R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος"

Transcript

1 73 3. Συμπαγείς χώροι 3. Συμπαγείς χώροι και βασικές ιδιότητες Οι συμπαγείς χώροι είναι μια από τις πιο σημαντικές κλάσεις τοπολογικών χώρων. Η κλάση των συμπαγών χώρων περιλαμβάνει τα κλειστά διαστήματα,b της πραγματικής ευθείας ( και περισσότερο γενικά τα κλειστά και φραγμένα υποσύνολα των ευκλειδείων χώρων) και κληρονομεί τις θεμελιώδεις ιδιότητες αυτών. Για παράδειγμα κάθε συνεχής πραγματική συνάρτηση f ορισμένη σε ένα συμπαγή χώρο επιτυγχάνει μέγιστη και ελάχιστη τιμή, κάθε φθίνουσα ακολουθία κλειστών μη κενών υποσυνόλων του έχει μη κενή τομή, κτλ. Ο ορισμός του συμπαγούς χώρου με την χρήση ανοικτών καλυμμάτων δεν είναι τόσο φυσιολογικός ή διαισθητικός, εν τούτοις είναι φυσιολογικός στα πλαίσια της Θεωρίας Μέτρου όταν κανείς επιχειρεί να αποδείξει π.χ. ότι το εξωτερικό μέτρο Lebesgue ενός διαστήματος της παραγράφου.) R ισούται με το μήκος του. ( πρβλ. την ιστορική σημείωση 3.27 στο τέλος Υπενθυμίζουμε ότι μια οικογένεια υποσυνόλων ενός συνόλου λέγεται κάλυμμα του, αν η ένωση των μελών της είναι ίση με το. Αν ο είναι τοπολογικός χώρος και τα μέλη της είναι ανοικτά στον, τότε λέμε ότι η είναι ένα ανοικτό κάλυμμα του. Ορισμός 3.. Έστω τ.χ. και (α) Ο λέγεται συμπαγής, αν κάθε ανοικτό κάλυμμα : του έχει πεπερασμένο υποκάλυμμα, δηλαδή υπάρχει πεπερασμένο υποσύνολο του, ώστε (β) Το λέγεται συμπαγές υποσύνολο του, αν είναι συμπαγής υπόχωρος του. (Δηλαδή, αν είναι συμπαγής ως τοπολογικός χώρος με την σχετική τοπολογία.) Παρατήρηση 3.2. Εύκολα αποδεικνύεται ότι το είναι συμπαγές, αν και μόνο αν, κάθε ανοικτό κάλυμμα του έχει πεπερασμένο υποκάλυμμα. Δηλαδή, αν και μόνο αν για κάθε

2 74 οικογένεια : ανοικτών υποσυνόλων του με, υπάρχει πεπερασμένο, ώστε. ( Συμπληρώστε τις λεπτομέρειες.) Παραδείγματα 3.3.) Κάθε τοπολογικός χώρος με πεπερασμένο πλήθος στοιχείων είναι συμπαγής, εφόσον τότε κάθε ανοικτό κάλυμμα του είναι πεπερασμένο. 2) Ένας διακριτός χώρος είναι συμπαγής, αν και μόνο αν, είναι πεπερασμένος. ( Αρκεί να θεωρήσουμε το ανοικτό κάλυμμα που αποτελείται από όλα τα μονοσύνολα.) 3) Σε κάθε τ.χ. το και τα πεπερασμένα υποσύνολά του είναι συμπαγή. Αν x είναι συγκλίνουσα ακολουθία στον και x x, τότε το x : x είναι συμπαγές υποσύνολο του. Πράγματι αν : είναι ανοικτό κάλυμμα του τότε υπάρχει 0 : x 0 άρα υπάρχει N x. 0 : 0 0 Για κάθε k,2,..., 0, επιλέγουμε : x ένα πεπερασμένο υποκάλυμμα του. έπεται τότε ότι το,,..., k k k είναι 0 0 4) Η πραγματική ευθεία R δεν είναι συμπαγής χώρος, εφόσον το κάλυμμα του R με τα ανοικτά διαστήματα,,,, δεν έχει πεπερασμένο υποκάλυμμα. Όμως κάθε κλειστό διάστημα ab,, όπου a, b R με a b είναι συμπαγές σύνολο: Πράγματι, έστω : ένα κάλυμμα του, ab αποτελούμενο από ανοικτά υποσύνολα του R ( πρβλ. παρατήρηση 3.2 ). Θέτομε S x a, b : a, x μπορεί να καλυφθεί από πεπερασμένο πλήθος από τα και παρατηρούμε ότι S. Αρκεί να αποδείξουμε ότι sups απαγωγή σε άτοπο, ότι c c a b 0 c sup S b. Έστω ώστε 0 c 0 0 :,,. Επειδή a c c, το ac, b ( Γιατί;). Υποθέτομε προς, τότε υπάρχει μπορεί να καλυφθεί από ένα πεπερασμένο πλήθος συνόλων,,..., τα σύνολα αυτά μαζί με το συνιστούν ένα πεπερασμένο κάλυμμα του ac, 2, άτοπο. 0

3 75 Ο ορισμός της έννοιας του συμπαγούς χώρου μπορεί να διατυπωθεί και με ένα δυϊκό τρόπο, χρησιμοποιώντας κλειστά αντί ανοικτών συνόλων. Το κριτήριο που προκύπτει θα αποδειχθεί χρήσιμο σε αρκετές περιπτώσεις. Πρώτα διατυπώνουμε έναν ορισμό. Ορισμός 3.4. Έστω σύνολο και = : μη κενή οικογένεια υποσυνόλων του. Θα λέμε ότι η έχει την ιδιότητα της πεπερασμένης τομής (ι.π.τ) αν για κάθε πεπερασμένο ισχύει ότι Παραδείγματα 3.5. ) Έστω τοπολογικός χώρος και x, τότε κάθε βάση περιοχών του x έχει την ι.π.τ. B x 2) Έστω S σύνολο και B βάση φίλτρου στο S τότε η B έχει την ι.π.τ. ( πρβλ. τον ορισμό.24). Θεώρημα 3.6. Έστω τ.χ.. Τότε ο είναι συμπαγής αν και μόνο αν κάθε οικογένεια = : κλειστών υποσυνόλων του με την ι.π.τ., έχει μη κενή τομή. Δηλαδή ισχύει,. Απόδειξη. Θα χρησιμοποιήσουμε την ακόλουθη απλή συνέπεια των κανόνων De Morga:Μια τομή κλειστών συνόλων είναι κενή ( ), αν και μόνο αν,, δηλαδή τα συμπληρώματα των συνιστούν ανοικτό κάλυμμα του. Θεωρούμε μια οικογένεια = και υποθέτουμε ότι ώστε J. Τότε, : κλειστών υποσυνόλων του με την ι.π.τ. \ \. Η τελευταία ισότητα συνεπάγεται ότι J στην ι.π.τ. της οικογένειας. και άρα υπάρχει J πεπερασμένο, το οποίο αντιφάσκει

4 76 Έστω : κλειστά σύνολα και ανοικτό κάλυμμα του. Θέτουμε,, τότε. Έπεται από την υπόθεσή μας ότι η οικογένεια : δεν έχει την ι.π.τ. και συνεπώς υπάρχει J πεπερασμένο ώστε J. Έτσι συμπεραίνουμε ότι και άρα ο είναι συμπαγής. J Παρατήρηση 3.7. (α) Έστω συμπαγής χώρος. Αν C C2... C... είναι φθίνουσα ακολουθία κλειστών μη κενών υποσυνόλων του τότε προφανώς την ι.π.τ..) C C. ( Η ικανοποιεί (β) Είναι σαφές ότι το θεώρημα 3.6 διατυπώνεται ισοδύναμα ως εξής: Ο χώρος είναι συμπαγής αν και μόνο αν για κάθε οικογένεια υποσυνόλων του με την ι.π.τ., η τομή : είναι μη κενή. Πρόταση 3.8. Κάθε κλειστό υποσύνολο συμπαγούς χώρου είναι συμπαγές. Απόδειξη. Έστω κλειστό υποσύνολο του και ένα κάλυμμα του αποτελούμενο από ανοικτά υποσύνολα του ( πρβλ. την παρατήρηση 3.2 ). Τότε η οικογένεια B a \ είναι προφανώς ένα ανοικτό κάλυμμα του χώρου και άρα, εφόσον ο είναι συμπαγής, κάποια πεπερασμένη υποοικογένεια C της B καλύπτει τον. Είναι τότε σαφές ότι η οικογένεια C \ \ είναι ένα πεπερασμένο ανοικτό κάλυμμα του.. Το ερώτημα αν, τα συμπαγή υποσύνολα ενός τοπολογικού χώρου είναι κλειστά έχει θετική απάντηση υπό την προϋπόθεση ότι ο ικανοποιεί την όπως αποκαλείται συνθήκη Hausdorff. ( Από το όνομα του μαθηματικού elx Hausdorff ο οποίος την εισήγαγε.)

5 77 Ορισμός 3.9. Ένας τοπολογικός χώρος καλείται χώρος Hausdorff, αν για κάθε ζεύγος x, x 2 διαφορετικών σημείων του, υπάρχουν περιοχές και 2 των x και x 2 αντίστοιχα ώστε 2. Παρατήρηση 3.0. Η έννοια του τοπολογικού χώρου Hausdorff θα μελετηθεί διεξοδικότερα στο κεφάλαιο των διαχωριστικών αξιωμάτων. Επί του παρόντος, παρατηρούμε τα ακόλουθα: (α) Κάθε μετρικός χώρος, d είναι χώρος Hausdorff. Πράγματι, αν xyμε, x και y, είναι ξένες. 2 Επίσης ο χώρος y και d x, y 0, τότε οι ανοικτές σφαίρες x, 2 R S είναι, όπως εύκολα διαπιστώνεται, χώρος Hausdorff και βέβαια δεν είναι μετρικοποιήσιμος. ( πρβλ. παράδειγμα 2.20 (3).) (β) Ο χώρος του Serpsk όπως και ένα άπειρο σύνολο με την συμπεπερασμένη τοπολογία δεν είναι χώροι Hausdorff. ( Πρβλ. τα παραδείγματα.2 (4) και (5) και συμπληρώστε τις λεπτομέρειες στον παραπάνω ισχυρισμό.) Λήμμα 3.. Έστω συμπαγές υποσύνολο του χώρου Hausdorff και a το οποίο δεν ανήκει στον. Τότε υπάρχουν ξένα ανοικτά υποσύνολα και του ώστε a και. Απόδειξη. Για κάθε σημείο y, επιλέγουμε ξένες ανοικτές περιοχές y και y των σημείων a και y αντίστοιχα ( χρησιμοποιώντας την συνθήκη Hausdorff). Η οικογένεια y : y είναι ένα ανοικτό κάλυμμα του συμπαγούς συνόλου, επομένως υπάρχουν y,..., y ώστε k yk. Το ανοικτό σύνολο k yk περιέχει το και είναι ξένο προς το ανοικτό σύνολο, το οποίο είναι τομή περιοχών του a. Έτσι τα k yk σύνολα και ικανοποιούν τις απαιτήσεις μας..

6 78 Από αυτό το λήμμα έπεται εύκολα η απάντηση στο ερώτημα που θέσαμε πριν τον ορισμό 3.9. Πρόταση 3.2. Κάθε συμπαγές υποσύνολο χώρου Hausdorff είναι κλειστό. Απόδειξη. Έστω χώρος Hausdorff και συμπαγές υποσύνολο του. Αν είναι τυχόν σημείο του \ τότε, από το λήμμα 3., μπορούμε να βρούμε ξένα ανοικτά σύνολα και στον ώστε ανοικτό και το κλειστό στον. και. Έπεται ότι, \. Άρα το \ είναι Παραδείγματα 3.3. ) Επειδή ένα κλειστό διάστημα ab,, ( a, br, a b ) του R είναι συμπαγές σύνολο ( παράδειγμα 3.3 (4) ), έπεται από την πρόταση 3.8 ότι κάθε κλειστό υποσύνολο του ab, είναι επίσης συμπαγές. 2) Η συνθήκη Hausdorff στην υπόθεση της πρότασης 3.2 είναι αναγκαία: Πράγματι, έστω άπειρο σύνολο με την συμπεπερασμένη τοπολογία ( παράδειγμα.2 (5)) τότε τα μόνα γνήσια υποσύνολα του τα οποία είναι κλειστά είναι τα πεπερασμένα. Όμως είναι εύκολο να ελέγξουμε ότι κάθε υποσύνολο του είναι συμπαγές. 3) Κάθε συμπαγές υποσύνολο ενός μετρικού χώρου, d είναι κλειστό και φραγμένο. Πράγματι ο είναι χώρος Hausdorff ως μετρικός χώρος και άρα το είναι από την πρόταση 3.2 κλειστό. Έστω a, τότε η ακολουθία ανοικτών σφαιρών B a,,, προφανώς καλύπτει τον χώρο και συνεπώς το συμπαγές σύνολο. Έπεται ότι ένα πεπερασμένο πλήθος από αυτές τις σφαίρες καλύπτει το και αν B a, N είναι από αυτές σφαίρες εκείνη με την μεγαλύτερη ακτίνα,, τότε B a, N φραγμένο.. Δηλαδή το είναι Το αντίστροφο αυτού του αποτελέσματος δεν ισχύει γενικά. Αυτό μπορούμε να το αποδείξουμε με το παράδειγμα ενός άπειρου συνόλου με την διακριτή μετρική d. Ο μετρικός, d είναι τότε (προφανώς ) κλειστό και φραγμένο σύνολο, εντούτοις δεν είναι συμπαγής, εφόσον το ανοικτό κάλυμμα x : x του δεν έχει πεπερασμένο

7 79 υποκάλυμμα. Υπάρχει βέβαια μια σημαντική περίπτωση που το αποτέλεσμα ισχύει, αυτή είναι η περίπτωση των ευκλειδείων χώρων. Όπως θα αποδείξουμε λίγο αργότερα με την βοήθεια του θεωρήματος Tychooff ( ή της ειδικής περίπτωσης του θεωρήματος 3.7 ) ένα υποσύνολο του ευκλειδείου χώρου είναι συμπαγές αν και μόνο αν είναι κλειστό και φραγμένο. R Πρόταση 3.4 Η εικόνα ενός συμπαγούς χώρου μέσω μιας συνεχούς απεικόνισης είναι συμπαγής χώρος. Απόδειξη. Έστω f : συνεχής συνάρτηση. Υποθέτουμε ότι ο είναι συμπαγής χώρος. Έστω a ένα κάλυμμα του συνόλου f από ανοικτά υποσύνολα του. Η οικογένεια f : a είναι ένα ανοικτό κάλυμμα του, εφόσον η f είναι συνεχής. Επειδή ο είναι συμπαγής ένα πεπερασμένο πλήθος από αυτά, έστω f f,..., Καλύπτουν τον. Έπεται ότι τα σύνολα,..., καλύπτουν το f και έτσι το f είναι συμπαγές υποσύνολο του. Πόρισμα 3.5. Έστω f : συνεχής και επί συνάρτηση. Αν ο είναι συμπαγής και ο είναι Hausdorff, τότε η f είναι ομοιομορφισμός. Απόδειξη. Αρκεί να αποδείξουμε ότι η f είναι κλειστή απεικόνιση ( ορισμός 2.8 ) διότι τότε η αντίστροφη απεικόνιση f της f θα είναι συνεχής συνάρτηση. Έστω κλειστό στο τότε από την πρόταση 3.8 το είναι συμπαγές σύνολο. Επομένως από την πρόταση 3.4 το f είναι συμπαγές υποσύνολο του. Επειδή ο είναι χώρος Hausdorff από την πρόταση 3.2 είναι κλειστό στον. Άσκηση. Αν, συμπαγής και είναι Hausdorff τότε. τοπολογία επί του ώστε..

8 80 Από τον Απειροστικό Λογισμό γνωρίζουμε ότι μια συνεχής πραγματική συνάρτηση f ορισμένη σε ένα κλειστό και φραγμένο διάστημα ab, της πραγματικής ευθείας έχει μέγιστη και ελάχιστη τιμή. Το σημαντικό αυτό αποτέλεσμα οφείλεται στην συμπάγεια του ab, και έτσι γενικεύεται κατάλληλα για συμπαγείς χώρους. Η γενίκευση αυτή είναι μια σπουδαία αρχή της μαθηματικής ανάλυσης Θεώρημα 3.6. ( Μέγιστης και ελάχιστης τιμής ) Έστω συμπαγής χώρος και f : R συνεχής συνάρτηση. Τότε η f έχει μέγιστη και ελάχιστη τιμή, δηλαδή υπάρχουν σημεία pq, ώστε f p f x f q για κάθε x. Απόδειξη. Η εικόνα f R του είναι συμπαγές υποσύνολο της πραγματικής ευθείας R από την πρόταση 3.4. Έτσι αρκεί να αποδείξουμε ότι: Αν είναι συμπαγές μη κενό υποσύνολο του R, τότε το έχει μέγιστο και ελάχιστο στοιχείο. Πράγματι, από το παράδειγμα 3.3 (3), το είναι κλειστό και φραγμένο υποσύνολο του R. Έστω m m και sup. Οι αριθμοί m και ανήκουν στην κλειστότητα του (γιατί;), δηλαδή m,, αφού το είναι κλειστό. Έπεται αμέσως ότι οι m και είναι το ελάχιστο και το μέγιστο στοιχείο του αντίστοιχα. ( Μία άλλη απόδειξη του ανωτέρω ισχυρισμού έχει ως εξής: Αν π.χ. το δεν έχει μέγιστο στοιχείο, τότε η οικογένεια, a : a είναι ένα ανοικτό κάλυμμα του επειδή το είναι συμπαγές, υπάρχουν a a ώστε τα διαστήματα a a,..., να,,...,, καλύπτουν το. Αν a είναι ο μεγαλύτερος των αριθμών a,..., a, τότε ο a δεν ανήκει σε κανένα από αυτά τα διαστήματα, το οποίο αντιφάσκει με το γεγονός ότι καλύπτουν το.) Έστω τώρα pq, ώστε f p m και f q, τότε f p f x f q κάθε x., για

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές.

ι3.4 Παραδείγματα T ) έχει την ιδιότητα Heine-Borel, αν κάθε κλειστό και φραγμένο υποσύνολό του είναι συμπαγές. 6 ι3.4 Παραδείγματα Στην παράγραφο αυτή θα μελετήσουμε κάποια σημαντικά παραδείγματα, για τις εφαρμογές, χώρων συναρτήσεων οι οποίοι είναι τοπικά κυρτοί και μετρικοποιήσιμοι αλλά η τοπολογία τους δεν επάγεται

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη

4.2 Αυτοπάθεια και ασθενής συμπάγεια * * X, x X, είναι επί του. X. Σημειώνουμε ότι υπάρχουν παραδείγματα μη 94 Ένας χώρος με νόρμα (, ( ( ( ϕ : : ϕ =, ( 4. Αυτοπάθεια και ασθενής συμπάγεια λέγεται αυτοπαθής ( refleive, αν η κανονική εμφύτευση,, είναι επί του, δηλαδή ϕ =. Παρατηρούμε ότι ένας αυτοπαθής χώρος

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2...

a n = sup γ n. lim inf n n n lim sup a n = lim lim inf a n = lim γ n. lim sup a n = lim β n = 0 = lim γ n = lim inf a n. 2. a n = ( 1) n, n = 1, 2... ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ Β.ΒΛΑΧΟΥ, Α. ΣΟΥΡΜΕΛΙΔΗΣ Τμήμα Μαθηματικών, Πανεπιστήμιο Πατρών Φθινόπωρο 2013 1 Θα θέλαμε να αναφέρουμε ότι για την συγγραφή αυτών των σημειώσεων χρησιμοποιήσαμε ιδιαίτερα α)το βιβλίο

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

Τίτλος: Συμπάγεια, Θεωρήματα Σταθερού Σημείου, και Εφαρμογές στην Οικονομική Θεωρία

Τίτλος: Συμπάγεια, Θεωρήματα Σταθερού Σημείου, και Εφαρμογές στην Οικονομική Θεωρία ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Δ.Π.Μ.Σ. «ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ σε ΣΥΓΧΡΟΝΕΣ ΤΕΧΝΟΛΟΓΙΕΣ και την ΟΙΚΟΝΟΜΙΑ» ΚΤΙΡΙΟ Α, ος ΟΡΟΦΟΣ, ΠΟΛΥΤΕΧΝΕΙΟΥΠΟΛΗ ΖΩΓΡΑΦΟΥ,

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

8. Πολλαπλές μερικές παράγωγοι

8. Πολλαπλές μερικές παράγωγοι 94 8 Πολλαπλές μερικές παράγωγοι Οι μερικές παράγωγοι,,, αν υπάρχουν, μιας συνάρτησης : U R R ( U ανοικτό είναι αυτές συναρτήσεις από το U στο R, επομένως μπορεί να ορισθεί για αυτές η έννοια της μερικής

Διαβάστε περισσότερα

f(x) f(c) x 1 c x 2 c

f(x) f(c) x 1 c x 2 c Μαθηματικός Λογισμός Ι Φθινόπωρο 2014 Σημειώσεις 1-12-14 Μ. Ζαζάνης 1 Πραγματικές Συναρτήσεις και Ορια Εστω S R ένα υποσύνολο του R και f : S R μια συνάρτηση με πεδίο ορισμού το S και τιμές στους πραγματικούς

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ακολουθίες πραγματικών αριθμών

Ακολουθίες πραγματικών αριθμών ΚΕΦΑΛΑΙΟ Ακολουθίες πραγματικών αριθμών Όταν διαδοχικές τιµές που παίρνει µία μεταβλητή προσεγγίζουν απεριόριστα µία συγκεκριµένη τιµή έτσι ώστε τελικά να διαφέρουν από αυτήν λιγότερο από όσο επιθυµεί

Διαβάστε περισσότερα

n = r J n,r J n,s = J

n = r J n,r J n,s = J Ανάλυση Fourer και Ολοκλήρωμα Lebesgue (2011 12) 4ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω E [a, b] με µ (E) = 0. Δείξτε ότι το [a, b] \ E είναι πυκνό υποσύνολο του [a, b]. Υπόδειξη. Θεωρήστε ένα μη κενό

Διαβάστε περισσότερα

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n

1 1 + nx. f n (x) = nx 1 + n 2 x 2. x2n 1 + x 2n Οι ασκήσεις αυτές έχουν σκοπό να βοηθήσουν τους φοιτητές στην μελέτη τους για το μάθημα «Ανάλυση ΙΙ» του Τμήματος Μαθηματικών του Πανεπιστημίου Αιγαίου. Συνιστούμε στους φοιτητές να επεξεργαστούν αυτές

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Μιγαδική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης

Μιχάλης Παπαδημητράκης. Μιγαδική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης Μιχάλης Παπαδημητράκης Μιγαδική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Οι μιγαδικοί αριθμοί.. Οι μιγαδικοί αριθμοί..................................2 Το Ĉ, η στερεογραφική προβολή και

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( ) Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

e-mail: s97130@math.aegean.gr soviet@teivos.samos.aegean.gr http://iris.math.aegean.gr/software/kerkis/

e-mail: s97130@math.aegean.gr soviet@teivos.samos.aegean.gr http://iris.math.aegean.gr/software/kerkis/ A Π α ν ε π ι ς τ ή µ ι ο Α ι γ α ί ο υ Σ χ ο λ ή Θ ε τ ι κ ώ ν Ε π ι ς τ η µ ώ ν Τ µ ή µ α Μ α θ η µ α τ ι κ ώ ν Πτυχιακή εργασία Εκπονητής Χουσαΐνοβ Αλέξανδρος Α.Μ. 311/1997130 Σάµος, 2002 Τίτλος : Θεωρία

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 2. Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 2 Μ. Παπαδημητράκης. 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ ΛΗΜΜΑ. Έστω μετρικός χώρος (X, d) και x, y X με x y. Τότε υπάρχει μια περιοχή του x και μια περιοχή του y (και, μάλιστα, ίδιας ακτίνας) οι οποίες είναι

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Οι πραγµατικοί αριθµοί

Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

Εισαγωγικά Παραδείγματα: Παρατηρήσεις: 1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται

Διαβάστε περισσότερα

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β.

Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Η έννοια της ακολουθίας Ξέρουμε ότι: Συνάρτηση-απεικόνιση με πεδίο ορισμού ένα σύνολο Α και πεδίο τιμών ένα σύνολο Β είναι κάθε μονοσήμαντη απεικόνιση f του Α στο Β. Δηλαδή: f : A B Η ακολουθία είναι συνάρτηση.

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Shmei seic Paradìsewn Pragmatik c Anˆlushc (TrÐth èkdosh)

Shmei seic Paradìsewn Pragmatik c Anˆlushc (TrÐth èkdosh) ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Shmei seic Paradìsewn Pragmatik c Anˆlushc (TrÐth èkdosh) Σπύρος Αργυρός Μάρτιος 2011 1 2 Perieqìmena 1 Οι ϕυσικοί αριθμοί

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ»

H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ» H Ισοδυναμία των Διαστημάτων του R με αφορμή ένα Πρόβλημα του «φ» Δημ. Ι. Μπουνάκης Σχ. Σύμβουλος Μαθηματικών (Δημοσιεύτηκε στο τεύχος 6, 2009, του περιοδικού «φ») Στο τελευταίο τεύχος (5 ο, 2008) του

Διαβάστε περισσότερα

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού

9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού 1 2 Τα θεωρήματα του Green, Stokes και Gauss 211 9.9 Ανεξαρτησία του επικαμπυλίου ολοκληρώματος από την καμπύλη ολοκληρώσεως. Συνάρτηση δυναμικού Ήδη στην παράγραφο 5.7 ασχοληθήκαμε με την ύπαρξη συνάρτησης

Διαβάστε περισσότερα

5.1.1 Η θεωρία και τι προσέχουμε

5.1.1 Η θεωρία και τι προσέχουμε Κεφάλαιο 5 Συνέχεια συνάρτησης σε διάστημα Συνέπειες του Θεωρήματος Bolzano 5.. Η θεωρία και τι προσέχουμε Τα κύρια χαρακτηριστικά μιας συνεχούς συνάρτησης f ορισμένης σε ένα διάστημα Δ, είναι: i. Η γραφική

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Sunarthsiak Anˆlush. Shmei seic gia metaptuqiakì mˆjhma

Sunarthsiak Anˆlush. Shmei seic gia metaptuqiakì mˆjhma Sunarthsiak Anˆlush Shmei seic gia metaptuqiakì mˆjhma Μ. Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης νοιξη 2004 2 Perieqìmena 1 Εισαγωγικά 7 1.1 Διατάξεις............................... 7 1.2

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

ẋ = f(x), x = x 0 όταν t = t 0,

ẋ = f(x), x = x 0 όταν t = t 0, Κεφάλαιο 2 ΤΟ ΘΕΩΡΗΜΑ ΥΠΑΡΞΗΣ ΚΑΙ ΜΟΝΑΔΙΚΟΤΗΤΑΣ 2.1 Πρόβλημα αρχικών τιμών Στο κεφάλαιο αυτό θα δούμε ότι το πρόβλημα αρχικών τιμών (ΑΤ) ẋ = f(x), x = x 0 όταν t = t 0, έχει λύση και μάλιστα μοναδική για

Διαβάστε περισσότερα

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ

4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ 14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,

Διαβάστε περισσότερα

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x.

Infimum. Ορισμός κάτω φράγματος συνόλου A. Ορισμός infimum του συνόλου A. Το σύνολο A R είναι κάτω φραγμένο αν. k R : x A k x. Infimum Ορισμός κάτω φράγματος συνόλου A Το σύνολο A R είναι κάτω φραγμένο αν k R : x A k x k = κάτω φράγμα Ορισμός infimum του συνόλου A inf A = infimum του συνόλου A Το μεγαλύτερο από τα κάτω φράγματα

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ.

2. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Κατηγορία η Εύρεση μονοτονίας Τρόπος αντιμετώπισης:. Αν έχουμε μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f( ) σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα σε όλο το

Διαβάστε περισσότερα

Αλγόριθμοι για αυτόματα

Αλγόριθμοι για αυτόματα Κεφάλαιο 8 Αλγόριθμοι για αυτόματα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 8.1 Πότε ένα DFA αναγνωρίζει κενή ή άπειρη γλώσσα Δοθέντος ενός DFA M καλούμαστε

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Ο Ευκλείδειος Χώρος. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ. Ενότητα: Ο Ευκλείδειος Χώρος. Διδάσκων: Ιωάννης Γιαννούλης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Απειροστικός Λογισμός ΙΙΙ Ενότητα: Ο Ευκλείδειος Χώρος Διδάσκων: Ιωάννης Γιαννούλης Τμήμα: Μαθηματικών Κεφάλαιο 1 Ο Ευκλείδειος χώρος R n 1.1 Αλγεβρική δοµή Ο Ευκλείδειος χώρος R n είναι

Διαβάστε περισσότερα

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει.

Όταν η s n δεν συγκλίνει λέμε ότι η σειρά αποκλίνει. Όταν η s δεν συγκλίνει λέμε ότι η σειρά αποκλίνει. Παρατήρηση: Το αντίστροφο του προηγουμένου θεωρήματος δεν ισχύει. Παράδειγμα η σειρά με νιοστό όρο α = +-. Τότε lim α =0. Όμως s =α +α + +α = - + 3- +...+

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q

p p 0 1 1 0 p q p q p q 0 0 0 0 1 0 1 0 0 1 1 1 p q Σημειώσεις του Μαθήματος Μ2422 Λογική Κώστας Σκανδάλης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2010 Εισαγωγή Η Λογική ασχολείται με τους νόμους ορθού συλλογισμού και μελετά τους κανόνες βάσει των οποίων

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07)

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι (2006-07) Επιµέλεια Σηµειώσεων : Βασιλειάδης Γεώργιος Καστοριά, εκέµβριος 2006

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Νίκος Ζανταρίδης (Φροντιστήριο Πυραμίδα) ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Ένα γενικό θέμα Ανάλυσης Χρήσιμες Προτάσεις Ασκήσεις για λύση Μικρό βοήθημα για τον υποψήφιο μαθητή της Γ Λυκείου λίγο πριν τις εξετάσεις Απρίλιος

Διαβάστε περισσότερα

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2) 8 Κανόνας της αλυσίδας Από τον Απειροστικό Λογισμό για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι: Αν g : I R R και f : J R R είναι συναρτήσεις ( όπου I, J ανοικτά διαστήματα ώστε, g( τότε η : I g I J

Διαβάστε περισσότερα

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0

z i z 1 z i z 1 z i z i z 2 z 1 z zi iz 1 z 2 z 1 i z z 2 z i 2vi 2 k v v k v k 0 v 0 ΕΚΠ. ΕΤΟΥΣ -4 Λύσεις Θέμα ο α) H f παραγωγίσιμη στο (,) ως άθροισμα παραγωγίσιμων συναρτήσεων με: f() για κάθε (,). Αφού η f είναι συνεχής στο (,) και f() για κάθε (,) είναι γνησίως αύξουσα στο (,) άρα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

Μαθηματική Ανάλυση Ι

Μαθηματική Ανάλυση Ι Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 1: Σύνολα, Πραγματικοί αριθμοί Επίκ. Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β.

sup B, τότε υπάρχουν στοιχεία α A και β B µε α < β. ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηµατική Ανάλυση Ι Φεβρουαρίου, 3 Θ. (α ) Εστω A, B µη κενά ϕραγµένα σύνολα πραγµατικών αριθµών. είξτε ότι αν inf A

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

Το Λήμμα του Fejér και Εφαρμογές

Το Λήμμα του Fejér και Εφαρμογές Το Λήμμα του Fejér και Εφαρμογές Ανδρέας Καβατζικλής Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών & Φυσικών Επιστημών Τομέας Μαθηματικών Πολυτεχνειούπολη Ζωγράφου 57 8 Αθήνα e-mail: kaviros@ceral.ua.gr

Διαβάστε περισσότερα

Σύνολα, Σχέσεις, Συναρτήσεις

Σύνολα, Σχέσεις, Συναρτήσεις Κεφάλαιο 2 Σύνολα, Σχέσεις, Συναρτήσεις Τα σύνολα, οι σχέσεις και οι συναρτήσεις χρησιμοποιούνται ευρύτατα σε κάθε είδους μαθηματικές αναπαραστάσεις και μοντελοποιήσεις. Στη θεωρία υπολογισμού χρησιμεύουν,

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Στοιχεία Προτασιακής Λογικής

Στοιχεία Προτασιακής Λογικής Στοιχεία Προτασιακής Λογικής ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μαθηματικές Προτάσεις

Διαβάστε περισσότερα

Αριθμοθεωρητικοί Αλγόριθμοι

Αριθμοθεωρητικοί Αλγόριθμοι Αλγόριθμοι που επεξεργάζονται μεγάλους ακέραιους αριθμούς Μέγεθος εισόδου: Αριθμός bits που απαιτούνται για την αναπαράσταση των ακεραίων. Έστω ότι ένας αλγόριθμος λαμβάνει ως είσοδο έναν ακέραιο Ο αλγόριθμος

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ .0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Επιστημονικός Υπεύθυνος: Πολυχρόνης Στράντζαλος

Επιστημονικός Υπεύθυνος: Πολυχρόνης Στράντζαλος Τόμος 2 ος ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος της έκδοσης, σελ. 3 Πρόλογος του τόμου, σελ. 5. ΜΑΘΗΜΑΤΙΚΗ ΕΚΠΑΙΔΕΥΣΗ: ΣΥΝΤΕΛΕΣΤΕΣ, ΠΛΑΙΣΙΟ, ΠΡΟΓΡΑΜΜΑΤΑ Π. Στράντζαλος: Τι είναι, επιτέλους τα Μαθηματικά; -. Τα Μαθηματικά

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ. ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση

ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ. ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση Αφορμή γι αυτή τη σύντομη εργασία έδωσε μια ημερίδα διδασκαλίας των Μαθηματικών, η οποία οργανώθηκε από το Σχολικό Σύμβουλο

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K = Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Δύο λόγια από τη συγγραφέα

Δύο λόγια από τη συγγραφέα Δύο λόγια από τη συγγραφέα Τα μαθηματικά ή τα λατρεύεις ή τα μισείς! Για να λατρέψεις κάτι πρέπει να το κατανοήσεις, για τη δεύτερη περίπτωση τα πράγματα μάλλον είναι λίγο πιο απλά. Στόχος αυτού του βιβλίου

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Διανυσματική Ανάλυση. Γιάννης Γιαννούλης

Διανυσματική Ανάλυση. Γιάννης Γιαννούλης Διανυσματική Ανάλυση Γιάννης Γιαννούλης Ιωάννινα, 30 Απριλίου 2014 Σημείωση: Οι παρούσες σημειώσεις δημιουργήθηκαν κατά την διάρκεια της διδασκαλίας του μαθήματος Απειροστικός Λογισμός ΙΙΙ και IV σε φοιτητές

Διαβάστε περισσότερα

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R ΟΕΦΕ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Θέμα Α Α Να αποδείξετε ότι η συνάρτηση ν ν και ισχύει f ν f, νν-{,} είναι παραγωγίσιμη στο R

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 7: ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ [Κεφ..6: Συνέπειες του Θεωρήματος της Μέσης Τιμής πλην της Ενότητας Μονοτονία Συνάρτησης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο.

ΘΕΜΑ Α. Α1. Θεωρία -απόδειξη θεωρήματος στη σελίδα 262 (μόνο το iii) στο σχολικό βιβλίο. ΙΟΥΝΙΟΥ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία -απόδειξη θεωρήματος στη σελίδα 6 (μόνο το iii) στο σχολικό βιβλίο.

Διαβάστε περισσότερα

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Στο Σημείωμα αυτό διατυπώνουμε μια σειρά μαθηματικών προτάσεων, καθεμιά

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ

ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ ΣΥΝΤΟΜΕΣ ΣΗΜΕΙΩΣΕΙΣ ΠΡΑΓΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΗΣ ΜΗΤΣΗΣ TΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΗΡΑΚΛΕΙΟ Περιεχόμενα 1. Το εξωτερικό μέτρο Lebesgue 2 2. Mετρήσιμα σύνολα 4 3. Η κανονικότητα του μέτρου Lebesgue

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΠΑΡΑΓΩΓΟΣ ΚΑΙ ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Τοπική μονοτονία Αν μια συνεχής συνάρτηση έχει γνήσια θετική αρνητική παράγωγο

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x

ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 2.9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΑΣΥΜΠΤΩΤΕΣ-ΚΑΝΟΝΑΣ

Διαβάστε περισσότερα