Matematika 1 { fiziqka hemija

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Matematika 1 { fiziqka hemija"

Transcript

1 UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015

2 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti

3 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti pravac,

4 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti pravac, smer

5 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti pravac, smer i intentzitet.

6 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti pravac, smer i intentzitet. B #«Y v D #«A #«v v X C Slika 1: Ekvivalentne usmerene dui

7 Osnovni pojmovi i oznake vektor predstavnik

8 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0

9 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0 suprotan vektor

10 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0 suprotan vektor kolinearni vektori

11 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0 suprotan vektor kolinearni vektori koplanarni vektori

12 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0 suprotan vektor kolinearni vektori koplanarni vektori skup svih vektora V, odnosno V n

13 Operacije sa vektorima Definicija 1.2 (Sabira e vektora) #«u = # «AB, #«v = # «BC : #«u + #«v := # «AC.

14 Operacije sa vektorima Definicija 1.2 (Sabira e vektora) #«u = # «AB, #«v = # «BC : #«u + #«v := # «AC. Definicija 1.3 (Mnoe e vektora skalarom) #«u V, α R\{0} : α #«u := #«v, gde je #«v vektor koji ima: Pravac: Isti kao vektor #«u; Intenzitet: #«u = α #«v ; Smer: Isti kao #«u za α > 0, odnosno suprotan smeru vektora #«u za α < 0.

15 Operacije sa vektorima Definicija 1.4 (Razlika vektora) #«u #«v := #«u + ( 1) #«v.

16 Operacije sa vektorima Definicija 1.4 (Razlika vektora) #«u #«v := #«u + ( 1) #«v. Definicija 1.5 (Linearna kombinacija vektora) v #«1,..., v #«k V, α 1,..., α k R : #«v := α1 #«v α k #«vk.

17 Operacije sa vektorima Definicija 1.4 (Razlika vektora) #«u #«v := #«u + ( 1) #«v. Definicija 1.5 (Linearna kombinacija vektora) v #«1,..., v #«k V, α 1,..., α k R : #«v := α1 #«v α k #«vk. Definicija 1.6 (Jediniqni vektor) #«u V, #«u 0 : #«1 v := #«#«u. u

18 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«asocijativnost sabira a

19 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, asocijativnost sabira a neutralni element

20 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, asocijativnost sabira a neutralni element suprotni element

21 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, asocijativnost sabira a neutralni element suprotni element komutativnost

22 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, (M1) α( #«u + #«v ) = α #«u + α #«v, asocijativnost sabira a neutralni element suprotni element komutativnost distributivnost sabira a vektora

23 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, (M1) α( #«u + #«v ) = α #«u + α #«v, (M2) α(β #«u ) = (αβ) #«u, asocijativnost sabira a neutralni element suprotni element komutativnost distributivnost sabira a vektora asocijativnost skalarnog mnoe a

24 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, (M1) α( #«u + #«v ) = α #«u + α #«v, (M2) α(β #«u ) = (αβ) #«u, (M3) (α + β) #«u = α #«u + β #«u, asocijativnost sabira a neutralni element suprotni element komutativnost distributivnost sabira a vektora asocijativnost skalarnog mnoe a distributivnost sabira a skalara

25 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, (M1) α( #«u + #«v ) = α #«u + α #«v, (M2) α(β #«u ) = (αβ) #«u, (M3) (α + β) #«u = α #«u + β #«u, (M4) 1 #«u = #«u. asocijativnost sabira a neutralni element suprotni element komutativnost distributivnost sabira a vektora asocijativnost skalarnog mnoe a distributivnost sabira a skalara jediniqni element

26 Dokaz (S1) #«w C D #«v A #«B u Slika 2: Asocijativnost sabira a vektora

27 Dokaz (S1) #«w C D #«v #«v + #«w A #«B u Slika 2: Asocijativnost sabira a vektora

28 Dokaz (S1) #«w C D #«v #«u + ( #«v + #«w) #«v + #«w A #«B u Slika 2: Asocijativnost sabira a vektora

29 Dokaz (S1) #«w C D #«v #«u + #«v A #«B u Slika 2: Asocijativnost sabira a vektora

30 Dokaz (S1) #«w C D #«v ( #«u + #«v ) + #«w #«u + #«v A #«B u Slika 2: Asocijativnost sabira a vektora

31 Linearna zavisnost i nezavisnost vektora Definicija 1.7 Vektori v #«1,..., v #«n su linearno nezavisni ako relacija: α 1 #«v1 + + α n # «vn = #«0 vai samo za α 1 = = α n = 0.

32 Linearna zavisnost i nezavisnost vektora Definicija 1.7 Vektori v #«1,..., v #«n su linearno nezavisni ako relacija: α 1 #«v1 + + α n # «vn = #«0 vai samo za α 1 = = α n = 0. U suprotnom, ako postoji i n-torka (α 1,..., α n ) u kojoj je bar jedan od brojeva α i razliqit od nule, vektori se nazivaju linearno zavisnim.

33 Linearna zavisnost i nezavisnost vektora Teorema 1.2 Nenula vektori #«u i #«v su linearno zavisni ako i samo ako su kolinearni.

34 Linearna zavisnost i nezavisnost vektora Teorema 1.2 Nenula vektori #«u i #«v su linearno zavisni ako i samo ako su kolinearni. Teorema 1.3 U ravni postoje dva linearno nezavisna vektora, a svaka tri vektora ravni su linearno zavisna.

35 Linearna zavisnost i nezavisnost vektora Teorema 1.2 Nenula vektori #«u i #«v su linearno zavisni ako i samo ako su kolinearni. Teorema 1.3 U ravni postoje dva linearno nezavisna vektora, a svaka tri vektora ravni su linearno zavisna. Teorema 1.4 U prostoru postoje tri linearno nezavisna vektora, a svaka qetiri vektora su linearno zavisna.

36 Primeri Primer 1 C A # «AB + # «BC + # «CA = #«0 Slika 3: Vektori odreeni stranicama trougla su linearno zavisni B

37 Primeri Primer 2 D 1 C 1 A 1 B 1 D C A Slika 4: Da li su vektori AC # «1 i BD # «kolinearni? B

38 Primeri Primer 2 D 1 C 1 A 1 B 1 D C A Slika 4: Da li su vektori BC # «1, A # «1 D 1 i CD # «koplanarni? B

39 Primeri Primer 2 D 1 C 1 A 1 B 1 D C A Slika 4: Da li su vektori BC # «1, CD # «i D # «1 B koplanarni? B

40 Arhimedov zakon poluge

41 Centar masa taqaka AT : T B = m 2 : m 1 m 1 # «T A + m 2 # «T B = #«0 A(m 1 ) B(m 2 ) T

42 Centar masa taqaka AT : T B = m 2 : m 1 m 1 # «T A + m 2 # «T B = #«0 A(m 1 ) B(m 2 ) T O { proizvo na taqka Centar masa taqaka A(m 1 ) i B(m 2 ): # «OT = 1 ( # «m 1 m 1 + m 2 # «) OA + m 2 OB

43 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 )

44 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 ) A 1 { centar masa taqaka B, C: AA 1 { teixna du (iz A)

45 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 ) A 1 { centar masa taqaka B, C: AA 1 { teixna du (iz A) T { centar masa taqaka A, B, C: # «OT = 1 ( # «# «m 1 OA + m 2 m 1 + m 2 + m 3 # «) OB + m 3 OC

46 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 ) A 1 { centar masa taqaka B, C: AA 1 { teixna du (iz A) T { centar masa taqaka A, B, C: # «OT = 1 ( # «# «m 1 OA + m 2 m 1 + m 2 + m 3 Teorema 1.5 Teixne dui se seku u centru masa. # «) OB + m 3 OC

47 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 ) A 1 { centar masa taqaka B, C: AA 1 { teixna du (iz A) T { centar masa taqaka A, B, C: # «OT = 1 ( # «# «m 1 OA + m 2 m 1 + m 2 + m 3 Teorema 1.5 Teixne dui se seku u centru masa. # «) OB + m 3 OC Za m 1 = m 2 = m 3 = m: centar masa = teixte trougla!

48 Baza i dimenzija vektorskog prostora Baza vektorskog prostora = maksimalan skup linearno nezavisnih vektora.

49 Baza i dimenzija vektorskog prostora Baza vektorskog prostora = maksimalan skup linearno nezavisnih vektora. Dimenzija vektorskog prostora = broj elemenata baze.

50 Baza i dimenzija vektorskog prostora Baza vektorskog prostora = maksimalan skup linearno nezavisnih vektora. Dimenzija vektorskog prostora = broj elemenata baze. Posledica 2.1 Dimenzija vektorskog prostora vektora ravni V 2 je dva.

51 Baza i dimenzija vektorskog prostora Baza vektorskog prostora = maksimalan skup linearno nezavisnih vektora. Dimenzija vektorskog prostora = broj elemenata baze. Posledica 2.1 Dimenzija vektorskog prostora vektora ravni V 2 je dva. Svaki vektor #«v V 2 moe da se napixe u obliku: #«v = x1 #«e1 + x 2 #«e2, gde je e = ( #«e 1, #«e 2 ) baza vektorskog prostora V 2.

52 Koordinate vektora Baza e = (e 1, e 2 ) vektorskog prostora V 2. Koordinate vektora #«v V 2 u bazi e: [ #«v ] e = ( ) x1 x 2

53 Koordinate vektora Baza e = (e 1, e 2 ) vektorskog prostora V 2. Koordinate vektora #«v V 2 u bazi e: [ #«v ] e = ( ) x1 x 2 Baza e = (e 1, e 2, e 3 ) vektorskog prostora V 3. Koordinate vektora #«v V 3 u bazi e: [ #«v ] e = x 1 x 2 x 3

54 Koordinate taqke Baza e = (e 1,..., e n ) vektorskog prostora V. Fiksirana taqka O E naziva se koordinatni poqetak. O e se naziva koordinatnim sistemom ili reperom prostora E.

55 Koordinate taqke Baza e = (e 1,..., e n ) vektorskog prostora V. Fiksirana taqka O E naziva se koordinatni poqetak. O e se naziva koordinatnim sistemom ili reperom prostora E. Definicija 2.1 Koordinate taqke X E u reperu Oe definixemo kao koordinate vektora OX # «u bazi e: [X] Oe := [ # «OX] e.

56 Veza koordinata vektora i taqaka U praksi se qesto koristi qi enica da se koordinate vektora MN # «dobijaju oduzima em koordinate taqke M od koordinata taqke N."

57 Veza koordinata vektora i taqaka U praksi se qesto koristi qi enica da se koordinate vektora MN # «dobijaju oduzima em koordinate taqke M od koordinata taqke N." Korektnost: [ MN] # «e = [ MO # «+ ON] # «e = [ ON] # «e [ OM] # «e = [N] Oe [M] Oe.

58 Matrice a 11 a 12 a 1n a 21 a 22 a 2n M mn (R) = A = (a ij ) = a ij R a m1 a m2 a mn Sabira e: A + B = (a ij ) + (b ij ) = (a ij + b ij ), A, B M mn. Mnoe e skalarom: λa = λ (a ij ) = (λ a ij ), λ R, A M mn. Teorema 2.1 Skup M mn (R) svih realnih matrica dimenzija m n u odnosu na sabira e matrica i mnoe e matrica skalarom qini vektorski prostor.

59 Transponova e matrice Transponova e = zamena mesta vrstama i kolonama. A = (a ij ) = A T = (a ji ) = a 11 a 12 a 1n a 21 a 22 a 2n M mn(r) a m1 a m2 a mn a 11 a 21 a n1 a 12 a 22 a n M nm(r) a 1m a 2m a nm

60 Mnoe e matrica A M mn (R), B M nk (R) = A B M mk (R): a 11 a 12 a 1n b 11 b 12 b 1k a 21 a 22 a 2n b 21 b 22 b 2k A B = a m1 a m2 a mn b n1 b n2 b nk a 11 b a 1n b n1 a 11 b a 1n b n2... = a 21 b a 2n b n

61 Mnoe e matrica A M mn (R), B M nk (R) = A B M mk (R): a 11 a 12 a 1n b 11 b 12 b 1k a 21 a 22 a 2n b 21 b 22 b 2k A B = a m1 a m2 a mn b n1 b n2 b nk a 11 b a 1n b n1 a 11 b a 1n b n2... = a 21 b a 2n b n

62 Mnoe e matrica A M mn (R), B M nk (R) = A B M mk (R): a 11 a 12 a 1n b 11 b 12 b 1k a 21 a 22 a 2n b 21 b 22 b 2k A B = a m1 a m2 a mn b n1 b n2 b nk a 11 b a 1n b n1 a 11 b a 1n b n2... = a 21 b a 2n b n

63 Mnoe e matrica A M mn (R), B M nk (R) = A B M mk (R): a 11 a 12 a 1n b 11 b 12 b 1k a 21 a 22 a 2n b 21 b 22 b 2k A B = a m1 a m2 a mn b n1 b n2 b nk a 11 b a 1n b n1 a 11 b a 1n b n2... = a 21 b a 2n b n (A B) ij = n a ip b pj p=1...

64 Primeri ( ) 1 2 ( ) = nije definisan! 2 3 ( ) ( ) ( ) = ( ) ( ) ( ) = mnoe e matrica ( ) ( ) = nije komutativno! ( 3 4 ) 3 6

65 Jediniqna matrica A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn, E = : jediniqna matrica

66 Jediniqna matrica A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn, E = : jediniqna matrica A E = A = E A

67 Inverz matrice Matrica A M n (R) ima inverz ako det A 0. Takve matrice nazivamo regularne matrice i ihov skup qini grupu (u odnosu na mnoe e matrica) koju oznaqavamo sa GL n (R). Primer 3 ( a b A = c d ), A 1 = 1 ad bc ( d b ) c a

68 Nilpotentne matrice Definicija 2.2 Matrica A je nilpotentna ako je A 0 i postoji k N takav da je A k = 0. Primer 4 a2 A = a b b a ( ) A = 0 0, b 0

69 Skalarni proizvod Definicija 3.1 (Skalarni proizvod) #«v, #«u V : #«v #«u := #«v #«u cos ( #«v, #«u ),

70 Skalarni proizvod Definicija 3.1 (Skalarni proizvod) #«v, #«u V : #«v #«u := #«v #«u cos ( #«v, #«u ), Primene skalarnog proizvoda: Duine: Uglovi: #«v = #«v #«v ; ( #«v, #«u ) = arccos Projekcija vektora #«v na vektor #«u: pr #«u #«v = #«v #«u #«u #«v #«u #«v #«u

71 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai:

72 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai: #«u #«v = #«v #«u, simetriqnost

73 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai: #«u #«v = #«v #«u, simetriqnost #«u (α #«v + β #«w) = α( #«u #«v ) + β( #«u #«w), linearnost

74 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai: #«u #«v = #«v #«u, simetriqnost #«u (α #«v + β #«w) = α( #«u #«v ) + β( #«u #«w), linearnost #«u #«u = #«u 2 0, nenegativnost

75 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai: #«u #«v = #«v #«u, simetriqnost #«u (α #«v + β #«w) = α( #«u #«v ) + β( #«u #«w), linearnost #«u #«u = #«u 2 0, nenegativnost #«u #«u = 0 ako i samo ako je #«u = #«0. nedegenerisanost

76 Skalarni proizvod u ortonormiranoj bazi Ortonormirana baza = baza e = ( e #«1,..., e #«n ) : e #«i e #«j = δ ij. #«v = v1 e 1 + v 2 e v n e n, #«u = u 1 e 1 + u 2 e u n e n : #«v #«u = v1 u 1 + v 2 u v n u n = (v 1,..., v n ) u 1. u n = [v] T e [u] e

77 Skalarni proizvod u ortonormiranoj bazi Ortonormirana baza = baza e = ( e #«1,..., e #«n ) : e #«i e #«j = δ ij. #«v = v1 e 1 + v 2 e v n e n, #«u = u 1 e 1 + u 2 e u n e n : #«v #«u = v1 u 1 + v 2 u v n u n = (v 1,..., v n ) u 1. u n = [v] T e [u] e Primer 5 Dati su vektori #«v = (1, 2, 2) i #«u = ( 3, 0, 4) iz V 3 svojim koordinatama u ortonormiranoj bazi. Odrediti: (a) #«v ; (b) ( #«v, #«u ).

78 Orijentacija prostora Baze e = ( e #«1, e #«2, e #«3 ) je pozitivne orijentacije ako vai pravilo ruke: ako isprueni kaiprst desne ruke predstav a vektor e #«1, sred i prst vektor e #«2, a palac vektor e #«3, onda je baza e = ( e #«1, e #«2, e #«3 ) pozitivne orijentacije".

79 Vektorski proizvod Definicija 3.2 (Vektorski proizvod) #«v, #«u V 3 : #«v #«u := #«w, gde je #«w vektor koji ima: Intenzitet: #«w = #«v #«u sin ( #«v, #«u ); Pravac: #«w #«v, #«u; Smer: Baza ( #«v, #«u, #«w) je pozitivne orijentacije.

80 Vektorski proizvod Definicija 3.2 (Vektorski proizvod) #«v, #«u V 3 : #«v #«u := w, #«gde je w #«vektor koji ima: Intenzitet: w #«= #«v #«u sin ( #«v, #«u ); Pravac: w #«#«v, #«u; Smer: Baza ( #«v, #«u, w) #«je pozitivne orijentacije. #«u h = #«u sin φ φ #«v Slika 5: #«v #«u = P ( #«v, #«u )

81 Osobine vektorskog proizvoda Posledica 3.1 Vektori #«v, #«u prostora V 3 su linearno nezavisni ako i samo ako #«v #«u #«0.

82 Osobine vektorskog proizvoda Posledica 3.1 Vektori #«v, #«u prostora V 3 su linearno nezavisni ako i samo ako #«v #«u #«0. Teorema 3.2 (Osobine vektorskog proizvoda) #«v, #«u, #«w V 3, α, β R: #«u #«v = #«v #«u, antisimetriqnost (α #«u + β #«v ) #«w = α( #«u #«w) + β( #«v #«w). linearnost

83 Osobine vektorskog proizvoda Posledica 3.1 Vektori #«v, #«u prostora V 3 su linearno nezavisni ako i samo ako #«v #«u #«0. Teorema 3.2 (Osobine vektorskog proizvoda) #«v, #«u, #«w V 3, α, β R: #«u #«v = #«v #«u, antisimetriqnost (α #«u + β #«v ) #«w = α( #«u #«w) + β( #«v #«w). linearnost Teorema 3.3 (Dvostruki vektorski proizvod) #«v, #«u, #«w V 3 : #«v ( #«u #«w) = ( #«v #«w) #«u ( #«v #«u ) #«w.

84 Osobine vektorskog proizvoda Posledica 3.1 Vektori #«v, #«u prostora V 3 su linearno nezavisni ako i samo ako #«v #«u #«0. Teorema 3.2 (Osobine vektorskog proizvoda) #«v, #«u, #«w V 3, α, β R: #«u #«v = #«v #«u, antisimetriqnost (α #«u + β #«v ) #«w = α( #«u #«w) + β( #«v #«w). linearnost Teorema 3.3 (Dvostruki vektorski proizvod) #«v, #«u, #«w V 3 : #«v ( #«u #«w) = ( #«v #«w) #«u ( #«v #«u ) #«w. Teorema 3.3 = vektorski proizvod nije asocijativan.

85 Vektorski proizvod u ortonormiranoj bazi e = ( e #«1, e #«2, e #«3 ) { ortonormirana baza pozitivne orijentacije e #«#«1 e2 e3 #«e #«#«1 0 e3 #«e #«2 e #«2 e #«#«3 0 e1 #«e #«#«3 e2 e #«#«1 0

86 Vektorski proizvod u ortonormiranoj bazi e = ( e #«1, e #«2, e #«3 ) { ortonormirana baza pozitivne orijentacije e #«#«1 e2 e3 #«e #«#«1 0 e3 #«e #«2 e #«2 e #«#«3 0 e1 #«e #«#«3 e2 e #«#«1 0 #«v = v1 e 1 + v 2 e 2 + v 3 e 3, #«u = u 1 e 1 + u 2 e 2 + u 3 e 3 #«v #«u = (v2 u 3 v 3 u 2 ) e #«1 + (v 3 u 1 v 1 u 3 ) e #«2 + (v 1 u 2 v 2 u 1 ) e #«3 e #«1 e2 #«e3 #«= v 1 v 2 v 3. u 1 u 2 u 3

87 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e #«3 =: D #«ABC e3.

88 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= P ABC = 1 2 D ABC ; b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e #«3 =: D #«ABC e3.

89 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= P ABC = 1 2 D ABC ; b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 A, B, C { kolinearne D ABC = 0; e #«3 =: D #«ABC e3.

90 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= P ABC = 1 2 D ABC ; b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e #«3 =: D #«ABC e3. A, B, C { kolinearne D ABC = 0; ABC { pozitivno orijentisan ako D ABC > 0.

91 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= P ABC = 1 2 D ABC ; b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e #«3 =: D #«ABC e3. A, B, C { kolinearne D ABC = 0; ABC { pozitivno orijentisan ako D ABC > 0. Primer 6 Odrediti povrxinu ABC, A(1, 3), B(4, 0), C(2, 3).

92 Mexoviti proizvod Definicija 3.3 (Mexoviti proizvod) #«v, #«u, #«w V 3 : [ #«v, #«u, #«w] := ( #«v #«u ) #«w. #«v #«u # «w #«w #«u φ B #«v Slika 6: [ #«v, #«u, #«w] = V ( #«v, #«u, #«w)

93 Mexoviti proizvod i orijentacija prostora Posledica 3.2 Vektori #«v, #«u, #«w su linearno nezavisni ako i samo ako: [ #«v, #«u, #«w] 0.

94 Mexoviti proizvod i orijentacija prostora Posledica 3.2 Vektori #«v, #«u, #«w su linearno nezavisni ako i samo ako: [ #«v, #«u, #«w] 0. Posledica 3.3 Vektori ( #«v, #«u, #«w) prostora, qine bazu pozitivne orijentacije ako je [ #«v, #«u, #«w] > 0, a negativne orijentacije ako je [ #«v, #«u, #«w] < 0.

95 Osobine mexovitog proizvoda Teorema 3.4 (Osobine mexovitog proizvoda) #«v, #«u, #«w V,α, β R: [ #«v, #«u, #«w] = [ #«u, #«v, #«w], antisimetriqnost [ #«v, #«u, #«w] = [ #«u, #«w, #«v ] = [ #«w, #«v, #«u ], cikliqnost [α #«u + β #«v, #«w, #«z ] = α[ #«u, #«w, #«z ] + β[ #«v, #«w, #«z ]. linearnost

96 Osobine mexovitog proizvoda Teorema 3.4 (Osobine mexovitog proizvoda) #«v, #«u, w #«V,α, β R: [ #«v, #«u, w] #«= [ #«u, #«v, w], #«antisimetriqnost [ #«v, #«u, w] #«= [ #«u, w, #«#«v ] = [ w, #«#«v, #«u ], cikliqnost [α #«u + β #«v, w, #«#«z ] = α[ #«u, w, #«#«z ] + β[ #«v, w, #«#«z ]. linearnost U ortonormiranoj bazi: [ #«v, #«u, w] #«= v 1 v 2 v 3 u 1 u 2 u 3 w 1 w 2 w 3.

97 Primene mexovitog proizvoda Zapremina tetraedra ABCA 1 jednaka je xestini zapremine paralelepipeda odreenog vektorima AB, # «AC # «i AA # «1. C1 C1 C1 C1 A1 B1 A1 B1 A1 B1 B1 B1 C C C C A B A B A A B A Slika 7: Podela trostrane prizme na tri piramide istih zapremina

98 Primene mexovitog proizvoda Zapremina tetraedra ABCA 1 jednaka je xestini zapremine paralelepipeda odreenog vektorima AB, # «AC # «i AA # «1. C1 C1 C1 C1 A1 B1 A1 B1 A1 B1 B1 B1 C C C C A B A B A A B A Slika 7: Podela trostrane prizme na tri piramide istih zapremina Primer 7 Odrediti zapreminu tetraedra qija su temena A(1, 0, 0), B(3, 4, 6), C(0, 1, 0), D(1, 1, 3).

Vektori Koordinate Proizvodi Centar masa Transformacije UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET. Geometrija I{smer.

Vektori Koordinate Proizvodi Centar masa Transformacije UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET. Geometrija I{smer. UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Geometrija I{smer deo 1: Vektori i transformacije koordinata Tijana Xukilovi 2. oktobar 2017 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4. Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

Vektori. 28. studenoga 2017.

Vektori. 28. studenoga 2017. Vektori 28. studenoga 2017. 1 / 42 Skalarna veličina: veličina odredena samo jednim (realnim) brojem ili skalarom npr. skalarne veličine su udaljenost, masa, površina, volumen,... Vektorska veličina: veličina

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Drugi deo (uvoda) Vektori

Drugi deo (uvoda) Vektori Drugi deo (uvoda) Vektori Vektori i skalari Skalar je običan broj. Vektor je lista (uređena n-torka) skalara (komponente vektora). Pomeranje (recimo, 10 koraka prema zapadu) izražavamo vektorom. Rastojanje

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki Matematiqka gimnazija u Beogradu 30.01.2007. Vektori Milivoje Luki 1. Linearne kombinacije vektora Vektor v je linearna kombinacija vektora v 1, v 2,..., v n ako postoje skalari (odn. realni brojevi) λ

Διαβάστε περισσότερα

Zbirka rešenih zadataka iz Matematike I

Zbirka rešenih zadataka iz Matematike I UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA Tatjana Grbić Silvia Likavec Tibor Lukić Jovanka Pantović Nataša Sladoje Ljiljana Teofanov Zbirka rešenih zadataka iz Matematike I Novi Sad, 009. god.

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet. Glava 1 Vektori U mnogim naukama proučavaju se vektorske i skalarne veličine. Skalarna veličina je odred ena svojom brojnom vrednošću u izabranom sistemu jedinica. Takve veličine su temperatura, težina

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Zadaci iz Linearne algebre (2003/4)

Zadaci iz Linearne algebre (2003/4) Zadaci iz Linearne algebre (2003/4) Srdjan Vukmirović May 22, 2004 1 Matematička indukcija 1.1 Dokazati da za sve prirodne brojeve n važi 3 / (5 n + 2 n+1 ). 1.2 Dokazati da sa svake m Z i n N postoje

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija 18.02006. Prvi razred A kategorija Dokazati da kruжnica koja sadrжi dva temena i ortocentar trougla ima isti polupreqnik kao i kruжnica opisana oko tog trougla. Na i najve i prirodan broj koji je maƭi

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Linearna algebra za fizičare, zimski semestar Mirko Primc

Linearna algebra za fizičare, zimski semestar Mirko Primc Linearna algebra za fizičare, zimski semestar 006. Mirko Primc Sadržaj Poglavlje 1. Vektorski prostor R n 5 1. Vektorski prostor R n 6. Geometrijska interpretacija vektorskih prostora R i R 3 11 3. Linearne

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Linearna algebra I, zimski semestar 2007/2008

Linearna algebra I, zimski semestar 2007/2008 Linearna algebra I, zimski semestar 2007/2008 Predavanja: Nenad Bakić, Vježbe: Luka Grubišić i Maja Starčević 22. listopada 2007. 1 Prostor radijvektora i sustavi linearni jednadžbi Neka je E 3 trodimenzionalni

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA Predrag Tanović February 11, 211 {WARNING: Sadržaj ovog materijala NI U KOM SLUČAJU NE MOŽE ZAMENITI UDŽBENIK: radi se o prepravljanim slajdovima predavanja. Reference

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Geometrija ravnine i prostora I. Vektori u ravnini i prostoru

Geometrija ravnine i prostora I. Vektori u ravnini i prostoru Geometrija ravnine i prostora I. Vektori u ravnini i prostoru Rudolf Scitovski, Darija Brajković 2. prosinca 2013. Sadržaj 1 Uvod 2 2 Operacije s vektorima 4 2.1 Zbrajanje vektora...............................

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Geometrija (I smer) deo 2: Afine transformacije

Geometrija (I smer) deo 2: Afine transformacije Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne

Διαβάστε περισσότερα

Uvod i vektorski prostori

Uvod i vektorski prostori ЛИНЕАРНА АЛГЕБРА припрема испита Оно што следи представља белешке које сам правио непосредно пред полагање усменог дела испита (јул 2002. године). Због тога нису потпуне, и може понешто бити нетачно, или

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

MATEMATIKA 3. Integrirani preddiplomski i diplomski studij fizike i kemije, smjer nastavnički

MATEMATIKA 3. Integrirani preddiplomski i diplomski studij fizike i kemije, smjer nastavnički Ljiljana Arambašić MATEMATIKA 3 Integrirani preddiplomski i diplomski studij fizike i kemije, smjer nastavnički Integrirani preddiplomski i diplomski studij fizike i tehnike, smjer nastavnički SADRŽAJ

Διαβάστε περισσότερα

Analitička geometrija

Analitička geometrija 1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i

Διαβάστε περισσότερα

AB rab xi y j. Formule. rt OT xi y j. xi y j. a x1 i y1 j i b x2 i y 2 j. Jedinični vektor vektora O T točke T(x,y)

AB rab xi y j. Formule. rt OT xi y j. xi y j. a x1 i y1 j i b x2 i y 2 j. Jedinični vektor vektora O T točke T(x,y) Formule Jedinični vektor vektora O T točke T(x,y) r xi y j r T0 T rt x y 1 x y xi y j Radijvektor u koordinatnoj ravnini koji pripada točki T(x,y) rt OT xi y j Vektor AB ako su: AB rab ( x x1 )i ( y y1

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

ZBIRKA TESTOVA IZ ALGEBRE

ZBIRKA TESTOVA IZ ALGEBRE ZBIRKA TESTOVA IZ ALGEBRE 0.0.04. Studenti koji na testu kod pitanja do zvezdica naprave više od tri greške nisu položili ispit! U svakom zadatku dato je više odgovora, a treba zaokružiti tačne odgovore

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

VEKTORI. Opera u Sidneju, Australija

VEKTORI. Opera u Sidneju, Australija VEKTORI Ciljevi poglavlja Sabiranje i razlaganje vektora na komponente, množenje i deljenje vektora skalarom Predstavljanje vektora u Dekartovom koordinatnom sistemu i operacije sa vektorima koji su izraženi

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

Glava 1. Trigonometrija

Glava 1. Trigonometrija Glava 1 Trigonometrija 1.1 Teorijski uvod Neka su u ravni Oxy dati krug k = {x, y) R R : x +y = 1} i prava p = {x, y) R R : x = 1}. Predstavimo skup realnih brojeva na pravoj p, kao brojevnoj pravoj, tako

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Vektorska algebra i analiza

Vektorska algebra i analiza Glava 1 Vektorska algebra i analiza Uvod U prostoru oko nas susrećemo se sa raznim pojavama. Da bismo ih opisali, definišemo pojmove koji ih karakterišu. Me - dutim, primećeno je da i različite pojave

Διαβάστε περισσότερα

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

VEKTORSKI PROSTORI I ELEMENTI VEKTORSKE ANALIZE

VEKTORSKI PROSTORI I ELEMENTI VEKTORSKE ANALIZE VEKTORSKI PROSTORI I ELEMENTI VEKTORSKE ANALIZE Ivanka Milošević Univerzitet u Beogradu 1997 Predgovor Kurs MATEMATIČKA FIZIKA I prvi put sam predavala 1995/1996 godine, pri čemu sam se velikom delu držla

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 03. Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα