Matematika 1 { fiziqka hemija

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Matematika 1 { fiziqka hemija"

Transcript

1 UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015

2 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti

3 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti pravac,

4 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti pravac, smer

5 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti pravac, smer i intentzitet.

6 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju isti pravac, smer i intentzitet. B #«Y v D #«A #«v v X C Slika 1: Ekvivalentne usmerene dui

7 Osnovni pojmovi i oznake vektor predstavnik

8 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0

9 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0 suprotan vektor

10 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0 suprotan vektor kolinearni vektori

11 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0 suprotan vektor kolinearni vektori koplanarni vektori

12 Osnovni pojmovi i oznake vektor predstavnik nula vektor #«0 suprotan vektor kolinearni vektori koplanarni vektori skup svih vektora V, odnosno V n

13 Operacije sa vektorima Definicija 1.2 (Sabira e vektora) #«u = # «AB, #«v = # «BC : #«u + #«v := # «AC.

14 Operacije sa vektorima Definicija 1.2 (Sabira e vektora) #«u = # «AB, #«v = # «BC : #«u + #«v := # «AC. Definicija 1.3 (Mnoe e vektora skalarom) #«u V, α R\{0} : α #«u := #«v, gde je #«v vektor koji ima: Pravac: Isti kao vektor #«u; Intenzitet: #«u = α #«v ; Smer: Isti kao #«u za α > 0, odnosno suprotan smeru vektora #«u za α < 0.

15 Operacije sa vektorima Definicija 1.4 (Razlika vektora) #«u #«v := #«u + ( 1) #«v.

16 Operacije sa vektorima Definicija 1.4 (Razlika vektora) #«u #«v := #«u + ( 1) #«v. Definicija 1.5 (Linearna kombinacija vektora) v #«1,..., v #«k V, α 1,..., α k R : #«v := α1 #«v α k #«vk.

17 Operacije sa vektorima Definicija 1.4 (Razlika vektora) #«u #«v := #«u + ( 1) #«v. Definicija 1.5 (Linearna kombinacija vektora) v #«1,..., v #«k V, α 1,..., α k R : #«v := α1 #«v α k #«vk. Definicija 1.6 (Jediniqni vektor) #«u V, #«u 0 : #«1 v := #«#«u. u

18 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«asocijativnost sabira a

19 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, asocijativnost sabira a neutralni element

20 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, asocijativnost sabira a neutralni element suprotni element

21 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, asocijativnost sabira a neutralni element suprotni element komutativnost

22 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, (M1) α( #«u + #«v ) = α #«u + α #«v, asocijativnost sabira a neutralni element suprotni element komutativnost distributivnost sabira a vektora

23 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, (M1) α( #«u + #«v ) = α #«u + α #«v, (M2) α(β #«u ) = (αβ) #«u, asocijativnost sabira a neutralni element suprotni element komutativnost distributivnost sabira a vektora asocijativnost skalarnog mnoe a

24 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, (M1) α( #«u + #«v ) = α #«u + α #«v, (M2) α(β #«u ) = (αβ) #«u, (M3) (α + β) #«u = α #«u + β #«u, asocijativnost sabira a neutralni element suprotni element komutativnost distributivnost sabira a vektora asocijativnost skalarnog mnoe a distributivnost sabira a skalara

25 Vektorski prostor Teorema 1.1 Ako su #«v, #«u, w #«V, a α, β R tada vai: (S1) #«u + ( #«v + w) #«= ( #«u + #«v ) + w, #«(S2) #«u + #«0 = #«u = #«0 + #«u, (S3) #«u + ( #«u ) = #«0, (S4) #«u + #«v = #«v + #«u, (M1) α( #«u + #«v ) = α #«u + α #«v, (M2) α(β #«u ) = (αβ) #«u, (M3) (α + β) #«u = α #«u + β #«u, (M4) 1 #«u = #«u. asocijativnost sabira a neutralni element suprotni element komutativnost distributivnost sabira a vektora asocijativnost skalarnog mnoe a distributivnost sabira a skalara jediniqni element

26 Dokaz (S1) #«w C D #«v A #«B u Slika 2: Asocijativnost sabira a vektora

27 Dokaz (S1) #«w C D #«v #«v + #«w A #«B u Slika 2: Asocijativnost sabira a vektora

28 Dokaz (S1) #«w C D #«v #«u + ( #«v + #«w) #«v + #«w A #«B u Slika 2: Asocijativnost sabira a vektora

29 Dokaz (S1) #«w C D #«v #«u + #«v A #«B u Slika 2: Asocijativnost sabira a vektora

30 Dokaz (S1) #«w C D #«v ( #«u + #«v ) + #«w #«u + #«v A #«B u Slika 2: Asocijativnost sabira a vektora

31 Linearna zavisnost i nezavisnost vektora Definicija 1.7 Vektori v #«1,..., v #«n su linearno nezavisni ako relacija: α 1 #«v1 + + α n # «vn = #«0 vai samo za α 1 = = α n = 0.

32 Linearna zavisnost i nezavisnost vektora Definicija 1.7 Vektori v #«1,..., v #«n su linearno nezavisni ako relacija: α 1 #«v1 + + α n # «vn = #«0 vai samo za α 1 = = α n = 0. U suprotnom, ako postoji i n-torka (α 1,..., α n ) u kojoj je bar jedan od brojeva α i razliqit od nule, vektori se nazivaju linearno zavisnim.

33 Linearna zavisnost i nezavisnost vektora Teorema 1.2 Nenula vektori #«u i #«v su linearno zavisni ako i samo ako su kolinearni.

34 Linearna zavisnost i nezavisnost vektora Teorema 1.2 Nenula vektori #«u i #«v su linearno zavisni ako i samo ako su kolinearni. Teorema 1.3 U ravni postoje dva linearno nezavisna vektora, a svaka tri vektora ravni su linearno zavisna.

35 Linearna zavisnost i nezavisnost vektora Teorema 1.2 Nenula vektori #«u i #«v su linearno zavisni ako i samo ako su kolinearni. Teorema 1.3 U ravni postoje dva linearno nezavisna vektora, a svaka tri vektora ravni su linearno zavisna. Teorema 1.4 U prostoru postoje tri linearno nezavisna vektora, a svaka qetiri vektora su linearno zavisna.

36 Primeri Primer 1 C A # «AB + # «BC + # «CA = #«0 Slika 3: Vektori odreeni stranicama trougla su linearno zavisni B

37 Primeri Primer 2 D 1 C 1 A 1 B 1 D C A Slika 4: Da li su vektori AC # «1 i BD # «kolinearni? B

38 Primeri Primer 2 D 1 C 1 A 1 B 1 D C A Slika 4: Da li su vektori BC # «1, A # «1 D 1 i CD # «koplanarni? B

39 Primeri Primer 2 D 1 C 1 A 1 B 1 D C A Slika 4: Da li su vektori BC # «1, CD # «i D # «1 B koplanarni? B

40 Arhimedov zakon poluge

41 Centar masa taqaka AT : T B = m 2 : m 1 m 1 # «T A + m 2 # «T B = #«0 A(m 1 ) B(m 2 ) T

42 Centar masa taqaka AT : T B = m 2 : m 1 m 1 # «T A + m 2 # «T B = #«0 A(m 1 ) B(m 2 ) T O { proizvo na taqka Centar masa taqaka A(m 1 ) i B(m 2 ): # «OT = 1 ( # «m 1 m 1 + m 2 # «) OA + m 2 OB

43 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 )

44 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 ) A 1 { centar masa taqaka B, C: AA 1 { teixna du (iz A)

45 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 ) A 1 { centar masa taqaka B, C: AA 1 { teixna du (iz A) T { centar masa taqaka A, B, C: # «OT = 1 ( # «# «m 1 OA + m 2 m 1 + m 2 + m 3 # «) OB + m 3 OC

46 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 ) A 1 { centar masa taqaka B, C: AA 1 { teixna du (iz A) T { centar masa taqaka A, B, C: # «OT = 1 ( # «# «m 1 OA + m 2 m 1 + m 2 + m 3 Teorema 1.5 Teixne dui se seku u centru masa. # «) OB + m 3 OC

47 Teixte trougla A(m 1 ), B(m 2 ), C(m 3 ) A 1 { centar masa taqaka B, C: AA 1 { teixna du (iz A) T { centar masa taqaka A, B, C: # «OT = 1 ( # «# «m 1 OA + m 2 m 1 + m 2 + m 3 Teorema 1.5 Teixne dui se seku u centru masa. # «) OB + m 3 OC Za m 1 = m 2 = m 3 = m: centar masa = teixte trougla!

48 Baza i dimenzija vektorskog prostora Baza vektorskog prostora = maksimalan skup linearno nezavisnih vektora.

49 Baza i dimenzija vektorskog prostora Baza vektorskog prostora = maksimalan skup linearno nezavisnih vektora. Dimenzija vektorskog prostora = broj elemenata baze.

50 Baza i dimenzija vektorskog prostora Baza vektorskog prostora = maksimalan skup linearno nezavisnih vektora. Dimenzija vektorskog prostora = broj elemenata baze. Posledica 2.1 Dimenzija vektorskog prostora vektora ravni V 2 je dva.

51 Baza i dimenzija vektorskog prostora Baza vektorskog prostora = maksimalan skup linearno nezavisnih vektora. Dimenzija vektorskog prostora = broj elemenata baze. Posledica 2.1 Dimenzija vektorskog prostora vektora ravni V 2 je dva. Svaki vektor #«v V 2 moe da se napixe u obliku: #«v = x1 #«e1 + x 2 #«e2, gde je e = ( #«e 1, #«e 2 ) baza vektorskog prostora V 2.

52 Koordinate vektora Baza e = (e 1, e 2 ) vektorskog prostora V 2. Koordinate vektora #«v V 2 u bazi e: [ #«v ] e = ( ) x1 x 2

53 Koordinate vektora Baza e = (e 1, e 2 ) vektorskog prostora V 2. Koordinate vektora #«v V 2 u bazi e: [ #«v ] e = ( ) x1 x 2 Baza e = (e 1, e 2, e 3 ) vektorskog prostora V 3. Koordinate vektora #«v V 3 u bazi e: [ #«v ] e = x 1 x 2 x 3

54 Koordinate taqke Baza e = (e 1,..., e n ) vektorskog prostora V. Fiksirana taqka O E naziva se koordinatni poqetak. O e se naziva koordinatnim sistemom ili reperom prostora E.

55 Koordinate taqke Baza e = (e 1,..., e n ) vektorskog prostora V. Fiksirana taqka O E naziva se koordinatni poqetak. O e se naziva koordinatnim sistemom ili reperom prostora E. Definicija 2.1 Koordinate taqke X E u reperu Oe definixemo kao koordinate vektora OX # «u bazi e: [X] Oe := [ # «OX] e.

56 Veza koordinata vektora i taqaka U praksi se qesto koristi qi enica da se koordinate vektora MN # «dobijaju oduzima em koordinate taqke M od koordinata taqke N."

57 Veza koordinata vektora i taqaka U praksi se qesto koristi qi enica da se koordinate vektora MN # «dobijaju oduzima em koordinate taqke M od koordinata taqke N." Korektnost: [ MN] # «e = [ MO # «+ ON] # «e = [ ON] # «e [ OM] # «e = [N] Oe [M] Oe.

58 Matrice a 11 a 12 a 1n a 21 a 22 a 2n M mn (R) = A = (a ij ) = a ij R a m1 a m2 a mn Sabira e: A + B = (a ij ) + (b ij ) = (a ij + b ij ), A, B M mn. Mnoe e skalarom: λa = λ (a ij ) = (λ a ij ), λ R, A M mn. Teorema 2.1 Skup M mn (R) svih realnih matrica dimenzija m n u odnosu na sabira e matrica i mnoe e matrica skalarom qini vektorski prostor.

59 Transponova e matrice Transponova e = zamena mesta vrstama i kolonama. A = (a ij ) = A T = (a ji ) = a 11 a 12 a 1n a 21 a 22 a 2n M mn(r) a m1 a m2 a mn a 11 a 21 a n1 a 12 a 22 a n M nm(r) a 1m a 2m a nm

60 Mnoe e matrica A M mn (R), B M nk (R) = A B M mk (R): a 11 a 12 a 1n b 11 b 12 b 1k a 21 a 22 a 2n b 21 b 22 b 2k A B = a m1 a m2 a mn b n1 b n2 b nk a 11 b a 1n b n1 a 11 b a 1n b n2... = a 21 b a 2n b n

61 Mnoe e matrica A M mn (R), B M nk (R) = A B M mk (R): a 11 a 12 a 1n b 11 b 12 b 1k a 21 a 22 a 2n b 21 b 22 b 2k A B = a m1 a m2 a mn b n1 b n2 b nk a 11 b a 1n b n1 a 11 b a 1n b n2... = a 21 b a 2n b n

62 Mnoe e matrica A M mn (R), B M nk (R) = A B M mk (R): a 11 a 12 a 1n b 11 b 12 b 1k a 21 a 22 a 2n b 21 b 22 b 2k A B = a m1 a m2 a mn b n1 b n2 b nk a 11 b a 1n b n1 a 11 b a 1n b n2... = a 21 b a 2n b n

63 Mnoe e matrica A M mn (R), B M nk (R) = A B M mk (R): a 11 a 12 a 1n b 11 b 12 b 1k a 21 a 22 a 2n b 21 b 22 b 2k A B = a m1 a m2 a mn b n1 b n2 b nk a 11 b a 1n b n1 a 11 b a 1n b n2... = a 21 b a 2n b n (A B) ij = n a ip b pj p=1...

64 Primeri ( ) 1 2 ( ) = nije definisan! 2 3 ( ) ( ) ( ) = ( ) ( ) ( ) = mnoe e matrica ( ) ( ) = nije komutativno! ( 3 4 ) 3 6

65 Jediniqna matrica A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn, E = : jediniqna matrica

66 Jediniqna matrica A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn, E = : jediniqna matrica A E = A = E A

67 Inverz matrice Matrica A M n (R) ima inverz ako det A 0. Takve matrice nazivamo regularne matrice i ihov skup qini grupu (u odnosu na mnoe e matrica) koju oznaqavamo sa GL n (R). Primer 3 ( a b A = c d ), A 1 = 1 ad bc ( d b ) c a

68 Nilpotentne matrice Definicija 2.2 Matrica A je nilpotentna ako je A 0 i postoji k N takav da je A k = 0. Primer 4 a2 A = a b b a ( ) A = 0 0, b 0

69 Skalarni proizvod Definicija 3.1 (Skalarni proizvod) #«v, #«u V : #«v #«u := #«v #«u cos ( #«v, #«u ),

70 Skalarni proizvod Definicija 3.1 (Skalarni proizvod) #«v, #«u V : #«v #«u := #«v #«u cos ( #«v, #«u ), Primene skalarnog proizvoda: Duine: Uglovi: #«v = #«v #«v ; ( #«v, #«u ) = arccos Projekcija vektora #«v na vektor #«u: pr #«u #«v = #«v #«u #«u #«v #«u #«v #«u

71 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai:

72 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai: #«u #«v = #«v #«u, simetriqnost

73 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai: #«u #«v = #«v #«u, simetriqnost #«u (α #«v + β #«w) = α( #«u #«v ) + β( #«u #«w), linearnost

74 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai: #«u #«v = #«v #«u, simetriqnost #«u (α #«v + β #«w) = α( #«u #«v ) + β( #«u #«w), linearnost #«u #«u = #«u 2 0, nenegativnost

75 Osobine skalarnog proizvoda Teorema 3.1 (Osobine skalarnog proizvoda) Neka su #«v, #«u, #«w V i α R. Tada vai: #«u #«v = #«v #«u, simetriqnost #«u (α #«v + β #«w) = α( #«u #«v ) + β( #«u #«w), linearnost #«u #«u = #«u 2 0, nenegativnost #«u #«u = 0 ako i samo ako je #«u = #«0. nedegenerisanost

76 Skalarni proizvod u ortonormiranoj bazi Ortonormirana baza = baza e = ( e #«1,..., e #«n ) : e #«i e #«j = δ ij. #«v = v1 e 1 + v 2 e v n e n, #«u = u 1 e 1 + u 2 e u n e n : #«v #«u = v1 u 1 + v 2 u v n u n = (v 1,..., v n ) u 1. u n = [v] T e [u] e

77 Skalarni proizvod u ortonormiranoj bazi Ortonormirana baza = baza e = ( e #«1,..., e #«n ) : e #«i e #«j = δ ij. #«v = v1 e 1 + v 2 e v n e n, #«u = u 1 e 1 + u 2 e u n e n : #«v #«u = v1 u 1 + v 2 u v n u n = (v 1,..., v n ) u 1. u n = [v] T e [u] e Primer 5 Dati su vektori #«v = (1, 2, 2) i #«u = ( 3, 0, 4) iz V 3 svojim koordinatama u ortonormiranoj bazi. Odrediti: (a) #«v ; (b) ( #«v, #«u ).

78 Orijentacija prostora Baze e = ( e #«1, e #«2, e #«3 ) je pozitivne orijentacije ako vai pravilo ruke: ako isprueni kaiprst desne ruke predstav a vektor e #«1, sred i prst vektor e #«2, a palac vektor e #«3, onda je baza e = ( e #«1, e #«2, e #«3 ) pozitivne orijentacije".

79 Vektorski proizvod Definicija 3.2 (Vektorski proizvod) #«v, #«u V 3 : #«v #«u := #«w, gde je #«w vektor koji ima: Intenzitet: #«w = #«v #«u sin ( #«v, #«u ); Pravac: #«w #«v, #«u; Smer: Baza ( #«v, #«u, #«w) je pozitivne orijentacije.

80 Vektorski proizvod Definicija 3.2 (Vektorski proizvod) #«v, #«u V 3 : #«v #«u := w, #«gde je w #«vektor koji ima: Intenzitet: w #«= #«v #«u sin ( #«v, #«u ); Pravac: w #«#«v, #«u; Smer: Baza ( #«v, #«u, w) #«je pozitivne orijentacije. #«u h = #«u sin φ φ #«v Slika 5: #«v #«u = P ( #«v, #«u )

81 Osobine vektorskog proizvoda Posledica 3.1 Vektori #«v, #«u prostora V 3 su linearno nezavisni ako i samo ako #«v #«u #«0.

82 Osobine vektorskog proizvoda Posledica 3.1 Vektori #«v, #«u prostora V 3 su linearno nezavisni ako i samo ako #«v #«u #«0. Teorema 3.2 (Osobine vektorskog proizvoda) #«v, #«u, #«w V 3, α, β R: #«u #«v = #«v #«u, antisimetriqnost (α #«u + β #«v ) #«w = α( #«u #«w) + β( #«v #«w). linearnost

83 Osobine vektorskog proizvoda Posledica 3.1 Vektori #«v, #«u prostora V 3 su linearno nezavisni ako i samo ako #«v #«u #«0. Teorema 3.2 (Osobine vektorskog proizvoda) #«v, #«u, #«w V 3, α, β R: #«u #«v = #«v #«u, antisimetriqnost (α #«u + β #«v ) #«w = α( #«u #«w) + β( #«v #«w). linearnost Teorema 3.3 (Dvostruki vektorski proizvod) #«v, #«u, #«w V 3 : #«v ( #«u #«w) = ( #«v #«w) #«u ( #«v #«u ) #«w.

84 Osobine vektorskog proizvoda Posledica 3.1 Vektori #«v, #«u prostora V 3 su linearno nezavisni ako i samo ako #«v #«u #«0. Teorema 3.2 (Osobine vektorskog proizvoda) #«v, #«u, #«w V 3, α, β R: #«u #«v = #«v #«u, antisimetriqnost (α #«u + β #«v ) #«w = α( #«u #«w) + β( #«v #«w). linearnost Teorema 3.3 (Dvostruki vektorski proizvod) #«v, #«u, #«w V 3 : #«v ( #«u #«w) = ( #«v #«w) #«u ( #«v #«u ) #«w. Teorema 3.3 = vektorski proizvod nije asocijativan.

85 Vektorski proizvod u ortonormiranoj bazi e = ( e #«1, e #«2, e #«3 ) { ortonormirana baza pozitivne orijentacije e #«#«1 e2 e3 #«e #«#«1 0 e3 #«e #«2 e #«2 e #«#«3 0 e1 #«e #«#«3 e2 e #«#«1 0

86 Vektorski proizvod u ortonormiranoj bazi e = ( e #«1, e #«2, e #«3 ) { ortonormirana baza pozitivne orijentacije e #«#«1 e2 e3 #«e #«#«1 0 e3 #«e #«2 e #«2 e #«#«3 0 e1 #«e #«#«3 e2 e #«#«1 0 #«v = v1 e 1 + v 2 e 2 + v 3 e 3, #«u = u 1 e 1 + u 2 e 2 + u 3 e 3 #«v #«u = (v2 u 3 v 3 u 2 ) e #«1 + (v 3 u 1 v 1 u 3 ) e #«2 + (v 1 u 2 v 2 u 1 ) e #«3 e #«1 e2 #«e3 #«= v 1 v 2 v 3. u 1 u 2 u 3

87 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e #«3 =: D #«ABC e3.

88 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= P ABC = 1 2 D ABC ; b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e #«3 =: D #«ABC e3.

89 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= P ABC = 1 2 D ABC ; b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 A, B, C { kolinearne D ABC = 0; e #«3 =: D #«ABC e3.

90 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= P ABC = 1 2 D ABC ; b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e #«3 =: D #«ABC e3. A, B, C { kolinearne D ABC = 0; ABC { pozitivno orijentisan ako D ABC > 0.

91 Primene vektorskog proizvoda A, B, C E 2 : A(a 1, a 2, 0), B(b 1, b 2, 0), C(c 1, c 2, 0): Vai: # «AB AC # «= P ABC = 1 2 D ABC ; b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e #«3 =: D #«ABC e3. A, B, C { kolinearne D ABC = 0; ABC { pozitivno orijentisan ako D ABC > 0. Primer 6 Odrediti povrxinu ABC, A(1, 3), B(4, 0), C(2, 3).

92 Mexoviti proizvod Definicija 3.3 (Mexoviti proizvod) #«v, #«u, #«w V 3 : [ #«v, #«u, #«w] := ( #«v #«u ) #«w. #«v #«u # «w #«w #«u φ B #«v Slika 6: [ #«v, #«u, #«w] = V ( #«v, #«u, #«w)

93 Mexoviti proizvod i orijentacija prostora Posledica 3.2 Vektori #«v, #«u, #«w su linearno nezavisni ako i samo ako: [ #«v, #«u, #«w] 0.

94 Mexoviti proizvod i orijentacija prostora Posledica 3.2 Vektori #«v, #«u, #«w su linearno nezavisni ako i samo ako: [ #«v, #«u, #«w] 0. Posledica 3.3 Vektori ( #«v, #«u, #«w) prostora, qine bazu pozitivne orijentacije ako je [ #«v, #«u, #«w] > 0, a negativne orijentacije ako je [ #«v, #«u, #«w] < 0.

95 Osobine mexovitog proizvoda Teorema 3.4 (Osobine mexovitog proizvoda) #«v, #«u, #«w V,α, β R: [ #«v, #«u, #«w] = [ #«u, #«v, #«w], antisimetriqnost [ #«v, #«u, #«w] = [ #«u, #«w, #«v ] = [ #«w, #«v, #«u ], cikliqnost [α #«u + β #«v, #«w, #«z ] = α[ #«u, #«w, #«z ] + β[ #«v, #«w, #«z ]. linearnost

96 Osobine mexovitog proizvoda Teorema 3.4 (Osobine mexovitog proizvoda) #«v, #«u, w #«V,α, β R: [ #«v, #«u, w] #«= [ #«u, #«v, w], #«antisimetriqnost [ #«v, #«u, w] #«= [ #«u, w, #«#«v ] = [ w, #«#«v, #«u ], cikliqnost [α #«u + β #«v, w, #«#«z ] = α[ #«u, w, #«#«z ] + β[ #«v, w, #«#«z ]. linearnost U ortonormiranoj bazi: [ #«v, #«u, w] #«= v 1 v 2 v 3 u 1 u 2 u 3 w 1 w 2 w 3.

97 Primene mexovitog proizvoda Zapremina tetraedra ABCA 1 jednaka je xestini zapremine paralelepipeda odreenog vektorima AB, # «AC # «i AA # «1. C1 C1 C1 C1 A1 B1 A1 B1 A1 B1 B1 B1 C C C C A B A B A A B A Slika 7: Podela trostrane prizme na tri piramide istih zapremina

98 Primene mexovitog proizvoda Zapremina tetraedra ABCA 1 jednaka je xestini zapremine paralelepipeda odreenog vektorima AB, # «AC # «i AA # «1. C1 C1 C1 C1 A1 B1 A1 B1 A1 B1 B1 B1 C C C C A B A B A A B A Slika 7: Podela trostrane prizme na tri piramide istih zapremina Primer 7 Odrediti zapreminu tetraedra qija su temena A(1, 0, 0), B(3, 4, 6), C(0, 1, 0), D(1, 1, 3).

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet. Glava 1 Vektori U mnogim naukama proučavaju se vektorske i skalarne veličine. Skalarna veličina je odred ena svojom brojnom vrednošću u izabranom sistemu jedinica. Takve veličine su temperatura, težina

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki Matematiqka gimnazija u Beogradu 30.01.2007. Vektori Milivoje Luki 1. Linearne kombinacije vektora Vektor v je linearna kombinacija vektora v 1, v 2,..., v n ako postoje skalari (odn. realni brojevi) λ

Διαβάστε περισσότερα

Geometrija ravnine i prostora I. Vektori u ravnini i prostoru

Geometrija ravnine i prostora I. Vektori u ravnini i prostoru Geometrija ravnine i prostora I. Vektori u ravnini i prostoru Rudolf Scitovski, Darija Brajković 2. prosinca 2013. Sadržaj 1 Uvod 2 2 Operacije s vektorima 4 2.1 Zbrajanje vektora...............................

Διαβάστε περισσότερα

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA Predrag Tanović February 11, 211 {WARNING: Sadržaj ovog materijala NI U KOM SLUČAJU NE MOŽE ZAMENITI UDŽBENIK: radi se o prepravljanim slajdovima predavanja. Reference

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

MATEMATIKA 3. Integrirani preddiplomski i diplomski studij fizike i kemije, smjer nastavnički

MATEMATIKA 3. Integrirani preddiplomski i diplomski studij fizike i kemije, smjer nastavnički Ljiljana Arambašić MATEMATIKA 3 Integrirani preddiplomski i diplomski studij fizike i kemije, smjer nastavnički Integrirani preddiplomski i diplomski studij fizike i tehnike, smjer nastavnički SADRŽAJ

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Geometrija (I smer) deo 2: Afine transformacije

Geometrija (I smer) deo 2: Afine transformacije Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

VEKTORSKI PROSTORI I ELEMENTI VEKTORSKE ANALIZE

VEKTORSKI PROSTORI I ELEMENTI VEKTORSKE ANALIZE VEKTORSKI PROSTORI I ELEMENTI VEKTORSKE ANALIZE Ivanka Milošević Univerzitet u Beogradu 1997 Predgovor Kurs MATEMATIČKA FIZIKA I prvi put sam predavala 1995/1996 godine, pri čemu sam se velikom delu držla

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1. 09.0200 Prvi razred A kategorija Ako je n prirodan broj, dokazati da 3n 2 + 3n + 7 nije kub nijednog prirodnog broja. U trouglu ABC je ABC = 60. Neka su D i E redom preseqne taqke simetrala uglova CAB

Διαβάστε περισσότερα

4 Unitarni prostori. 4.1 Definicija i svojstva unitarnih prostora. K polje R ili C, V je vektorski prostor nad K

4 Unitarni prostori. 4.1 Definicija i svojstva unitarnih prostora. K polje R ili C, V je vektorski prostor nad K 4 Unitarni prostori 4.1 Definicija i svojstva unitarnih prostora K polje R ili C, V je vektorski prostor nad K Definicija. Skalarni produkt na V je svaka funkcija p q: V ˆ V Ñ K koja ima sljedeća svojstva:

Διαβάστε περισσότερα

Osnovne definicije i rezultati iz Uvoda u linearnu algebru

Osnovne definicije i rezultati iz Uvoda u linearnu algebru Osnovne definicije i rezultati iz Uvoda u linearnu algebru (0.01) Simetrije Neka je A = [a ij ] kvadratna matrica (matrica oblika n n). a) Za A kažemo da je simetrična matrica kadgod je A = A, tj. kadgod

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora Matematika I Elvis Baraković, Edis Mekić 4. studenog 2011. 1 Analitička geometrija 1.1 Pojam vektora. Sabiranje i oduzimanje vektora Skalarnom veličinom ili skalarom nazivamo onu veličinu koja je potpuno

Διαβάστε περισσότερα

Linearna algebra i geometrija

Linearna algebra i geometrija Univerzitet u Sarajevu Elektrotehni ki fakultet Linearna algebra i geometrija predavanja Sarajevo, septembar 2012. Sadrºaj Sadrºaj ii 1 Uvod 1 2 Matrice i determinante 2 3 Sistemi linearnih jedna ina 3

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Linearna algebra

Linearna algebra Linearna algebra 2 Siniša Miličić cinik@studentmathhr 2462004 Molim da se sve uočene greške i primjedbe pošalju na mail Ovaj dokument je javno dobro, te se smije neograničeno umnažati, mijenjati i koristiti

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Norme vektora i matrica

Norme vektora i matrica 2 Norme vektora i matrica Pojam norme u vektorskim prostorima se najčešće povezuje sa određenom merom veličine elemenata tog prostora. Tako je u prostoru realnih brojeva R, norma elementa x R najčešće

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Zadaci iz Topologije A

Zadaci iz Topologije A Zadaci iz Topologije A 1. Neka je X neprazan skup i Φ : P(X P(X funkcija za koju vaжi: (1 Φ( = ; (2 A Φ(A za sve A P(X; (3 Φ(A B = Φ(A Φ(B za sve A, B P(X; (4 Φ(Φ(A = Φ(A za sve A P(X. Dokazati da postoji

Διαβάστε περισσότερα

EUKLIDSKA GEOMETRIJA

EUKLIDSKA GEOMETRIJA EUKLIDSKA GEOMETRIJA zadaci za vežbe AKSIOMATSKO ZASNIVANJE EUKLIDSKE GEOMETRIJE 1. Ako dve razne ravni imaju zajedničku tačku tada je njihov presek prava. Dokazati. 2. Za svake dve prave koje se seku

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler

Matrice linearnih operatora i množenje matrica. Franka Miriam Brückler Matrice linearnih operatora i množenje matrica Franka Miriam Brückler Kako je svaki vektorski prostor konačne dimenzije izomorfan nekom R n (odnosno C n ), pri čemu se ta izomorfnost očituje odabirom baze,

Διαβάστε περισσότερα

Milan Merkle. (radni naslov) Verzija 0 ( ), novembar 2015

Milan Merkle. (radni naslov) Verzija 0 ( ), novembar 2015 Milan Merkle M A T E M A T I K A (radni naslov) III Verzija (1999-23), novembar 215 Sadržaj: Analitička geometrija Funkcije više promenljivih Integrali (krivolinijski, višetruki, površinski) Kompleksna

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Nikola Sandrić MATEMATIKA 1. Gradevinski fakultet Sveučilište u Zagrebu

Nikola Sandrić MATEMATIKA 1. Gradevinski fakultet Sveučilište u Zagrebu Tomislav Došlić Nikola Sandrić MATEMATIKA 1 Gradevinski fakultet Sveučilište u Zagrebu Predgovor Poštovani čitatelji, u rukama imate nastavni materijal koji izlaže gradivo kolegija Matematika 1 za studente

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone.

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone. Matrice Uvod u matrice i vektore Pretpostavite da ste odgovorni za iznajmljivanje automobila zaposlenicima svoje firme Sedmični najmovi za različite veličine automobila su: kompaktni 9KM, srednji 60KM,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

2. Vektorski prostori

2. Vektorski prostori 2. Vektorski prostori 2.1. Pojam vektorskog prostora. Grubo govoreći, vektorski prostor je skup na kojem su zadane binarna operacija zbrajanja i operacija množenja skalarima koje poštuju uobičajena računska

Διαβάστε περισσότερα

Jankove grupe kao dizajni i jako regularni grafovi

Jankove grupe kao dizajni i jako regularni grafovi Jankove grupe kao dizajni i jako regularni grafovi Vedrana Mikulić (vmikulic@math.uniri.hr) Odjel za matematiku Sveučilište u Rijeci 9. listopad 2008. Djelovanje grupe na skup Definicija Grupa G djeluje

Διαβάστε περισσότερα

4 Matrice i determinante

4 Matrice i determinante 4 Matrice i determinante 32 4 Matrice i determinante Definicija 1 Pod matricom tipa (formata) m n nad skupom (brojeva) P podrazumevamo funkciju koja preslikava Dekartov proizvod {1, 2,, m} {1, 2,, n} u

Διαβάστε περισσότερα

Primene kompleksnih brojeva u geometriji

Primene kompleksnih brojeva u geometriji Primene kompleksnih brojeva u geometriji Radoslav Dimitrijević 07.1.011. 1 Neki osnovni geometrijski pojmovi 1.1. Rastojanje izmed u tačaka Neka su tačke A i B u kompleksnoj ravni odred ene kompleksnim

Διαβάστε περισσότερα

UVOD. Ovi nastavni materijali namijenjeni su studentima

UVOD. Ovi nastavni materijali namijenjeni su studentima UVOD Ovi nastavni materijali namijenjeni su studentima u svrhu lakšeg praćenja i boljeg razumijevanja predavanja iz kolegija matematika. Ovi materijali čine suštinu nastavnog gradiva pa, uz obaveznu literaturu,

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Matematika 2. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 2 1 / 121

Matematika 2. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 2 1 / 121 Matematika 2 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 2 1 / 121 Integriranje racionalnih funkcija; primjena integrala Integriranje

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

1. Topologija na euklidskom prostoru R n

1. Topologija na euklidskom prostoru R n 1 1. Topologija na euklidskom prostoru R n Euklidski prostor R n je okruženje u kojem ćemo izučavati realnu analizu. Kao skup R n se sastoji od svih uredenih n-torki realnih brojeva: R n = {(x 1,...,x

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

Diskretna matematika. Prof. dr Olivera Nikolić

Diskretna matematika. Prof. dr Olivera Nikolić Diskretna matematika Prof. dr Olivera Nikolić onikolic@singidunum.ac.rs 1 OSNOVNI POJMOVI MATEMATIČKE LOGIKE 2 1. Diskretna matematika 2. Kontinualna matematika 3 Pojam diskretne matematike Diskretna matematika

Διαβάστε περισσότερα

Ispit iz Matematike 2

Ispit iz Matematike 2 Ispit iz Matematike 2 I grupa 1. Dato je preslikavanje H: M 2x2 M 2x2, H A = 1 2 A + AT. Pokazati da je to preslikavanje linearni operator, nadi matricu, sopstvene vrednosti i sopstvene vektore tog operatora.

Διαβάστε περισσότερα

Relacije poretka ure denja

Relacije poretka ure denja Relacije poretka ure denja Relacija na skupu A je relacija poretka na A ako je ➀ refleksivna ➁ antisimetrična ➂ tranzitivna Umesto relacija poretka često kažemo i parcijalno ured enje ili samo ured enje.

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

Univerzitet u Kragujevcu Tehnički fakultet u Čačku Katedra za matematiku Zbirka zadataka za prijemni ispit iz MATEMATIKE Čačak, 2009.

Univerzitet u Kragujevcu Tehnički fakultet u Čačku Katedra za matematiku Zbirka zadataka za prijemni ispit iz MATEMATIKE Čačak, 2009. Univerzitet u Kragujevcu Tehnički fakultet u Čačku Katedra za matematiku Zbirka zadataka za prijemni ispit iz MATEMATIKE Čačak, 009. Autori: Mr Nada Damljanović Mr Rale Nikolić Recenzenti: Prof. dr Mališa

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

Koordinatni sistemi. Za određivanje položaja u ravni koriste se dva glavna koordinatna sistema:

Koordinatni sistemi. Za određivanje položaja u ravni koriste se dva glavna koordinatna sistema: Koordinatni sistemi Za određivanje položaja u ravni koriste se dva glavna koordinatna sistema: Kartezijeve koordinate Korištenjem Kartezijevih koordinata položaj tačke u ravni se definiše sa dva broja,

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Predstavljanje orijentacije i rotacije u 3D

Predstavljanje orijentacije i rotacije u 3D Predstavljanje orijentacije i rotacije u 3D Orijentacija Još jednom: Orijentacija i pravac - isto ili ne? Pravac je određen vektorom, ali rotacija vektora oko samog sebe nema daljeg uticaja. Orijentacija

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα