ΣΥΜΒΟΛΗΣ ΚΑΙ ΠΕΡΙΘΛΑΣΗΣ ΣΥΜΦΩΝΟΥ ΦΩΤΟΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΥΜΒΟΛΗΣ ΚΑΙ ΠΕΡΙΘΛΑΣΗΣ ΣΥΜΦΩΝΟΥ ΦΩΤΟΣ"

Transcript

1 ΣΥΜΒΟΛΗΣ ΚΑΙ ΠΕΡΙΘΛΑΣΗΣ ΣΥΜΦΩΝΟΥ ΦΩΤΟΣ. Η ΘΕΩΡΙΑ ΤΗΣ ΣΥΜΒΟΛΗΣ Κάθε δέσμη οπτικής ακτινοβολίας αποτελείται από ένα πολύ μεγάλο αριθμό ηλεκτρομαγνητικών κυμάτων, τα οποία είναι δυνατό να έχουν παραπλήσιες συχνότητες, (περίπτωση LASER), ή διαφορετικές συχνότητες, (περίπτωση τυχούσας συμβατικής πηγής), και τα οποία έχουν την ίδια ταχύτητα διάδοσης σε κάθε σημείο του χώρου. Τα ηλεκτρικά και τα μαγνητικά πεδία που προέρχονται τόσο από την ίδια δέσμη, όσο και από διαφορετικές δέσμες, όταν συναντώνται σε κάποιο σημείο του χώρου θα αθροίζονται σύμφωνα με την αρχή της υπέρθεσης. Αυτό σημαίνει ότι σε κάθε σημείο του χώρου, το ηλεκτρικό και το μαγνητικό πεδίο θα προκύπτουν από το διανυσματικό άθροισμα των πεδίων που προέρχονται από κάθε δέσμη. Στη περίπτωση που οι οπτικές δέσμες προέρχονται από διαφορετικές οπτικές πηγές, (όχι LASER), τα στοιχειώδη ηλεκτρομαγνητικά κύματα δεν θα έχουν καμιά σχέση μεταξύ τους, με αποτέλεσμα σε κάθε σημείο του χώρου, η συνολική ένταση του ηλεκτρικού και του μαγνητικού πεδίου να έχει τυχαίες τιμές. Αυτό σημαίνει ότι, σε κάθε χρονική στιγμή η ένταση των πεδίων του κύματος σε κάποιο σημείο του χώρου μπορεί να είναι μέγιστη και την αμέσως επόμενη στιγμή να είναι ελάχιστη. Εάν οι δέσμες είναι ορατές, το ανθρώπινο μάτι θα αντιλαμβάνεται ένα ομοιόμορφο φωτισμό. Στη περίπτωση τώρα που οι οπτικές δέσμες προέρχονται από την ίδια οπτική πηγή, ή από διαφορετικές πηγές LASER, μεταξύ των στοιχειωδών ηλεκτρομαγνητικών κυμάτων θα υπάρχει κάποιος βαθμός συσχετισμού όσον αφορά τη συχνότητα και τη φάση των ταλαντώσεων. Αυτό σημαίνει ότι μέσα στις δέσμες θα υπάρχει ένας αριθμός στοιχειωδών ηλεκτρομαγνητικών κυμάτων τα οποία θα έχουν την ίδια συχνότητα και η διαφορά φάσης τους θα είναι ίση με άρτιο ή περιττό πολλαπλάσιο του π/. Κάτω από τις συνθήκες αυτές, η διαδικασία υπέρθεσης των στοιχειωδών ηλεκτρομαγνητικών κυμάτων θα δημιουργεί στο χώρο διακριτές περιοχές στις οποίες η ένταση της οπτικής ακτινοβολίας θα είναι μέγιστη ή ελάχιστη, αντίστοιχα. Στη συγκεκριμένη αυτή περίπτωση, το αποτέλεσμα της υπέρθεσης των στοιχειωδών ηλεκτρομαγνητικών κυμάτων αποτελεί το φαινόμενο της συμβολής. Είναι δυνατό να παρατηρήσουμε φαινόμενα συμβολής στο φυσικό φως, αρκεί να χρησιμοποιήσουμε σύμφωνες φωτεινές πηγές. Γενικά, δυο φωτεινές πηγές είναι σύμφωνες όταν πληρούν τους παρακάτω δυο όρους: α. Σε κάθε στοιχειώδη φωτεινή πηγή της μιας φωτεινής πηγής να αντιστοιχεί μια όμοια όποια στοιχειώδη πηγή της άλλης. β. Όλες οι στοιχειώδης φωτεινές πηγές, ανά ζεύγη, να έχουν κάθε χρονική στιγμή την αυτή διαφορά φάσης Δφ. Παρατηρούμε ότι είναι αδύνατον να υπάρξουν δυο σύμφωνες φωτεινές, και γενικά οπτικές πηγές, αφού δεν είναι δυνατό να πληρούνται οι παραπάνω δυο όροι. Όμως, με διάφορα τεχνάσματα μπορούμε να επιτύχουμε σύμφωνες οπτικές πηγές, όπως για παράδειγμα με το πείραμα του Young. Ο Thomas Young ήταν ένας από τους πρώτους που ανέπτυξε μια μέθοδο δημιουργίας συνθηκών συμβολής. Σύμφωνα με τη μέθοδο αυτή, μια μονοχρωματική φωτεινή πηγή, (π.χ. λάμπα ατμών Νa), φωτίζει ισχυρά μια λεπτή σχισμή S η οποία ευρίσκεται πάνω σε διάφραγμα Δ, (βλέπε ΣΧΗΜΑ ). Σύμφωνα με την αρχή του Huygens, η σχισμή S γίνεται δευτερογενής

2 πηγή νέων κυμάτων, τα οποία προσπίπτουν πάνω στο διάφραγμα Δ το οποίο φέρει δυο πολύ λεπτές σχισμές S και S. Το διάφραγμα Δ είναι παράλληλο με το Δ η δε σχισμή S βρίσκεται πάνω στη μεσοκάθετο του τμήματος που ορίζεται από τις σχισμές S και S της οθόνης Δ. Τα κύματα που αναχωρούν από τη σχισμή S φθάνουν στις σχισμές S και S με την ίδια φάση, και κατά συνέπεια οι στοιχειώδεις πηγές που αντιστοιχούν στις σχισμές αυτές θα είναι συμφασικές και φυσικά τα κύματα που θα εκπέμπουν οι σημειακές πηγές S και S θα ικανοποιούν τις συνθήκες συμβολής. S S S Δ Δ ΣΧΗΜΑ Πράγματι, αν τοποθετήσουμε μια οθόνη Π παράλληλα με το διάφραγμα Δ, τότε πάνω στην οθόνη θα εμφανισθεί η εικόνα της συμβολής, η οποία θα αποτελείται από διακριτές φωτεινές και σκοτεινές ζώνες., (βλέπε ΣΧΗΜΑ ).. H Αρχή του Ηuygens. Για τη καλύτερη κατανόηση τόσο των φαινομένων της συμβολής όσο και των φαινομένων της περίθλασης, θεωρούμε σκόπιμο να αναφέρουμε εδώ την αρχή του Huygens σύμφωνα με την οποία είναι εύκολο να παρακολουθούμε τις διαδοχικές θέσεις Ε, Ε, Ε 3,... μιας δοσμένης ισοφασικής επιφάνειας, π.χ. σφαιρικής, δεχόμενοι ότι κάθε σημείο Α, Β, Γ, Δ, Ε,... της επιφάνειας Ε αποτελεί στοιχειώδη πηγή δευτερογενών κυμάτων. 'Αν το μέσο διάδοσης είναι ισότροπο τότε τα δευτερογενή αυτά κύματα διαδίδονται προς όλες τις διευθύνσεις με σταθερή ταχύτητα V και επομένως σε χρονικό διάστημα Δt θα έχουν δημιουργήσει επί μέρους σφαιρικές ισοφασικές επιφάνειες η κάθε μια από τις οποίες θα έχει ακτίνα ίση με V.Δt, (βλέπε και ΣΧΗΜΑ α). Αποδεικνύεται ότι τα στοιχειώδη αυτά κύματα αλληλοαναιρούνται σε όλα τα άλλα σημεία, εκτός των σημείων εκείνων που βρίσκονται πάνω στην επιφάνεια Ε που περιβάλλει τις δευτερογενείς σφαιρικές ισοφασικές επιφάνειες. Παρατηρούμε ότι η περιβάλλουσα αυτή Ε είναι μια νέα ισοφασική επιφάνεια του αρχικού κύματος που απέχει από την ισοφασική επιφάνεια Ε απόσταση ίση με V.Δt. Με ανάλογο τρόπο προσδιορίζεται και η θέση της επιφάνειας Ε 3.

3 Α Κ Ι Α Β Θ Β Γ Γ Δ Ζ Η Δ Ε Ε Ε Ε Ε 3 E 4 ΣΧΗΜΑ Εύκολα διαπιστώνει κανείς ότι με τους ίδιους ακριβώς συλλογισμούς είναι δυνατό να προσδιορίζουμε και τις διαδοχικές ισοφασικές επιφάνειες των επιπέδων κυμάτων, (βλέπε ΣΧΗΜΑ β).. Συμβολή δυο Κυμάτων. Ας θεωρήσουμε δυο σημειακές οπτικές πηγές S και S, (βλέπε ΣΧΗΜΑ 3), και ας δεχθούμε ότι έχουν πάντα την ίδια φάση. Όταν συμβαίνει αυτό, ή γενικότερα, όταν οι δυο σημειακές πηγές έχουν την ίδια αρχική διαφορά φάσης Δφ, σε κάθε χρονική στιγμή, τότε λέμε ότι οι πηγές αυτές είναι σύμφωνες. Έστω ότι η κάθε μια από τις δυο πηγές εκπέμπει οπτικά κύματα των οποίων η εξίσωση κύματος για την ένταση Ε του ηλεκτρικού πεδίου δίνεται από τη σχέση: E E sin t () 0 P S S ΣΧΗΜΑ 3 3

4 Τα κύματα αυτά διαδίδονται στο χώρο προς όλες τις διευθύνσεις. Αν θεωρήσουμε ένα σημείο Ρ, το οποίο απέχει αποστάσεις και από τις πηγές S και S, αντίστοιχα, τότε στο σημείο αυτό φθάνουν δυο κύματα με αντίστοιχες εξισώσεις κύματος: E E E sin k t 0 E sin k t 0 τα οποία συμβάλλουν και δίνουν ένα νέο κύμα με εξίσωση: E k ( k ( ) ) E E E sin t 0 cos (3) και με πλάτος k ( ) E0, E0 cos (4) όπου: είναι η διαφορά φάσης των δυο κυμάτων στο σημείο Ρ, και k, ω είναι ο κυματαριθμός και η γωνιακή συχνότητα του οπτικού κύματος, αντίστοιχα. Παρατηρούμε ότι το αποτέλεσμα της συμβολής των δυο κυμάτων, τα οποία προέρχονται από τις σύμφωνες πηγές S και S εξαρτάται ουσιαστικά από τη διαφορά των αποστάσεων του σημείου Ρ από τις πηγές αυτές. Από τις ΣΧΕΣΕΙΣ (4) και (5) προκύπτει ότι στη περίπτωση που η διαφορά φάσης Δφ είναι ακέραιο πολλαπλάσιο του π, δηλαδή όταν, Δφ = mπ m = 0,,, 3,... τότε, από τη ΣΧΕΣΗ (5) προκύπτει ότι () (5) = mλ m = 0,,, (6) Στη περίπτωση αυτή το τελικό κύμα θα έχει μέγιστο πλάτος ίσο με: Ε 0,ολ = Ε 0 που σημαίνει ότι στα σημεία του χώρου όπου ικανοποιείται η ΣΧΕΣΗ (6) θα υπάρχει έντονος φωτισμός. Αντίθετα, στη περίπτωση που η διαφορά φάσης Δφ είναι περιττό πολλαπλάσιο του π/, δηλαδή όταν (m ) από τη ΣΧΕΣΗ (5) προκύπτει ότι (m ) m = 0,,, 3,... (7) 4

5 Στα σημεία του χώρου όπου ικανοποιείται η ΣΧΕΣΗ (7) θα συμβαίνει ολική απόσβεση των κυμάτων που συμβάλλουν. Το σύνολο των σημείων τα οποία ευρίσκονται επάνω σε κάθε επίπεδο το οποίο περιέχει τις δυο οπτικές πηγές και τα οποία ικανοποιούν τις ΣΧΕΣΕΙΣ (6) και (7) θα δημιουργούν ένα σμήνος υπερβολών των οποίων οι εστίες είναι οι οπτικές πηγές S και S. Στο ΣΧΗΜΑ 3 οι συνεχείς υπερβολές αντιστοιχούν στη ΣΧΕΣΗ (6), ενώ οι διακοπτόμενες υπερβολές αντιστοιχούν στη ΣΧΕΣΗ 7. Στο χώρο, η απεικόνιση των ΣΧΕΣΕΩΝ (6) και (7) αποτελεί σμήνος υπερβολοειδών εκ περιστροφής, (βλέπε ΣΧΗΜΑ 4). Ζ Y Χ S S Χ Y Ζ ΣΧΗΜΑ 4 Η απεικόνιση της συμβολής σε οθόνη που είναι παράλληλο με τη διεύθυνση που ορίζουν οι δυο πηγές θα είναι ένα πλήθος από παράλληλους φωτεινούς και σκοτεινούς κροσσούς. Αντίθετα, η απεικόνιση της συμβολής πάνω σε οθόνη που είναι κάθετο στη διεύθυνση που ορίζουν οι δυο πηγές θα είναι ένα πλήθος από ομόκεντρους φωτεινούς και σκοτεινούς δακτυλίους..3 Συμβολή Σύμφωνου Φωτός με Φράγμα. Στην οπτική, με τον όρο φράγμα εννοούμε κάποιο γυάλινο πλακίδιο το οποίο φέρει μεγάλο αριθμό παράλληλων και διαφανών σχισμών οι οποίες έχουν εύρος a και απέχουν μεταξύ τους σταθερή απόσταση d. Η απόσταση d καλείται σταθερά του φράγματος. Για παράδειγμα, ένα οπτικό φράγμα με 600 σχισμές ανά mm θα έχει σταθερά d = /600 mm. Εάν τώρα επί του φράγματος προσπέσει μονοχρωματική δέσμη παράλληλων ακτινών, π.χ δέσμη ακτινών LASER, οι σχισμές του φράγματος θα αποτελούν δευτερογενείς πηγές συμφασικών κυμάτων τα οποία, σύμφωνα με τη αρχή του Huygens, θα διαδίδονται προς όλες τις διευθύνσεις, θα συμβάλλουν μεταξύ τους και θα δίνουν πάνω σε οθόνη παράλληλους φωτεινούς και σκοτεινούς κροσσούς συμβολής. Σκοπός μας είναι να προσδιορίσουμε μια σχέση που να συνδέει μεταξύ τους τη σταθερά του φράγματος d, το μήκος κύματος λ της οπτικής ακτινοβολίας και της απόστασης y m των φωτεινών κροσσών συμβολής από τον μηδενικής τάξης κροσσό. Έτσι, στο ΣΧΗΜΑ 5 έχουμε σε μεγέθυνση τμήμα οπτικού φράγματος και δύο φωτεινές ακτίνες που προέρχονται από δύο διαδοχικές σχισμές και που συμβάλλουν στο σημείο Φ m της οθόνης Π. 5

6 Φ m α d y m θ m θ m L Φ 0 LASER ΣΧΗΜΑ 5 Για να έχουμε στο σημείο Φ m φωτεινό κροσσό συμβολής πρέπει να ικανοποιείται η ΣΧΕΣΗ (6), δηλαδή πρέπει, m m = 0,,, 3,..... (8) όπου m είναι η τάξη του φωτεινού κροσσού συμβολής. Δεδομένου τώρα ότι α << L, όπου L είναι η απόσταση του φράγματος από την οθόνη Π, έχουμε με πολύ καλή προσέγγιση ότι, (βλέπε ΣΧΗΜΑ 5): sin( ) m όπου θ m είναι η γωνία στην οποία αντιστοιχεί ο φωτεινός κροσσός συμβολής Φ m, (βλέπε και ΣΧΗΜΑ 5). Οπότε η ΣΧΕΣΗ (8) γίνεται, sin( ) m m = 0,,, 3,..... (9) και k sin( ) m y m L y k Ενδεικτικά αναφέρουμε εδώ ότι, οι γωνιακές αποστάσεις των κροσσών συμβολής καθορίζονται από το λόγο λ/d, ενώ οι σχετικές εντάσεις αυτών από το λόγο λ/a. Η εξάρτηση των αποτελεσμάτων της συμβολής από τα μεγέθη d και α προσδιορίζεται σε επόμενη παράγραφο..4 Συμβολόμετρο Michelson. Το 88 o Michelson σχεδίασε και κατασκεύασε ένα συμβολόμετρο για να ελέγξει την ύπαρξη του αιθέρα. Σημειώνουμε εδώ ότι, πολλοί επιστήμονες της εποχής εκείνης πίστευαν ότι ο αιθέρας ήταν απαραίτητος για τη διάδοση του φωτός στο κενό. Πέρα όμως από αυτή τη προσπάθεια του Michelson, το συγκεκριμένο συμβολόμετρο χρησιμοποιήθηκε, και χρησιμοποιείται ακόμη σε πολλές περιπτώσεις. Συγκεκριμένα, με το συμβολόμετρο του Michelson μπορούμε να μετρήσουμε: α. το μήκος κύματος μιας οπτικής ακτινοβολίας, β. εξαιρετικά μικρά διαστήματα, (ακόμα και της τάξης των nm), 6

7 γ. παραμέτρους και σφάλματα οπτικών μέσων και εξαρτημάτων, (π.χ. φακών), και δ. τη χρονική συμφωνία της ακτινοβολίας LASER. Το ΣΧΗΜΑ 6 δείχνει ένα διάγραμμα του συμβολόμετρου του Michelson. Το συμβολόμετρο αυτό περιλαμβάνει ένα διαχωριστή δέσμης, (BS), του οποίου η ανακλαστικότητα και η διαπερατότητα είναι αντίστοιχα 50 %, ένα μετακινούμενο καθρέπτη, (Μ), και ένα ρυθμιζόμενο καθρέπτη, (Μ). Και τα τρία αυτά εξαρτήματα είναι κατασκευασμένα έτσι ώστε οι επιφάνειές του να είναι εξαιρετικά λείες. Οι καθρέπτες και ο διαχωριστής δέσμης είναι τοποθετημένα σε ειδική μεταλλική βάση όπως δείχνει το ΣΧΗΜΑ 5.6. Η δέσμη του LASER προσπίπτει στο διαχωριστή δέσμης, (BS). Το 50% της δέσμης περνά προς το μετακινούμενο καθρέπτη και το υπόλοιπο 50% ανακλάται προς τον ρυθμιζόμενο καθρέπτη Μ. Και οι δυο καθρέπτες ανακλούν την οπτική ακτινοβολία πίσω προς το διαχωριστή δέσμης. Το 50% της δέσμης από το καθρέπτη Μ ανακλάται από το διαχωριστή δέσμης προς την οθόνη και το 50% της δέσμης από το καθρέπτη Μ διαπερνά το διαχωριστή δέσμης και προσπίπτει στην οθόνη. Από το γεγονός ότι και οι δυο επιμέρους δέσμες που φθάνουν στην οθόνη πρoέρχονται από την ίδια οπτική πηγή, π.χ. το ίδιο LASER, προκύπτει ότι οι φάσεις τους θα διατηρούν σταθερή σχέση μεταξύ τους. Αυτό σημαίνει ότι η σχετική φάση των κυμάτων που συναντώνται σε κάποιο σημείο της οθόνης θα εξαρτάται αποκλειστικά και μόνο από τη διαφορά των διαστημάτων που διανύουν οι επιμέρους δέσμες μέχρι να φθάσουν στο συγκεκριμένο σημείο της οθόνης. Μ L L M ΟΠΤΙΚΗ ΠΗΓΗ ΦΑΚΟΣ BS ΟΘΟΝΗ ΣΧΗΜΑ 6 ΣΧΗΜΑ 7 7

8 Κάτω από τις συνθήκες αυτές, αν μεταξύ πηγής LASER και διαχωριστή δέσμης τοποθετήσουμε ένα φακό, η δέσμη ανοίγει περισσότερο και επάνω στο πέτασμα εμφανίζονται σκοτεινά και φωτεινά δακτυλίδια, (ΣΧΗΜΑ 7). Μετακινώντας το καθρέπτη Μ, το μήκος της διαδρομής που διανύει η μια από τις επιμέρους δέσμες μεταβάλλεται. Από το γεγονός ότι η δέσμη αυτή διασχίζει δυο φορές το τμήμα μεταξύ του καθρέπτη Μ και του διαχωριστή δέσμης, μετακινώντας το καθρέπτη Μ κατά λ/4 προς το διαχωριστή δέσμης το διάστημα που θα διανύει η αντίστοιχη δέσμη θα μειωθεί κατά λ/. με αποτέλεσμα η εικόνα της συμβολής να αλλάξει. Συγκεκριμένα, οι ακτίνες των φωτεινών κυκλικών κροσσών θα ελαττωθούν έτσι ώστε αυτοί να καταλάβουν τις γειτονικές θέσεις των σκοτεινών δακτυλιδιών. Αν μετακινήσουμε κατά λ/4 πάλι το καθρέπτη Μ οι ακτίνες των φωτεινών δακτυλιδιών θα μειωθούν έτσι ώστε τα φωτεινά δακτυλίδια να καταλάβουν τις θέσεις των γειτονικών σκοτεινών δακτυλιδιών οπότε η νέα εικόνα της συμβολής να είναι η ίδια με την αρχική. Μετακινώντας τον καθρέπτη Μ αργά κατά διάστημα d N και μετρώντας τον αριθμό Ν των φωτεινών δακτυλιδιών που διέρχονται από ένα συγκεκριμένο σημείο της εικόνας της συμβολής μπορούμε να υπολογίσουμε το μήκος κύματος της οπτικής ακτινοβολίας με τη βοήθεια της σχέσης: d N (0) N Εάν το μήκος κύματος της ακτινοβολίας είναι γνωστό, με τη βοήθεια της παραπάνω σχέσης είναι δυνατό να μετρήσουμε πάρα πολύ μικρές μετατοπίσεις.. ΠΕΡΙΘΛΑΣΗ ΦΩΤΟΣ Αν θεωρήσουμε ένα κύμα που περνά ένα εμπόδιο, τότε παρατηρούμε ότι ένα μέρος του κύματος μπαίνει και στη περιοχή της σκιάς. Το φαινόμενο αυτό οφείλεται στη ΠΕΡΙΘΛΑΣΗ του κύματος στα όρια του εμποδίου. Β Γ J Α Β Γ A B Γ Γ Α Β Γ Γ X A B Γ ΣΧΗΜΑ 5.8 ΣΧΗΜΑ 5.9 8

9 Κατά τον ίδιο τρόπο συμπεριφέρεται και το φως. Αν θεωρήσουμε παράλληλη δέσμη φωτός, που πέφτει σε ένα αδιαφανές πέτασμα ΒΓ, (ΣΧΗΜΑ 8), παρατηρούμε ότι, στην οθόνη Α'Β'Γ' δεν φωτίζεται μόνο η περιοχή Α'Β', αλλά και η περιοχή Β'Γ' όπου θα περίμενε κανείς να υπάρχει αυστηρά καθορισμένη σκιά. Με άλλα λόγια, βλέπουμε ότι στο σημείο Β' υπάρχει ασάφεια ως προς το όριο της σκιάς, ενώ παράλληλα παρατηρούμε τοπικές αυξομειώσεις της έντασης J του φωτός, (ΣΧΗΜΑ 8, κάτω). Αυτή η απόκλιση της πορείας των φωτεινών ακτινών από το νόμο της ευθύγραμμης διάδοσης αποτελεί ένα φαινόμενο καθαρά κυματικό, που δεν είναι δυνατό να εξηγηθεί από τη Γεωμετρική Οπτική. Το φαινόμενο αυτό περιγράφει τη ΠΕΡΙΘΛΑΣΗ του φωτός. Η εξήγηση της ΠΕΡΙΘΛΑΣΗΣ γίνεται μόνο με τη βοήθεια της Αρχής του Huygens, σύμφωνα με την οποία, κάθε σημείο ισοφασικής επιφάνειας κάποιου κύματος, π.χ. τα σημεία Α και Β στο ΣΧΗΜΑ 5.8, μπορεί να θεωρηθεί σαν δευτερογενής πηγή ακτινοβολίας. Με βάση την αρχή αυτή, εύκολα αποδεικνύεται ότι η διάδοση των ισοφασικών επιφανειών του κύματος δεν επηρεάζεται από τα εμπόδια που συναντάνε, (ΣΧΗΜΑ 5.9). (ΥΠΟΔΕΙΞΗ: Κάθε ισοφασική επιφάνεια κύματος είναι περιβάλλουσα των ισοφασικών επιφανειών των δευτερογενών πηγών προηγούμενης ισοφασικής επιφάνειας).. Περίθλαση Σύμφωνου Φωτός σε Οπή. Όταν το φως περνά από ένα άνοιγμα τότε, και στη περίπτωση αυτή, πάνω σε οθόνη δεν θα έχουμε σαφή όρια στο είδωλο του ανοίγματος, εξαιτίας του φαινομένου της περίθλασης. Θα έχουμε πολύ πιο έντονα φαινόμενα περίθλασης, όταν οι διαστάσεις του ανοίγματος είναι συγκρίσιμες με το μήκος κύματος της φωτεινής ακτινοβολίας που χρησιμοποιούμε. Eτσι, ας εξετάσουμε τη περίπτωση κατά την οποία το διάφραγμα που παρεμβάλλεται στη πορεία δέσμης σύμφωνου μονοχρωματικού φωτός φέρει πολύ μικρή οπή. Σε μια τέτοια περίπτωση παρατηρείται σημαντική εκτροπή του φωτός και δημιουργία φωτεινής κηλίδας, που είναι πολύ μεγαλύτερη από την οπή. Η κηλίδα αυτή αποτελείται από δακτυλίους, φωτεινούς και σκοτεινούς εναλλάξ, γύρω από μια φωτεινή κεντρική κηλίδα, (ΣΧΗΜΑ 0). Στη περίπτωση αυτή, η ακτινική κατανομή της έντασης J του φωτός στη διεύθυνση ΧΧ', αποδίδεται στο ΣΧΗΜΑ 5.. Οι κατανομές φωτός (α), (β) και (γ) στο ΣΧΗΜΑ προκύπτουν κατά τη περίθλαση σε διαδοχικά μικρότερες οπές. Όσο μικραίνει η διατομή της οπής, παρατηρούμε ότι η κεντρική φωτεινή κηλίδα ευρύνεται ενώ η ένταση της μικραίνει κατά πολύ, (Γιατί;). ΣΧΗΜΑ 0 9

10 (α) (β) (γ) ΣΧΗΜΑ. Θεωρεία του Kikhhoff. Η περίθλαση, όπως είπαμε και παραπάνω, εξηγείται με την αρχή του Huygens. Η αρχή αυτή, στη πιο απλή διατύπωση της, επιτρέπει την εύρεση των διαδοχικών θέσεων μιας ισοφασικής επιφάνειας καθορίζοντας αυτή, κάθε φορά, σαν "περιβάλλουσα" των δευτερογενών κυμάτων που προκύπτουν από τη θεώρηση όλων των σημείων μιας προγενέστερης ισοφασικής επιφάνειας σαν δευτερογενείς σημειακές φωτεινές πηγές. Αν η αρχή του Huygens γενικευθεί κατάλληλα, είναι δυνατό να υπολογισθεί το πλάτος και η φάση του κύματος, σε οποιοδήποτε σημείο του χώρου, αρκεί να γνωρίζουμε το πλάτος και τη φάση σε όλα τα σημεία μιας κλειστής επιφάνειας που θεωρούμε ότι περιβάλλει τη πηγή των κυμάτων. Η γενικευμένη αυτή θεωρεία είναι γνωστή σαν θεωρεία του Kichhoff. Για τη κατανόηση της θεωρίας αυτής ας δεχθούμε ότι στο σημείο Ο υπάρχει σημειακή φωτεινή πηγή και έστω ότι ζητάμε την ένταση Ε του ηλεκτρικού πεδίου του κύματος στο σημείο Μ, (ΣΧΗΜΑ 5.). M da O ΣΧΗΜΑ Κατά τη θεωρία του Kichhoff, το πρόβλημα λύνεται σε δύο φάσεις: 0

11 . Θεωρούμε ότι η πηγή περιβάλλεται από μια αυθαίρετη κλειστή επιφάνεια Α όπου σε κάθε στοιχειώδες τμήμα da αυτής υπολογίζουμε το πλάτος και τη φάση του κύματος.. Θεωρούμε ότι κάθε στοιχειώδες τμήμα dα της επιφάνειας Α είναι πηγή δευτερογενών κυμάτων. Βρίσκουμε την ένταση Ε του ηλεκτρικού πεδίου του κύματος στο σημείο Μ, με τη πρόσθεση των εντάσεων όλων των δευτερογενών κυμάτων, αφού λάβουμε υπόψη μας τα πλάτη και τις φάσεις αυτών καθώς επίσης και το γεγονός ότι το πλάτος κάθε δευτερογενούς κύματος ελαττώνεται αντίστροφα ανάλογα με την απόσταση από τη στοιχειώδη επιφάνεια da. Σαν εφαρμογή της θεωρίας του Kichhoff, υπολογίζουμε παρακάτω τη κατανομή της έντασης του φωτός, κατά τη περίθλαση σύμφωνου φωτός σε σχισμή, σε οπή καθώς και σε σύστημα σχισμών..3 Περίθλαση Σύμφωνου Φωτός σε Σχισμή. Η ανάλυση που κάναμε στη παράγραφο 5.. ισχύει στις περιπτώσεις όπου το εύρος a των σχισμών είναι συγκρίσιμο με το μήκος κύματος λ του φωτός. Εδώ θα εξετάσουμε την περίπτωση όπου σύμφωνο φως διέρχεται από σχισμή της οποίας το εύρος α είναι πολύ μεγαλύτερο από το μήκος κύματος λ. Στο ΣΧΗΜΑ 5.3 έχουμε παραστατικά τη σχισμή και την οθόνη Π, η οποία στη πραγματικότητα πρέπει να απέχει από τη σχισμή απόσταση L πολύ μεγαλύτερη του εύρους α αυτής (L>>α). Από τη συνθήκη αυτή προκύπτει ότι: // // Θεωρούμε επίσης ότι όλα τα σημεία της σχισμής βρίσκονται πάνω στην ίδια ισοφασική επιφάνεια του φωτεινού κύματος που διέρχεται από αυτή. Για την απλούστευση του προβλήματος, χωρίζουμε το εύρος β της σχισμής σε πολλά μικρά και ίσα τμήματα ds κάθε ένα από τα οποία θα εκπέμπει δευτερογενές κύμα με πλάτος de 0, που είναι ανάλογο με το ds, δηλαδή, de0 C ds () όπου C είναι σταθερά αναλογίας. Το πλάτος αυτό θα ελαττώνεται, κατά τη διάδοση του κύματος, αντίστροφα ανάλογα με την απόσταση από τη θέση της στοιχειώδους πηγής ds, (Γιατί;). Σ ds S Β α Α φ Ο Σχισμή με εύρος α -S φ L ds φ Α Β ΣΧΗΜΑ 3 οθόνη

12 Η ένταση J του φωτός σε κάποιο σημείο Σ της οθόνης, θα προέρχεται από τα δευτερογενή κύματα που εκπέμπονται από κάθε ένα στοιχειώδες τμήμα ds της σχισμής, (Γιατί;). Εάν η φάση του κύματος επί της σχισμής είναι ωt, τότε τα κύματα που φεύγουν από τα στοιχειώδη τμήματα ds και ds, τα οποία είναι συμμετρικά ως προς το κέντρο της σχισμής θα φθάνουν στο σημείο Σ με στοιχειώδεις εντάσεις του ηλεκτρικού πεδίου de και de οι οποίες θα είναι ίσες με: de de C ds sink t C ds sink t Από το ΣΧΗΜΑ 3 προκύπτουν οι αποστάσεις και του σημείου Σ από τις στοιχειώδεις πηγές ds και ds οι οποίες είναι συμμετρικές ως προς τον άξονα της σχισμής, ( AΣ) ( B) S sin( ) ( BΣ) ( AB) S sin( ) όπου S και είναι οι αποστάσεις των τμημάτων ds και ds και του σημείου Σ από το κέντρο της σχισμής, αντίστοιχα, (ΣΧΗΜΑ 3). Οπότε, η ΣΧΕΣΗ () γίνεται, de de AdS sink ( S sin( )) t AdS sink ( S sin( )) t Δεδομένου τώρα ότι α<<l, μπορούμε να θεωρήσουμε, χωρίς να προκαλέσουμε σημαντικό σφάλμα, ότι, AdS AdS AdS οπότε με άθροιση των ΣΧΕΣΕΩΝ (4) και (5) παίρνουμε το ολικό πλάτος de = de + de που δίνουν τα συμμετρικά, ως προς το κέντρο της σχισμής, στοιχειώδη τμήματα ds και ds, () (3) (4) (6) AdS de sin k( S sin( )) t sink ( S sin( )) t (7) Η ΣΧΕΣΗ (7), με βάση γνωστή τριγωνομετρική ταυτότητα, γίνεται, AdS de cos kssin( ) sink t Το ολικό μέτρο Ε της έντασης του ηλεκτρικού πεδίου του κύματος στο σημείο Σ θα προκύπτει από την ολοκλήρωση της ΣΧΕΣΗΣ (8), ως προς S, από S=0 μέχρι S=a/. Συγκεκριμένα, A E sin Sa / (8) k t cosk S sin( ) ds sink t cosk S sin( ) S0 A k sin( ) Sa / S0 d( kssin( ))

13 E E a A sin Aa k sin( ) a sin k sin( ) A k sin( ) k t sink S sin( ) sink t a sin k sin( ) sin a k sin( ) Aa sin( β) E sink t β όπου a sin( ) asin( ) β k k t 0 Παρατηρούμε ότι το μέτρο Ε της έντασης του ηλεκτρικού πεδίου του κύματος στο σημείο Σ της οθόνης μεταβάλλεται ημιτονικά με το χρόνο, το δε πλάτος του, Aa sin(β) β εξαρτάται από τη γωνία φ. Η ένταση I single του φωτός στο σημείο Σ είναι ανάλογη του τετραγώνου του πλάτους της έντασης του ηλεκτρικού πεδίου και ίση με, sin β Isigle C. () β (9).4 Περίθλαση Σύμφωνου Φωτός σε δυο Σχισμές. Θεωρούμε δύο σχισμές με εύρος a, που απέχουν μεταξύ τους απόσταση d, όπου d>a, (ΣXHMA 4). Και εδώ, η οθόνη Π βρίσκεται σε απόσταση L πολλές φορές μεγαλύτερη από τις διαστάσεις του συστήματος των δύο σχισμών, (L>>d) Αν και είναι οι αποστάσεις του σημείου Σ της οθόνης από τις δύο σχισμές, η ολική ένταση, Ε ολ, του ηλεκτρικού πεδίου του κύματος στο σημείο αυτό θα προκύπτει από τη σύνθεση των κυμάτων που προέρχονται από τις δύο σχισμές, (βλέπε και ΣΧΕΣΗ (9)). Συγκεκριμένα, E ή E sin β E E C. sin sin β C sin β k( cos β k t k t k( ) sin t. () 3

14 a φ L d φ ΣΧΗΜΑ 4 Π Σ Από το ΣΧΗΜΑ 4 προκύπτει ότι d sin( ) Οπότε το ολικό πλάτος του ηλεκτρικού πεδίου του κύματος στο σημείο Σ θα είναι, sinβ Ολικό Πλάτος =. cos γ (3) β Όπου d sin( ) γ (4) και β όπως ορίζει η ΣΧΕΣΗ (0). Από τη ΣΧΕΣΗ (3) προκύπτει ότι η ένταση I double του φωτός στο σημείο Σ θα είναι, sin β I double C. cos γ (5) β sin β Οι όροι και cos γ αποτελούν τους παράγοντες περίθλασης και συμβολής, αντίστοιχα. β.5 Περίθλαση Σύμφωνου Φωτός Σύστημα πολλών Σχισμών, (Φράγμα Περίθλασης). Στη περίπτωση αυτή, η ένταση του φωτός σε κάποιο σημείο της οθόνης θα δίνεται από τη σχέση, I N sin β sin Nγ CN. (6) β sin γ όπου το μέγεθος β εξαρτάται από το εύρος των σχισμών, (ΣΧΕΣΗ 0), το μέγεθος γ από την απόσταση δύο διαδοχικών σχισμών, δηλαδή από τη σταθερά του φράγματος (ΣΧΕΣΗ 4) και Ν είναι το πλήθος των σχισμών. 4

15 3. ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ 3. Περίθλαση σε Απλή Σχισμή. Η φωτεινή ένταση J γίνεται μηδέν στα σημεία εκείνα της οθόνης που αντιστοιχούν σε γωνία φ, τέτοια ώστε ο όρος (sinβ)/β της ΣΧΕΣΗΣ () να είναι μηδέν, δηλαδή όταν η γωνία β είναι ακέραιο πολλαπλάσιο του π, β = mπ, m =,, 3,.... Τελικά, από τη ΣΧΕΣΗ (0) προκύπτει, sin( ) m (5.7) b Για m= παίρνουμε τη γωνία φ Ρ στην οποία αντιστοιχούν τα πρώτα σημεία Ρ και Ρ' της οθόνης, όπου η φωτεινή ένταση J είναι μηδέν, (ΣΧΗΜΑ 5α). Στη περίπτωση αυτή, η ΣΧΕΣΗ (7) γίνεται, sin( P) (8) b Σε όλες τις άλλες περιπτώσεις, στη περιοχή της οθόνης όπου προβάλλεται η περίθλαση θα έχουμε φως το οποίο θα είναι εντονότερο στη περιοχή μεταξύ των πρώτων σημείων μηδενισμού (σημεία Ρ και Ρ'). Όσο απομακρυνόμαστε από τη περιοχή αυτή, το φως μεταξύ των άλλων σημείων μηδενισμού θα γίνεται ασθενέστερο. Σύμφωνα με τη ΣΧΕΣΗ (8), όσο μικραίνει το εύρος α της σχισμής τόσο μεγαλώνει η γωνία φ Σ του πρώτου μηδενισμού της φωτεινής έντασης J, με αποτέλεσμα να μεγαλώνει και το εύρος της πρώτης φωτεινής περιοχής ΣΣ' στην οθόνη Π, (βλέπε ΣΧΗΜΑ 5β). Όταν α=λ, τότε από τη ΣΧΕΣΗ (8) προκύπτει ότι sinφ Σ =, δηλαδή φ Σ =90 ο, που σημαίνει ότι ο πρώτος μηδενισμός της έντασης J θα είναι στο άπειρο, (ΣΧΗΜΑ 5γ). Στις περιπτώσεις που α λ μπορούμε να δεχθούμε ότι η σχισμή είναι σημειακή και αντιστοιχεί σε ένα σημείο της ισοφασικής επιφάνειας του φωτός που προσπίπτει σε αυτή. Θα έχουμε δηλαδή μια σημειακή φωτεινή πηγή η οποία θα ακτινοβολεί προς όλες τις διευθύνσεις. ΣΗΜEΙΩΣΗ: Από τη ΣΧΕΣΗ (7) προκύπτει ότι οι τιμές του m πρέπει να είναι τέτοιες ώστε, (mλ/b). Αυτό σημαίνει ότι η μέγιστη τιμή που μπορεί να πάρει ο ακέραιος m είναι, a m ακέραιο (9) Ας προσπαθήσει μόνος του ο σπουδαστής να καταλάβει τη σημασία της ΣΧΕΣΗΣ (9) για το φαινόμενο της περίθλασης. 5

16 α = λ α = 5λ α = 0λ α = 0λ φ (ad) ΣΧΗΜΑ 5 3. Περίθλαση σε δυο Σχισμές. Από τη ΣΧΕΣΗ (5) προκύπτει ότι η φωτεινή ένταση J, στα διάφορα σημεία της sin β οθόνης, είναι ανάλογη με το γινόμενο δύο συναρτήσεων. Της συνάρτησης, που β αποτελεί το παράγοντα περίθλασης και της συνάρτησης cos γ, που αποτελεί το παράγοντα συμβολής. Στο ΣΧΗΜΑ 6 έχουμε γραφικά το φαινόμενο της συμβολής από περίθλαση σύμφωνου φωτός σε δύο σχισμές, που απέχουν μεταξύ τους απόσταση α=50λ. Οι καμπύλες (α) και (β) 6

17 του σχήματος αυτού απεικονίζουν τους παράγοντες συμβολής και περίθλασης, αντίστοιχα, σε συνάρτηση με τη γωνία φ, ενώ η καμπύλη (γ) του ίδιου σχήματος δίνει τη φωτεινή ένταση J, όπως αυτή προκύπτει από το γινόμενο sin β cos γ Από τη διερεύνηση της ΣΧΕΣΗΣ (5) προκύπτει ότι, όσο λεπτές γίνουν οι σχισμές τόσο ο παράγοντας περίθλασης πλησιάζει τη μονάδα, δεδομένου ότι, sin β im 0 β με αποτέλεσμα, η περιβάλλουσα της καμπύλης (γ) του ΣΧΗΜΑΤΟΣ 6 να διαπλατύνεται sin β μέχρις ότου γίνει ευθεία, (όταν ). Στη περίπτωση αυτή, δεχόμαστε ότι οι δύο σχισμές β είναι σημειακές και συμβάλλουν πλέον σύμφωνα με το πείραμα του Young. sin Isigle C. β α = 0λ β cos a d = 50λ I double sin β C. cos β a φ (ad) ΣΧΗΜΑ 6 Στο ΣΧΗΜΑ 7 έχουμε παραστατικά το φαινόμενο της συμβολής από δύο σχισμές, που απέχουν μεταξύ τους απόσταση d=50λ όταν το εύρος τους a είναι, a=λ, a=5λ και a=0λ, όπου 7

18 λ είναι το μήκος κύματος του φωτός που προκαλεί τη περίθλαση, του ΣΧΗΜΑΤΟΣ 7, αντίστοιχα). (καμπύλες (α), (β) και (γ) Παρατηρούμε και εδώ ότι, όσο μικραίνει το εύρος των σχισμών τόσο μεγαλώνει το εύρος της φωτεινής περιοχής που υπάρχει μεταξύ των δύο πρώτων περιοχών Σ' και Σ. Στη γενική περίπτωση όπου a>>λ, τότε στην οθόνη θα έχουμε φαινόμενα τόσο από τη συμβολή των κυμάτων που προέρχονται από κάθε μια σχισμή ξεχωριστά, λόγω του φαινομένου της περίθλασης, όσο και από τη συμβολή των κυμάτων που προέρχονται από τις δύο σχισμές. Με άλλα λόγια, οι περιοχές μηδενισμού Σ', Σ', Σ και Σ, στα ΣΧΗΜΑΤΑ 6β και 7γ, οφείλονται στη συμβολή λόγω περίθλασης στις σχισμές, ενώ οι ενδιάμεσοι μηδενισμοί της έντασης του φωτός, στα ίδια σχήματα, οφείλονται στη συμβολή των κυμάτων που προέρχονται από τις δύο σχισμές. Έτσι, μετρώντας στην οθόνη τις αποστάσεις των μηδενισμών αυτών από το κεντρικό σημείο της συμβολής μπορούμε να υπολογίσουμε το εύρος a των σχισμών καθώς και την απόσταση d μεταξύ αυτών. α = λ d = 50λ α = 5λ d = 50λ α =0 d = 50λ φ (ad) ΣΧΗΜΑ 7 8

19 3.3 Περίθλαση σε Διάφραγμα με πολλές Σχισμές. Συνήθως, στη περίπτωση αυτή οι σχισμές είναι λεπτές, έτσι ώστε ο παράγοντας περίθλασης sin β να είναι κοντά στη μονάδα και η φωτεινή ένταση των κροσσών συμβολής, (καμπύλη (γ) β στο ΣΧΗΜΑ 8) να εξαρτάται μάλλον από το πηλίκο της συνάρτησης sin Νγ, (καμπύλη (α) στο ΣΧΗΜΑ 8), δια τη συνάρτηση sin γ, (καμπύλη (β) στο ίδιο σχήμα). Παρατηρούμε ότι, στη καμπύλη (γ) υπάρχουν πολύ έντονα φωτεινά μέγιστα, που παρουσιάζονται στις θέσεις εκείνες όπου ο παρανομαστής sin γ της ΣΧΕΣΗΣ (5.6) γίνεται μηδέν. Όσο μεγαλώνει ο αριθμός Ν, των σχισμών ανά μονάδα μήκους, τόσο η συνάρτηση sin Νγ μεταβάλλεται πιο γρήγορα με αποτέλεσμα τα μέγιστα της καμπύλης (γ) του ΣΧΗΜΑΤΟΣ 4.8 να αντιστοιχούν σε γραμμές και όχι σε λωρίδες. Με άλλα λόγια, το φράγμα περίθλασης μετατρέπεται σε κανονικό φράγμα συμβολής. sin Nγ d = 0λ Ν = 5 sin γ sin Nγ sin γ φ (ad) ΣΧΗΜΑ 8 9

20 3.4 Γενικές Παρατηρήσεις. Με βάση τη θεωρητική ανάλυση που κάναμε, μπορούμε να δούμε και να κατανοήσουμε τα αποτελέσματα της συμβολής ακτινών LASER από περίθλαση σε διάφορους τύπους πλεγμάτων. Παρατηρούμε τα παρακάτω: a. Όταν το πλέγμα είναι κατασκευασμένο από σύρμα σταθερού πάχους και τα στοιχειώδη τμήματά του είναι ίσα τετράγωνα, τότε έχουμε ακριβώς τα ίδια φαινόμενα συμβολής προς δύο κάθετες διευθύνσεις x, y. Οι περιοχές Σ ', Σ, Ρ ' και Ρ απέχουν ίση απόσταση από το κεντρικό κροσσό συμβολής και αποτελούν τους πρώτους μηδενισμούς της έντασης του φωτός, λόγω της περίθλασης στα διάκενα του πλέγματος. Οι επί μέρους διαδοχικοί κροσσοί συμβολής απέχουν ίση απόσταση μεταξύ τους και είναι το αποτέλεσμα της συμβολής από το πλέγμα, (ΣΧΗΜΑ 9). Ρ Σ Σ Ρ Y x ΣΧΗΜΑ 9 b. Όταν τα σύρματα του πλέγματος που βρίσκονται στη διεύθυνση Χ είναι πιο χοντρά από εκείνα που βρίσκονται προς τη διεύθυνση Υ και τα στοιχειώδη τμήματά του είναι ίσα ορθογώνια παραλληλόγραμμα, τότε έχουμε πάλι συμβολή προς δύο κάθετες διευθύνσεις, (ΣΧΗΜΑ 0), στις οποίες:. Οι σκοτεινές περιοχές Σ' και Σ απέχουν περισσότερο από το κεντρικό κροσσό συμβολής από ότι οι αντίστοιχες περιοχές Ρ' και Ρ. Αυτό οφείλεται στο γεγονός ότι το εύρος των ανοιγμάτων του πλέγματος είναι πιο μικρό στη Χ διεύθυνση από ότι στη Υ διεύθυνση.. Η απόσταση των επιμέρους κροσσών συμβολής στη διεύθυνση Χ είναι πιο μικρή από την αντίστοιχη απόσταση στη διεύθυνση Υ, δεδομένου ότι τα σύρματα που είναι παράλληλα με τη διεύθυνση Υ έχουν μεγαλύτερο πάχος. 0

21 Ρ Σ Σ Ρ y x ΣΧΗΜΑ 0 c. Στη περίπτωση που τα στοιχειώδη τμήματα του πλέγματος είναι ίσα πλάγια παραλληλόγραμμα με γωνία πλευρών θ, (ΣΧΗΜΑ ), η συμβολή θα γίνει σε δύο διευθύνσεις που θα σχηματίζουν μεταξύ τους γωνία θ. Και εδώ, η απόσταση των πρώτων σκοτεινών περιοχών, λόγω του φαινομένου της περίθλασης, από το κεντρικό κροσσό συμβολής καθώς και η απόσταση μεταξύ των επιμέρους κροσσών συμβολής θα είναι όπως προηγούμενα. ΣΧΗΜΑ d. Εάν τώρα το πλέγμα αποτελείται από κυκλικές οπές, το αποτέλεσμα της συμβολής από περίθλαση σε αυτές θα έδινε ομόκεντρους φωτεινούς και σκοτεινούς δακτυλίους, των οποίων η ακτίνα θα είναι αντίστροφα ανάλογη με τη διάμετρο των οπών, (ΣΧΗΜΑ ). Συγκεκριμένα, ο πρώτος σκοτεινός δακτύλιος θα δημιουργηθεί σε γωνία φ, (βλέπε ΣΧΗΜΑ ), τέτοια ώστε, sin( ) 0. 6 (30) R όπου λ είναι το μήκος κύματος του φωτός και R η ακτίνα των οπών.

22 Τα ίδια ακριβώς φαινόμενα έχουμε και στις περιπτώσεις που η συμβολή οφείλεται στη περίθλαση των φωτεινών ακτίνων LASER σε πολύ μικρή σφαίρα ή σε λεπτό στρώμα μικρών σφαιρών. LASER ΣΧΗΜΑ e. Σαν τελευταία παρατήρηση, αναφέρουμε ότι τα φαινόμενα της περίθλασης συμβάλλουν καθοριστικά στο περιορισμό της διακριτικής ικανότητας των οπτικών οργάνων, (π.χ. του οφθαλμού, του μικροσκοπίου, του φασματογράφου κ.λ.π.).

23 4. ΤΑ ΦΑΙΝΟΜΕΝΑ ΣΥΜΒΟΛΗΣ ΚΑΙ ΠΕΡΙΘΛΑΣΗΣ ΣΤΗ ΜΕΤΡΟΛΟΓΙΑ 4. Μέτρηση του Μήκους Κύματος Ακτινοβολίας LASER. Στο ΣΧΗΜΑ 3 δίνουμε παραστατικά τη συμβολή σύμφωνης οπτικής ακτινοβολίας με μήκος κύματος λ σε οπτικό φράγμα που έχει σταθερά α. Μετά το φράγμα, η ακτινοβολία διαχωρίζεται σε επιμέρους οπτικές δέσμες η κάθε μια από τις οποίες εκτρέπεται κατά συγκεκριμένη γωνία θ k σε σχέση με τη διεύθυνση της αρχικής δέσμης. Όπως ήδη έχουμε αναφέρει, η γωνία εκτροπής θ k στην οποία αντιστοιχεί ο k-τάξης φωτεινός κροσσός συμβολής εξαρτάται τόσο από τη σταθερά α του φράγματος όσο και από το μήκος κύματος της ακτινοβολίας. Συγκεκριμένα, η εξάρτηση αυτή δίνεται από τη σχέση: d sin( ) m m m = 0,,, 3,.... (3) όπου ym sin( m ) (3) L y m Στη περίπτωση που είναι γνωστή η σταθερά α του φράγματος, από τις ΣΧΕΣΕΙΣ (3) και (3) μπορούμε να υπολογίσουμε το μήκος κύματος λ της ακτινοβολίας: y m (33) m L ym Υπενθυμίζουμε εδώ ότι το μήκος L αντιπροσωπεύει την απόσταση της οθόνης από το οπτικό φράγμα και τα διαστήματα y k τις αποστάσεις των φωτεινών κροσσών από το κεντρικό σημείο Ο της συμβολής, (βλέπε ΣΧΗΜΑ 3). Φ m m=m (Φ 0 Φ m )=y m ΦΡΑΓΜΑ : Φ m= (Φ 0 Φ )=y LASER Φ m= (Φ 0 Φ )=y θ m L Φ 0 m=0 ΣΧΗΜΑ 3 4. Μέτρηση των Γεωμετρικών στοιχείων οπτικού Φράγματος. Στο ΣΧΗΜΑ 4 δίνουμε παραστατικά το φαινόμενο της περίθλαση της ακτινοβολίας LASER σε οπτικό φράγμα στο οποίο τόσο η σταθερά α όσο και το εύρος b των σχισμών είναι πολλές φορές μεγαλύτερα της τιμής λ του μήκους κύματος. Στο ίδιο σχήμα δίνουμε και τη 3

24 κατανομή της έντασης της οπτικής ακτινοβολίας πάνω στην οθόνη. Τα σημεία Ρ, Ρ, Ρ3 και Ρ4 σε ελάχιστα φωτισμού εξαιτίας του φαινομένου της περίθλασης σε κάθε μια από τις σχισμές του φράγματος. Αντίθετα, τα επιμέρους φωτεινά μέγιστα Σ, Σ, Σ3, Σ4,.... οφείλονται στη συμβολή των οπτικών κυμάτων τα οποία προέρχονται από διαφορετικές σχισμές του φράγματος. Ρ Ρ φ θ 0 a b Σ 4 ΣΧΗΜΑ 4 Σύμφωνα με τη θεωρία που έχει ήδη προηγηθεί μπορούμε να υπολογίσουμε με εύκολο τρόπο τα γεωμετρικά στοιχεία του φράγματος. Α. ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΕΥΡΟΥ α ΤΩΝ ΣΧΙΣΜΩΝ ΤΟΥ ΦΡΑΓΜΑΤΟΣ Τα σημεία ελάχιστου φωτισμού της οθόνης τα οποία προέρχονται από το φαινόμενο της περίθλασης σε κάθε σχισμή, (σημεία Ρ, Ρ, Ρ3 και Ρ4 στο ΣΧΗΜΑ 5.4), αντιστοιχούν σε γωνίες εκτροπής φ m οι οποίες ικανοποιούν τη ΣΧΕΣΗ (8). Για m= παίρνουμε τη γωνία φ=φ η οποία αντιστοιχεί στο ης-τάξης ελάχιστο του φωτισμού στην οθόνη εξαιτίας της περίθλασης, (σημείο Ρ ή Ρ3 της οθόνης στο ΣΧΗΜΑ 4). Για το ης-τάξης μηδενισμό ισχύει η ΣΧΕΣΗ (5.8). Συγκεκριμένα: a m= sin() όπου: x sin( ) (35) L x L είναι η απόσταση της οθόνης από οπτικό φράγμα και x είναι η απόσταση του πρώτου μηδενισμού φωτός στην οθόνη από το κέντρο Ο της εικόνας της περίθλασης. Από τις ΣΧΕΣΕΙΣ (34) και (35)) έχουμε: 4

25 L x a (36) x Β. ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΑΠΟΣΤΑΣΗΣ d ΜΕΤΑΞΥ ΔΥΟ ΔΙΑΔΟΧΙΚΩΝ ΣΧΙΣΜΩΝ ΟΠΤΙΚΟΥ ΦΡΑΓΜΑΤΟΣ Στη περίπτωση αυτή, οι παράγοντες συμβολής cos ( γ ) της ΣΧΕΣΗΣ (5) και sin Nγ sin γ της ΣΧΕΣΗΣ (5.6) δίνουν τα επί μέρους φωτεινά μέγιστα, (π.χ. τα σημεία Σ, Σ, Σ3, κλπ στο ΣΧΗΜΑ (5.4), όταν, γ = mπ, m=,, 3,.... (37) Η σχέση αυτή, σε συνδυασμό με τη ΣΧΕΣΗ (4) δίνει, d m m =,, 3,..... (38) sin( m ) Από το ΣΧΗΜΑ (5.4) προκύπτει ότι, ( O) ym sin( m ) (39) ( A) L y m όπου y m είναι η απόσταση του m-τάξης επί μέρους φωτεινού μέγιστου από το κεντρικό σημείο Ο της συμβολής. Σας υπενθυμίζουμε ότι, οι σκοτεινές περιοχές Ρ, Ρ, Ρ3 και Ρ4 στο ΣΧΗΜΑ 4 προκύπτουν από τη περίθλαση της δέσμης LASER στις σχισμές του πλέγματος, ενώ οι επιμέρους φωτεινές περιοχές Σ, Σ, Σ3, Σ4 κ.λ.π. στο ίδιο σχήμα, προκύπτουν από τη συμβολή των κυμάτων που προέρχονται από διαφορετικές σχισμές του πλέγματος. Τελικά, από τις ΣΧΕΣΗ (38) και (39) έχουμε: L ym a m (40) y m Στις περιπτώσεις όπου L>>y m και L>>y k, οι ΣΧΕΣΕΙΣ (36) και (40) παίρνουν τις πιο κάτω απλές μορφές: L a m= (4) x και L a m m =,, 3,.... (4) y m 4.3 Περίθλαση Δέσμης LASER σε Στρώμα Λεπτών Κόκκων. Εάν τώρα στη πορεία της δέσμης LASER παρεμβάλουμε γυάλινη πλάκα με λεπτή στρώση από κόκκους με πολύ μικρή διάμετρο, (π.χ. σπόρους λυκοποδίου), τότε στην οθόνη θα 5

26 εμφανισθούν σκοτεινά ΣΧΗΜΑΤΟΣ. και φωτεινά δακτυλίδια συμβολής, όμοια με τα δακτυλίδια του Από τη ΣΧΕΣΗ (30) της αντίστοιχης θεωρίας, μπορούμε να υπολογίσουμε την ακτίνα R των κόκκων λυκοποδίου. Συγκεκριμένα, R 0.6 (43) sin( ) όπου φ είναι η γωνία με την οποία φαίνεται από το διάφραγμα η ακτίνα y του πρώτου σκοτεινού δακτυλιδιού της εικόνας της περίθλασης και, y sin( ) (44) L y και L είναι η απόσταση της οθόνης από το διάφραγμα. Οπότε, η ΣΧΕΣΗ (5.43) γίνεται, L y R 0.6 (45) y ή L R 0.6 (46) y όταν L>>y. 6

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση Κυματική οπτική Η κυματική οπτική ασχολείται με τη μελέτη φαινομένων τα οποία δεν μπορούμε να εξηγήσουμε επαρκώς με τις αρχές της γεωμετρικής οπτικής. Στα φαινόμενα αυτά περιλαμβάνονται τα εξής: Συμβολή

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική

Διαβάστε περισσότερα

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ

Εργαστήριο Οπτικής ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 010 Σκοπός της άσκησης Να μπορείτε να εξηγήσετε το φαινόμενο της Συμβολής και κάτω από ποιες προϋποθέσεις δύο δέσμες φωτός, μπορεί να συμβάλουν. Να μπορείτε να περιγράψετε

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

LASER 3 ΣΥΜΒΟΛΗ ΚΑΙ ΠΕΡΙΘΛΑΣΗ ΦΩΤΟΣ LASER ΜΕΤΡΗΣΗ ΣΤΑΘΕΡΑΣ ΛΕΠΤΟΥ ΠΛΕΓΜΑΤΟΣ ΚΑΙ ΤΗΣ ΑΚΤΙΝΑΣ ΜΙΚΡΩΝ ΚΟΚΚΩΝ

LASER 3 ΣΥΜΒΟΛΗ ΚΑΙ ΠΕΡΙΘΛΑΣΗ ΦΩΤΟΣ LASER ΜΕΤΡΗΣΗ ΣΤΑΘΕΡΑΣ ΛΕΠΤΟΥ ΠΛΕΓΜΑΤΟΣ ΚΑΙ ΤΗΣ ΑΚΤΙΝΑΣ ΜΙΚΡΩΝ ΚΟΚΚΩΝ LASER 3 ΣΥΜΒΟΛΗ ΚΑΙ ΠΕΡΙΘΛΑΣΗ ΦΩΤΟΣ LASER ΜΕΣΩ ΙΑΦΑΝΩΝ ΥΛΙΚΩΝ ΜΕΤΡΗΣΗ ΣΤΑΘΕΡΑΣ ΛΕΠΤΟΥ ΠΛΕΓΜΑΤΟΣ ΚΑΙ ΤΗΣ ΑΚΤΙΝΑΣ ΜΙΚΡΩΝ ΚΟΚΚΩΝ A. ΘΕΩΡΙΑ 1. Περίθλαση 1.1 Εισαγωγή Μια βασική ιδιότητα των κυµάτων είναι ότι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Περίθλαση και εικόνα περίθλασης

Περίθλαση και εικόνα περίθλασης Περίθλαση και εικόνα περίθλασης Η περίθλαση αναφέρεται στη γενική συμπεριφορά των κυμάτων, τα οποία διαδίδονται προς όλες τις κατευθύνσεις καθώς περνούν μέσα από μια σχισμή. Ο όρος εικόνα περίθλασης είναι

Διαβάστε περισσότερα

ΠΕΡΙΘΛΑΣΗ H κυματική φύση του φωτός το πρόβλημα, η λύση

ΠΕΡΙΘΛΑΣΗ H κυματική φύση του φωτός το πρόβλημα, η λύση ΠΕΡΙΘΛΑΣΗ H κυματική φύση του φωτός το πρόβλημα, η λύση ΕΥΘΥΓΡΑΜΜΗ ΔΙΑΔΟΣΗ ΤΟΥ ΦΩΤΟΣ Σύμφωνα με την καθημερινή μας εμπειρία, το φως φαίνεται σαν να ταξιδεύει ευθύγραμμα μέχρι να συναντήσει κάποιο αντικείμενο.

Διαβάστε περισσότερα

Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1

Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1 Μεγεθυντικός φακός 1. Σκοπός Οι μεγεθυντικοί φακοί ή απλά μικροσκόπια (magnifiers) χρησιμοποιούνται για την παρατήρηση μικροσκοπικών αντικειμένων ώστε να γίνουν καθαρά παρατηρήσιμες οι λεπτομέρειες τους.

Διαβάστε περισσότερα

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Α. Στόχοι Οι μαθητές: Να παρατηρήσουν το φαινόμενο της συμβολής / περίθλασης Να αξιοποιήσουν το φαινόμενο της περίθλασης

Διαβάστε περισσότερα

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ

EΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΟΛΙΚΗ ΑΝΑΚΛΑΣΗ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

LASER 2. ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ LASER ΑΠΟ ΦΡΑΓΜΑ ΑΝΑΚΛΑΣΗΣ ΜΕΤΡΗΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΤΟΥ LASER He-Ne

LASER 2. ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ LASER ΑΠΟ ΦΡΑΓΜΑ ΑΝΑΚΛΑΣΗΣ ΜΕΤΡΗΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΤΟΥ LASER He-Ne LASER 2 ΣΥΜΒΟΛΗ ΤΟΥ ΦΩΤΟΣ LASER ΑΠΟ ΦΡΑΓΜΑ ΑΝΑΚΛΑΣΗΣ ΜΕΤΡΗΣΗ ΤΟΥ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΤΟΥ LASER He-Ne A. ΘΕΩΡΙΑ 1. Συµβολή κυµάτων 1.1 Εισαγωγή Η συµβολή κυµάτων είναι το φαινόµενο που παρατηρείται όταν δυο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Σύμφωνα με την ηλεκτρομαγνητική θεωρία του Maxwell, το φως είναι εγκάρσιο ηλεκτρομαγνητικό κύμα. Η θεωρία αυτή α. δέχεται ότι κάθε φωτεινή πηγή εκπέμπει φωτόνια.

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Η πειραματική διάταξη φαίνεται στο ακόλουθο σχήμα: Θα χρησιμοποιήσουμε: Ένα φακό Laser κόκκινου χρώματος. Ένα φράγμα περίθλασης. Μια οθόνη που φέρει πάνω

Διαβάστε περισσότερα

8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση

8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση 11//17 8 η Διάλεξη Ηλεκτρομαγνητική ακτινοβολία, φαινόμενα συμβολής, περίθλαση Φίλιππος Φαρμάκης Επ. Καθηγητής 1 Ηλεκτρομαγνητισμός Πως συνδέονται ο ηλεκτρισμός με τον μαγνητισμό; Πως παράγονται τα κύματα;

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος Ο1 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ ιάθλαση µέσω πρίσµατος Φασµατοσκοπικά χαρακτηριστικά πρίσµατος 1. Εισαγωγή Όταν δέσµη λευκού φωτός προσπέσει σε ένα πρίσµα τότε κάθε µήκος κύµατος διαθλάται σύµφωνα µε τον αντίστοιχο

Διαβάστε περισσότερα

ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ

ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ ΕΞΗΓΗΣΗ ΤΗΣ ΣΥΜΒΟΛΗΣ ΚΑΙ ΤΗΣ ΠΕΡΙΘΛΑΣΗΣ ΜΕ ΤΗΝ ΣΩΜΑΤΙΔΙΑΚΗ ΘΕΩΡΙΑ ΤΟΥ ΦΩΤΟΣ ΑΝΑΤΡΟΠΗ ΤΗΣ ΚΥΜΑΤΙΚΗΣ ΘΕΩΡΙΑΣ Του Αλέκου Χαραλαμπόπουλου Η συμβολή και η περίθλαση του φωτός, όταν περνά λεπτή σχισμή ή μικρή

Διαβάστε περισσότερα

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,,

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,, 1. Κατά μήκος μιας ελαστικής χορδής μεγάλου μήκους που το ένα άκρο της είναι ακλόνητα στερεωμένο, διαδίδονται δύο κύματα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι μετρημένα σε και

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΣΤΗ ΦΥΣΗ ΦΩΤΟΣ

ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΣΤΗ ΦΥΣΗ ΦΩΤΟΣ ΕΡΩΤΗΣΕΙΣ-ΑΣΚΗΣΕΙΣ ΣΤΗ ΦΥΣΗ ΦΩΤΟΣ 1.. Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες λανθασμένες (Λ); α. Στη διάθλαση όταν το φως διέρχεται από ένα οπτικά πυκνότερο υλικό σε ένα οπτικά αραιότερο

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΦΥΣΙΚΗ Γ.Π. Γ Λυκείου / Το Φως 1. Η υπεριώδης ακτινοβολία : a) δεν προκαλεί αμαύρωση της φωτογραφικής πλάκας. b) είναι ορατή. c) χρησιμοποιείται για την αποστείρωση ιατρικών εργαλείων. d) έχει μήκος κύματος

Διαβάστε περισσότερα

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Όταν φωτεινή δέσμη φωτός συναντά στην πορεία του εμπόδια ή περνάει από λεπτές σχισμές υφίσταται περίθλαση, φτάνει δηλαδή σε σημεία που δεν προβλέπονται

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό ΚΕΦΑΛΑΙΟ 2 Ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικά κύματα 7. Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό κύμα; 7.2 Ποιες εξισώσεις περιγράφουν την ένταση του ηλεκτρικού

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ «Β ΘΕΜΑΤΑ ΦΩΣ» ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 04-05 ΠΟΡΕΙΑ ΑΚΤΙΝΑΣ. Β. Στο διπλανό

Διαβάστε περισσότερα

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ

Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ Ερωτήσεις Πολλαπλής επιλογής 1. To βάθος µιας πισίνας φαίνεται από παρατηρητή εκτός της πισίνας µικρότερο από το πραγµατικό, λόγω του φαινοµένου της: α. ανάκλασης β. διάθλασης γ. διάχυσης

Διαβάστε περισσότερα

Περίθλαση από διπλή σχισµή.

Περίθλαση από διπλή σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 81 8. Άσκηση 8 Περίθλαση από διπλή σχισµή. 8.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φράγµατα περίθλασης και ειδικότερα

Διαβάστε περισσότερα

Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ

Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Κυματική Φύση του φωτός και εφαρμογές Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Επαλληλία κυμάτων Διαφορά φάσης Δφ=0 Ενίσχυση Δφ=180 Απόσβεση Κάθε σημείο του μετώπου ενός κύματος λειτουργεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β και Γ ΛΥΚΕΙΟΥ.

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β και Γ ΛΥΚΕΙΟΥ. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β και Γ ΛΥΚΕΙΟΥ. ΑΝΤΙΚΕΙΜΕΝΟ : ΤΟ ΦΩΣ,( ΚΕΦ. Γ ΛΥΚΕΙΟΥ και ΚΕΦ.3 Β ΛΥΚΕΙΟΥ) ΘΕΜΑ Α Να επιλέξετε την σωστή πρόταση χωρίς να δικαιολογήσετε την απάντηση σας.. Οι Huygens

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11Α «Γεωμετρική οπτική - οπτικά όργανα» Εισαγωγή - Ανάκλαση

ΚΕΦΑΛΑΙΟ 11Α «Γεωμετρική οπτική - οπτικά όργανα» Εισαγωγή - Ανάκλαση ΚΕΦΑΛΑΙΟ Α «Γεωμετρική οπτική - οπτικά όργανα» Εισαγωγή - Ανάκλαση Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/~katsiki Ηφύσητουφωτός 643-77 Netwon Huygens 69-695 Το φως είναι δέσμη σωματιδίων Το φως

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ

ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ 13/02/2005 ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 34 2004-05 4 η ΕΡΓΑΣΙΑ Προθεσμία αποστολής 8/03/2005 ΑΣΚΗΣΕΙΣ Άσκηση 1 Α) Αν φωτίσουμε τα μέταλλα λίθιο (έργο εξαγωγής 2.3eV), βηρύλλιο (έργο εξαγωγής 3.9eV),

Διαβάστε περισσότερα

1. Το σημείο Ο ομογενούς ελαστικής χορδής, τη χρονική στιγμή t= αρχίζει να εκτελεί Α.Α.Τ. με εξίσωση y=,5ημπt ( SI), κάθετα στη διεύθυνση της χορδής. Το κύμα που παράγεται διαδίδεται κατά τη θετική κατεύθυνση

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1

ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ. H γραφική αναπαράσταση ενός κύματος φωτός δίνεται στο Σχήμα 1(α) που ακολουθεί: ΣΧΗΜΑ 1 ΠΟΛΩΣΗ ΤΟΥ ΦΩΤΟΣ 1. ΟΡΙΣΜΟΙ Το φως είναι ένα σύνθετο κύμα. Με εξαίρεση την ακτινοβολία LASER, τα κύματα φωτός δεν είναι επίπεδα κύματα. Κάθε κύμα φωτός είναι ένα ηλεκτρομαγνητικό κύμα στο οποίο τα διανύσματα

Διαβάστε περισσότερα

Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ

Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ ΔΙΩΝΙΣΜ: Μ Θ Η Μ : www.paideia-agrinio.gr ΤΞΗΣ ΛΥΕΙΟΥ Φ Υ ΣΙ Η ΤΕ ΥΘ ΥΝ ΣΗ Σ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ :...... Σ Μ Η Μ :..... Η Μ Ε Ρ Ο Μ Η Ν Ι : 23 / 0 3 / 2 0 1 4 Ε Π Ι Μ Ε Λ ΕΙ Θ ΕΜ Σ Ω Ν : ΥΡΜΗ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ - ΤΥΠΟΛΟΓΙΟ

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ - ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ - ΤΥΠΟΛΟΓΙΟ 1 2 Ισχύς που «καταναλώνει» μια ηλεκτρική_συσκευή Pηλ = V. I Ισχύς που Προσφέρεται σε αντιστάτη Χαρακτηριστικά κανονικής λειτουργίας ηλεκτρικής συσκευής Περιοδική

Διαβάστε περισσότερα

Διάθλαση φωτεινής δέσμης σε διαφανές υλικό (Επιβεβαίωση, αξιοποίηση του νόμου Snell)

Διάθλαση φωτεινής δέσμης σε διαφανές υλικό (Επιβεβαίωση, αξιοποίηση του νόμου Snell) Διάθλαση φωτεινής δέσμης σε διαφανές υλικό (Επιβεβαίωση, αξιοποίηση του νόμου Snell) 1. Σκοπός Αξιοποιώντας τις μετρήσεις των γωνιών πρόσπτωσης, διάθλασης α και δ αντίστοιχα μίας πολύ στενής φωτεινής δέσμης

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 04/0/204 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΣΥΜΠΛΗΡΩΜΑ ΘΕΩΡΙΑΣ 1. ΕΓΚΑΡΣΙΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ Κύματα κατά μήκος τεντωμένου νήματος Στο τεντωμένο με δύναμη νήμα του Σχήματος 1.1α δημιουργούμε μια εγκάρσια διαταραχή (παράλληλη με τη διεύθυνση

Διαβάστε περισσότερα

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική Εφαρμοσμένη Οπτική Γεωμετρική Οπτική Κύρια σημεία του μαθήματος Η προσέγγιση της γεωμετρικής οπτικής Νόμοι της ανάκλασης και της διάθλασης Αρχή του Huygens Αρχή του Fermat Αρχή της αντιστρεψιμότητας (principle

Διαβάστε περισσότερα

sin 2 n = sin A 2 sin 2 2 n = sin A = sin = cos

sin 2 n = sin A 2 sin 2 2 n = sin A = sin = cos 1 Σκοπός Βαθμός 9.5. Ηθελε να γραψω καλύτερα το 9 ερωτημα. Σκοπός αυτής της εργαστηριακής άσκησης είναι η μελέτη της ανάκλασης, διάθλασης και πόλωσης του φωτός. Προσδιορίζουμε επίσης τον δείκτη διάθλασης

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής

1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Θέματα Εξετάσεων 1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής 1. Μια ακτίνα φωτός προσπίπτει στην επίπεδη διαχωριστική επιφάνεια δύο µέσων.

Διαβάστε περισσότερα

7α Γεωμετρική οπτική - οπτικά όργανα

7α Γεωμετρική οπτική - οπτικά όργανα 7α Γεωμετρική οπτική - οπτικά όργανα Εισαγωγή ορισμοί Φύση του φωτός Πηγές φωτός Δείκτης διάθλασης Ανάκλαση Δημιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/katsiki Ηφύσητουφωτός

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Τετάρτη, 8 Ιουνίου 2016

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 14/09/2014 ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 14/09/2014 ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 14/09/2014 ΘΕΜΑ Α Α1. Κατά την ανάλυση λευκού φωτός από γυάλινο πρίσμα, η γωνία εκτροπής του κίτρινου χρώματος είναι:

Διαβάστε περισσότερα

Τα πρώτα δύο ελάχιστα της έντασης βρίσκονται συμμετρικά από το μέγιστο σε απόσταση φ=±λ/α.

Τα πρώτα δύο ελάχιστα της έντασης βρίσκονται συμμετρικά από το μέγιστο σε απόσταση φ=±λ/α. Φασματόμετρα & Ιντερφερομετρα Τα φασματόμετρα και ιντερφερόμετρα (συμβολόμετρα) χρησιμοποιούνται στη φασματοσκοπία για τη μέτρηση είτε του μήκους κύματος, αλλά τα βρίσκουμε και σε συσκευές λέιζερ όπου

Διαβάστε περισσότερα

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1 ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 15/9/2013 ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα.

1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. 1) Η εξάρτηση του δείκτη διάθλασης n από το μήκος κύματος για το κρύσταλλο του ιωδιούχου ρουβιδίου (RbI) παρουσιάζεται στο παρακάτω σχήμα. Για τους δείκτες διάθλασης n 1 και n 2 ισχύει: n 2 = (11 / 10)

Διαβάστε περισσότερα

Κατά την φόρτιση πυκνωτή (Εξ. 37 στις σημειώσεις Ηλεκτρομαγνητισμού)

Κατά την φόρτιση πυκνωτή (Εξ. 37 στις σημειώσεις Ηλεκτρομαγνητισμού) 1α Σε ένα κύκλωμα RC συνεχούς με διακόπτη, αντίσταση R = 650 Ω και πηγή 1 V όλα σε σειρά, ο διακόπτης κλείνει στο t = 0 και ο πυκνωτής είναι αρχικά αφόρτιστος. Η διαφορά δυναμικού στον πυκνωτή φτάνει στο

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

Νέα Οπτικά Μικροσκόπια

Νέα Οπτικά Μικροσκόπια Νέα Οπτικά Μικροσκόπια Αντίθεση εικόνας (contrast) Αντίθεση πλάτους Αντίθεση φάσης Αντίθεση εικόνας =100 x (Ι υποβ -Ι δειγμα )/ Ι υποβ Μικροσκοπία φθορισμού (Χρησιμοποιεί φθορίζουσες χρωστικές για το

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΑΤΟΜΙΚΗΣ ΦΥΣΙΚΗΣ Άσκηση 8: Μελέτη των κβαντικών μεταπτώσεων στο άτομο του Na. Επώνυμο: Όνομα: Α.Ε.Μ.: Ημ/νία παράδοσης: ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Σκοπός της άσκησης που αναλύεται παρακάτω είναι η μελέτη

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : Γκύζη 14-Αθήνα Τηλ : 10.64.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 10 ΙΟΥΝΙΟΥ 014 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)

Διαβάστε περισσότερα

Εικόνες περίθλασης - Πόλωση. Περίθλαση. Εικόνες (διαμορφώματα) περίθλασης. Διαμόρφωμα περίθλασης

Εικόνες περίθλασης - Πόλωση. Περίθλαση. Εικόνες (διαμορφώματα) περίθλασης. Διαμόρφωμα περίθλασης Εικόνες (διαμορφώματα) περίθασης Εικόνες περίθασης - Πόωση Πηγή Αδιαφανές αντικείμενο htt://www.h.unimelb.edu.u/~ssk/fresnel/edge.html Φωτεινή κηίδα Poisson Διαμόρφωμα περίθασης Περίθαση περιγράφει «την

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

Κεφάλαιο 34 ΚυµατικήΦύσητουΦωτός; Συµβολή. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 34 ΚυµατικήΦύσητουΦωτός; Συµβολή. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 34 ΚυµατικήΦύσητουΦωτός; Συµβολή Κεφάλαιο 34 Κύµατα και σωµατίδια- ιάθλαση και η αρχή του Huygens Συµβολή-Το πείραµα του Young-διπλή σχισµή. Η ένταση του αποτελέσµατος της συµβολής της διπλής

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Βασικές διαδικασίες παραγωγής πολωμένου φωτός

Βασικές διαδικασίες παραγωγής πολωμένου φωτός Πόλωση του φωτός Βασικές διαδικασίες παραγωγής πολωμένου φωτός πόλωση λόγω επιλεκτικής απορρόφησης - διχρωισμός πόλωση λόγω ανάκλασης από μια διηλεκτρική επιφάνεια πόλωση λόγω ύπαρξης δύο δεικτών διάθλασης

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΛΕΥΚΩΣΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΛΥΚΕΙΑΚΟΣ ΚΥΚΛΟΣ Β ΣΕΙΡΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑ: ΧΡΟΝΟΣ: ΦΥΣΙΚΗ 3 ΩΡΕΣ ΗΜΕΡΟΜΗΝΙΑ: 27/05/2014 ΩΡΑ ΕΝΑΡΞΗΣ:

Διαβάστε περισσότερα

papost/

papost/ Δρ. Παντελής Σ. Αποστολόπουλος Επίκουρος Καθηγητής http://users.uoa.gr/ papost/ papost@phys.uoa.gr ΤΕΙ Ιονίων Νήσων, Τμήμα Τεχνολόγων Περιβάλλοντος ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-2017 Οπως είδαμε

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΜΟΝΟΧΡΩΜΑΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΚΟΠΟΙ H εξάσκηση στην παρατήρηση και περιγραφή φαινοµένων, όπως το φαινόµενο της συµβολής των κυµάτων H παρατήρηση των αποτελεσµάτων της διάδοσης της

Διαβάστε περισσότερα

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες:

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: ΔΙΑΓΩΝΙΣΜΑ ΚΥΜΑΤΩΝ (1) ΘΕΜΑ 1 ο Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: 1) Κατά τη διάδοση ενός κύματος μεταφέρεται ενέργεια και ορμή, αλλά όχι ύλη. 2) Σε

Διαβάστε περισσότερα

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: ,  / Γ.Κονδύλη & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο:20-6.24.000, http:/ / www.akadimos.gr ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 204 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιμέλεια Θεμάτων: Παπαδόπουλος Πασχάλης ΘΕΜΑ

Διαβάστε περισσότερα

7 σειρά ασκήσεων. Για την επίλυση των προβλημάτων να θεωρηθούν γνωστά: σταθερά του Planck 6,63 10-34 J s, ταχύτητα του φωτός στον αέρα 3 10 8 m/s

7 σειρά ασκήσεων. Για την επίλυση των προβλημάτων να θεωρηθούν γνωστά: σταθερά του Planck 6,63 10-34 J s, ταχύτητα του φωτός στον αέρα 3 10 8 m/s η 7 σειρά ασκήσεων Για την επίλυση των προβλημάτων να θεωρηθούν γνωστά: σταθερά του Planck 6,63 10-34 J s, ταχύτητα του φωτός στον αέρα 3 10 8 m/s 1. Εξηγήστε γιατί, όταν φως διαπερνά μία διαχωριστική

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά

Διαβάστε περισσότερα

προς τα θετικά του x άξονα. Ως κύμα η ηλεκτρομαγνητική ακτινοβολία (άρα και το φως) ικανοποιούν τη βασική εξίσωση των κυμάτων, δηλαδή: c = λf (1)

προς τα θετικά του x άξονα. Ως κύμα η ηλεκτρομαγνητική ακτινοβολία (άρα και το φως) ικανοποιούν τη βασική εξίσωση των κυμάτων, δηλαδή: c = λf (1) Φως 1 1 Φως 11 Η φύση του φωτός Το φως είναι το μέρος της ηλεκτρομαγνητικής ακτινοβολίας που διεγείρει τα κωνία και τα ραβδία του αμφιβληστροειδή χιτώνα του ματιού μας Αυτό έχει μήκος κύματος από λ 400

Διαβάστε περισσότερα

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017 [1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s,

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s, Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου 9-1 ιάρκεια εξέτασης :3 5//1 Ι. Σ. Ράπτης Ε. Φωκίτης Θέµα 1. Ένας αρµονικός ταλαντωτής µε ασθενή απόσβεση (µάζα m σταθερά ελατηρίου

Διαβάστε περισσότερα

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ

1 Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ Ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ - ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

1. Σε ένα ελαστικό μέσο διαδίδονται με ταχύτητα υ=4m/s εγκάρσια κύματα που παράγονται από την πηγή Ο, η οποία εκτελεί αμείωτες ταλαντώσεις με εξίσωση

1. Σε ένα ελαστικό μέσο διαδίδονται με ταχύτητα υ=4m/s εγκάρσια κύματα που παράγονται από την πηγή Ο, η οποία εκτελεί αμείωτες ταλαντώσεις με εξίσωση ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΩΝ 1. Σε ένα ελαστικό μέσο διαδίδονται με ταχύτητα υ=4m/s εγκάρσια κύματα που παράγονται από την πηγή Ο, η οποία εκτελεί αμείωτες ταλαντώσεις με εξίσωση απομάκρυνσης y=0,02ημ40πt (S.I.).

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης Γενικές εξετάσεις 0 Φυσική Γ λυκείου θετικής και τεχνολογικής κατεύθυνσης ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

δ) Αν ένα σηµείο του θετικού ηµιάξονα ταλαντώνεται µε πλάτος, να υπολογίσετε την απόσταση του σηµείου αυτού από τον πλησιέστερο δεσµό. ΑΣΚΗΣΗ 4 Μονοχρ

δ) Αν ένα σηµείο του θετικού ηµιάξονα ταλαντώνεται µε πλάτος, να υπολογίσετε την απόσταση του σηµείου αυτού από τον πλησιέστερο δεσµό. ΑΣΚΗΣΗ 4 Μονοχρ ΑΣΚΗΣΗ 1 Κατά µήκος µιας ελαστικής χορδής µεγάλου µήκους που το ένα άκρο της είναι ακλόνητα στερεωµένο, διαδίδονται δύο κύµατα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι µετρηµένα σε

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Σφάλματα φακών (Σφαιρικό - Χρωματικό).

Σφάλματα φακών (Σφαιρικό - Χρωματικό). O12 Σφάλματα φακών (Σφαιρικό - Χρωματικό). 1. Σκοπός Στην άσκηση αυτή υπολογίζονται πειραματικά δυο από τα πιο σημαντικά οπτικά σφάλματα (η αποκλίσεις) που παρουσιάζονται όταν φωτεινές ακτίνες διέλθουν

Διαβάστε περισσότερα

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί

A4. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ

ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ ΠΕΡΙΘΛΑΣΗ ΗΛΕΚΤΡΟΝΙΩΝ Αποδείξαμε πειραματικά, με τη βοήθεια του φαινομένου της περίθλασης, ότι τα ηλεκτρόνια έχουν εκτός από τη σωματιδιακή και κυματική φύση. Υπολογίσαμε τις σταθερές πλέγματος του γραφίτη

Διαβάστε περισσότερα

Η ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ. = 500 nm όταν διαδίδεται στο κενό. Δίνονται: η ταχύτητα του φωτός στο κενό c 0

Η ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ. = 500 nm όταν διαδίδεται στο κενό. Δίνονται: η ταχύτητα του φωτός στο κενό c 0 Η ΦΥΣΗ ΤΟΥ ΦΩΤΟΣ ΑΣΚΗΣΗ 1 Μια μονοχρωματική δέσμη φωτός έχει μήκος κύματος λ 0 = 500 nm όταν διαδίδεται στο κενό Δίνονται: η ταχύτητα του φωτός στο κενό c 0 = 3 10 8 m / s και η σταθερά του Planck h =

Διαβάστε περισσότερα

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά?

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? (Μη-μαγνητικά, μη-αγώγιμα, διαφανή στερεά ή υγρά με πυκνή, σχετικά κανονική διάταξη δομικών λίθων). Γραμμικά πολωμένο κύμα προσπίπτει σε ηλεκτρόνιο

Διαβάστε περισσότερα

Περίθλαση Fraunhofer. απλή σχισμή, πολλαπλές σχισμές, κυκλική οπή

Περίθλαση Fraunhofer. απλή σχισμή, πολλαπλές σχισμές, κυκλική οπή Περίθλαση Fraunhofer απλή σχισμή, πολλαπλές σχισμές, κυκλική οπή ETY-4 C. C. Katsidis 3 Συμβολή από δύο σχισμές ETY-4 C. C. Katsidis 3 Εποικοδομητική συμβολή l -l =nλ, n=,,,3, ETY-4 C. C. Katsidis 3 3

Διαβάστε περισσότερα

1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s.

1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s. 1. Η συχνότητα αρμονικού κύματος είναι f = 0,5 Hz ενώ η ταχύτητα διάδοσης του υ = 2 m / s. Να βρεθεί το μήκος κύματος. 2. Σε ένα σημείο του Ειρηνικού ωκεανού σχηματίζονται κύματα με μήκος κύματος 1 m και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2011

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 2011 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) 0 ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που

Διαβάστε περισσότερα

4. Όρια ανάλυσης οπτικών οργάνων

4. Όρια ανάλυσης οπτικών οργάνων 4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου 2013 1 Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες

Διαβάστε περισσότερα

Κύματα Εξισώσεις Μεθοδολογία

Κύματα Εξισώσεις Μεθοδολογία Κύματα Εξισώσεις Μεθοδολογία Η εξίσωση του κύματος που εκφράζει την απομάκρυνση y ενός σημείου του μέσου, έστω Μ, που απέχει απόσταση χ από την πηγή τη χρονική στιγμή, είναι: y A ( ) με Η ταχύτητα με την

Διαβάστε περισσότερα

Εργαστήριο Οπτικής ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ. Μάκης Αγγελακέρης 2010

Εργαστήριο Οπτικής ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ. Μάκης Αγγελακέρης 2010 ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 2010 Σκοπός της άσκησης Να μπορείτε να περιγράψετε ποιοτικά το φαινόμενο της περίθλασης του φωτός καθώς επίσης να μπορείτε να διακρίνετε τις συνθήκες που χαρακτηρίζουν

Διαβάστε περισσότερα

Μονάδες Το γραμμικό φάσμα του ατόμου του υδρογόνου ερμηνεύεται με

Μονάδες Το γραμμικό φάσμα του ατόμου του υδρογόνου ερμηνεύεται με Προτεινόµενα Θέµατα Γ Λυκείου Οκτώβριος 20 Φυσική ΘΕΜΑ A γενιικής παιιδείίας Στις ερωτήσεις -5 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Η υπεριώδης ακτινοβολία

Διαβάστε περισσότερα

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Κύματα που t x t x σχηματίζουν το y1 = A. hm2 p ( - ), y2 = A. hm2 p ( + ) T l T l στάσιμο Εξίσωση στάσιμου c κύματος y = 2 A. sun 2 p. hm2p t l T Πλάτος ταλάντωσης c A = 2A sun 2p l Κοιλίες,

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoira.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (14)

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (14) ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (14) Θέμα 1 ο Α. Σε ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων LC σε κάποια χρονική στιγμή που το ρεύμα στο κύκλωμα είναι ίσο με το μισό της μέγιστης τιμής

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (13)

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (13) ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (13) Θέμα 1. Α. Όταν ένα σύστημα μάζα ελατήριο εκτελεί εξαναγκασμένη ταλάντωση και βρίσκεται σε κατάσταση συντονισμού, τότε: α. Η ενέργεια που προσφέρεται

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 14 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Παρασκευή, 13 Ιουνίου 14 8:

Διαβάστε περισσότερα