(0) tan + γ(0) norm, γ(t) tan = 0 (9.1)

γ(0) = γ(0) tan + γ(0) norm, γ(t) tan = 0 (9.1) Κεφάλαιο 9 Γεωδαισιακές καμπύλες Σύνοψη Ως γνωστόν οι ευθείες γραμμές παίζουν καθοριστικό ρόλο στη γεωμετρία του επιπέδου. Σκοπός του κεφαλαίου αυτού είναι να ορίσουμε εκείνες τις καμπύλες σε μια επιφάνεια,

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος

Διαβάστε περισσότερα

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία μέτρου και ολοκλήρωσης Ενότητα 1: Μέτρα Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 7: Κλίση και παράγωγος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 7: Κλίση και παράγωγος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Κλίση και παράγωγος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

Ημερολόγιο μαθήματος

Ημερολόγιο μαθήματος ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤPΙΑ Ι ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Τμήμα Α Διδάσκων: Kαθηγητής Στυλιανός Σταματάκης Website URL: http://stamata.webpages.auth.gr/geometry/ Ημερολόγιο

Διαβάστε περισσότερα

Τα θεωρήματα Green, Stokes και Gauss

Τα θεωρήματα Green, Stokes και Gauss Τα θεωρήματα των Green, Stokes και Guss Αντώνης Τσολομύτης Σάμος, 2012 curl F div S F Επειδή αναϕέρθηκε στο μάθημα... Ενεργητική ϕωνή Ενεστώτας παράγω παρέχω Ενεστώτας-υποτακτική να παράγω να παρέχω Ενεστώτας-προστακτική

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

N(q) = N(X(u, v)) = X u(u, v) X v (u, v) X u (u, v) X v (u, v)

N(q) = N(X(u, v)) = X u(u, v) X v (u, v) X u (u, v) X v (u, v) Κεφάλαιο 5 Η απεικόνιση Gauss και καμπυλότητα Σύνοψη Ενας από τους κεντρικούς στόχους της διαφορικής γεωμετρίας είναι η εύρεση ενός φυσικού και αποτελεσματικού τρόπου, προκειμένου να μετρηθεί η κύρτωση

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΣΤΟΙΧΕΙΩΔΕΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Το πρόβλημα του Plateau

Το πρόβλημα του Plateau Το πρόβλημα του Plateau Ανδρέας Σάββας-Χαλιλάι Τμήμα Μαθηματικών users.uoi.gr/ansavas Πανεπιστήμιο Ιωαννίνων Εμβαδόν επιφανειών Έστω Ω R 2 μια συνεκτική και ανοικτή περιοχή με συμπαγές 1 -λείο σύνορο Ω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 3 : Γραφήματα & Αποδείξεις Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #16: Βασικά Θεωρήματα του Διαφορικού Λογισμού Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Κλασική Hλεκτροδυναμική

Κλασική Hλεκτροδυναμική Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.

Διαβάστε περισσότερα

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης

Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Μαθηματικά Ενότητα 11: Θεώρημα Μέσης Τιμής Μονοτονία Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Θέματα Αρμονικής Ανάλυσης

Θέματα Αρμονικής Ανάλυσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θέματα Αρμονικής Ανάλυσης Ενότητα 3: Αρμονικές Συναρτήσεις Μιχ. Μ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)

ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 16: Θεώρημα Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 16: Θεώρημα Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Θεώρημα Αντιστροφής. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ανασκόπηση-Μάθημα 32 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού πεδίου

Ανασκόπηση-Μάθημα 32 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού πεδίου Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 3 Εύρεση Εμβαδού μέσω του Θεωρήματος Green- -Κυκλοφορία και εξερχόμενη ροή διανυσματικού

Διαβάστε περισσότερα

Κ X κυρτό σύνολο. Ένα σημείο x Κ

Κ X κυρτό σύνολο. Ένα σημείο x Κ 8 5 Το θεώρημα Kre-Mlm Βασικές ιδιότητες συμπαγών και κυρτών συνόλων. Ορισμός 5. Έστω X διανυσματικός χώρος και Κ X κυρτό σύνολο. Ένα σημείο x Κ λέγεται ακραίο ( extreme ) σημείο του Κ, αν δεν είναι γνήσιος

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 16

Λογισμός 4 Ενότητα 16 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Το επι-επιφάνειο ολοκλήρωμα. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί Η ΠΑΡΑΓΩΓΟΣ. Η ΕΝΝΟΙΑ ΤΗΣ ΑΝΑΛΥΤΙΚΗΣ ΣΥΝΑΡΗΣΗΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014

ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 ΜΕΓΙΣΤΙΚΟΣ ΤΕΛΕΣΤΗΣ 18 Σεπτεμβρίου 2014 Περιεχόμενα 1 Εισαγωγή 2 2 Μεγιστικός τελέστης στην μπάλα 2 2.1 Βασικό θεώρημα........................ 2 2.2 Γενική περίπτωση μπάλας.................. 6 2.2.1 Στο

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΗ ΥΛΗ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ RIEMANN

ΑΝΑΛΥΤΙΚΗ ΥΛΗ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ RIEMANN ΑΝΑΛΥΤΙΚΗ ΥΛΗ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ RIEMANN Ι. Διαφορίσιμες Πολλαπλότητες 1. Διαφορίσιμες πολλαπλότητες και απεικονίσεις 2. Ο εφαπτόμενος χώρος και η εφαπτομένη δέσμη 3. Υποπολλαπλότητες

Διαβάστε περισσότερα

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

Γενικά Μαθηματικά ΙΙ

Γενικά Μαθηματικά ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 10

Λογισμός 4 Ενότητα 10 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Διαιρέσεις της μονάδας και επέκταση του ολοκληρώματος. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.07: Εκθετικές και Λογαριθμικές Συναρτήσεις Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 8: Διπλά ολοκληρώματα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.: Η Παράγωγος Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.: Η Παράγωγος

Διαβάστε περισσότερα

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν.

ή κανονικός ( regular ), αν για κάθε x και κάθε κλειστό αντιπαραδείγματα με τα οποία αποδεικνύεται ότι οι αντίστροφες συνεπαγωγές δεν ισχύουν. 93 4 Διαχωριστικά αξιώματα Στο κεφάλαιο αυτό εισάγουμε τα λεγόμενα διαχωριστικά αξιώματα και εξετάζουμε τις βασικές ιδιότητές τους. Ένα από αυτά το έχουμε ήδη εισαγάγει δηλαδή το αξίωμα Husdorff ( ορισμός

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 3: Ολοκληρωτικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.3: Εμβαδά εκ Περιστροφής Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 14

Λογισμός 4 Ενότητα 14 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Το θεώρημα του Green. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2)

Pr(10 X 15) = Pr(15 X 20) = 1/2, (10.2) Κεφάλαιο 10 Συνεχείς τυχαίες μεταβλητές Σε αυτό το κεφάλαιο θα εξετάσουμε τις ιδιότητες που έχουν οι συνεχείς τυχαίες μεταβλητές. Εκείνες οι Τ.Μ. X, δηλαδή, των οποίων το σύνολο τιμών δεν είναι διακριτό,

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i.

v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Α 0 Ιουλίου, 0 Θέμα. (αʹ) Να βρεθεί η τιμή του a R για την οποία η συνάρτηση u(x, y) ax 3 y +4xy

Διαβάστε περισσότερα

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό

V x, y W x, y, y συνιστούν προφανώς ένα ανοικτό 81 3.2 Το θεώρημα Tychooff. Στην παράγραφο αυτή θα ασχοληθούμε με το θεώρημα Tychooff, δηλαδή ότι ένα αυθαίρετο καρτεσιανό γινόμενο συμπαγών χώρων είναι, με την τοπολογία γινόμενο, συμπαγής χώρος. Το θεώρημα

Διαβάστε περισσότερα

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας

Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.

Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

f x 0 για κάθε x και f 1

f x 0 για κάθε x και f 1 06 4.2 Το Λήμμα του Uysoh το Λήμμα της εμφύτευσης και το θεώρημα μετρικοποίησης του Uysoh. Ο κύριος στόχος αυτής της παραγράφου είναι η απόδειξη ενός θεμελιώδους αποτελέσματος γνωστού ως το Λήμμα του Uysoh.

Διαβάστε περισσότερα