4. Όρια ανάλυσης οπτικών οργάνων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. Όρια ανάλυσης οπτικών οργάνων"

Transcript

1 4. Όρια ανάυσης οπτικών οργάνων 29 Μαΐου Περίθαση Οι αρχές ειτουργίας των οπτικών οργάνων που περιγράψαμε μέχρι στιγμής βασίζονται στη γεωμετρική οπτική, δηαδή την περιγραφή του φωτός ως ακτίνες που διαδίδονται ευθύγραμμα σε ομοιογενή μέσα. Αυτή η περιγραφή είναι όμως προσεγγιστική. Στην πραγματικότητα το φως είναι κύμα και η ακριβέστερη μεέτη πρέπει να άβει υπόψη την κυματική φύση του φωτός προκειμένου να δώσει μία ακριβέστερη περιγραφή της ειτουργίας των οπτικών οργάνων. Το σημαντικότερο κυματικό φαινόμενο για τη ειτουργία των οπτικών οργάνων είναι η περίθαση, με την οποία θα ασχοηθούμε σ αυτήν την ενότητα. Η περίθαση εμφανίζεται όταν το φως περνά από οπές που έχουν διάμετρο της ίδιας τάξης μεγέθους με το μήκος κύματός του. Σ αυτήν την περίπτωση, τα κυματικά φαινόμενα δημιουργούν προβήματα στο σχηματισμό ευκρινών εικονών, ακόμα και σε οπτικά συστήματα στα οποία έχουν μηδενιστεί όα τα σφάματα φακών. Η περίθαση θέτει απόυτα όρια ανάυσης σε όα τα οπτικά όργανα, τα οποία δεν μπορούν να ξεπεραστούν. Εδώ θα μεετήσουμε τα όρια ανάυσης όγω περιθασης σε επτούς φακούς, στο μικροσκόπιο και στο τηεσκόπιο. Η πιο σημαντική περίπτωση περίθασης, σε ότι αφορά το σχεδιασμό οπτικών οργάνων, αφορά τη διάδοση του φωτός, προερχόμενο από μία πηγή, μέσα από ένα κυκικό διάφραγμα διαμέτρου D βέπε σχήμα 1. Αν τοποθετήσουμε ένα πέτασμα πίσω από το διάφραγμα θα παρατηρήσουμε ότι η κατανομή του φωτός δεν είναι ομοιογενής, αά εμφανίζονται ομόκεντροι κύκοι με διαφορετική ένταση του φωτός σε κάθε έναν από αυτούς βέπε σχήμα 2. Ας θεωρήσουμε ένα σημείο πάνω στο πέτασμα. OA είναι η ευθεία που ενώνει αυτό το σημείο με το κέντρο του διαφράγματος. Έστω θ η γωνία που σχηματίζει η ευθεία OA με τον οπτικό άξονα. Η ένταση του φωτός στο σημείο A εξαρτάται από τη γωνία θ και δίνεται από τη σχέση I(θ) = I o [Ai ( )] 2 πd sin θ, (1) όπου το μήκος κύματος του φωτός, D η διάμετρος του διαφράγματος και I o μια σταθερα. Η συνάρτηση Ai(x) καείται συνάρτηση Airy. Η γραφική παράσταση της συνάρτησης Airy δίνεται στο σχήμα 3, ενώ η γραφική παράσταση της έντασης I ως συνάρτηση της γωνίας θ, εξίσωση (1) δίνεται στο σχήμα 4. Η ένταση του φωτός μηδενίζεται (οπότε βέπουμε σκοτεινό κύκο όπως στο σχήμα 2) για τις πd sin θ τιμές του x = όπου μηδενίζεται η συνάρτηση Airy: Ai(x) = 0. Όπως φαίνεται και στο σχήμα 3, η συνάρτηση Airy μηδενίζεται σε ποά σημεία, το πρώτο είναι περίπου στο x = ±3, 83, το δεύτερο στο x = ±7, 02, το τρίτο στο x = ±10, 17, κ.ο.κ. Ιδιαίτερο ενδιαφέρον έχει το πρώτο σημείο μηδενισμού της συνάρτησης Airy. Όπως βέπουμε στο σχήμα 4, το μεγαύτερο μέρος της συνοικής ενέργειας της ακτινοβοίας είναι συγκεντρωμένο στην περιοχή που αντιστοιχεί σε τιμές του x μέχρι το πρώτο σημείο μηδενισμού. Υποογισμός δείχνει ότι εκεί συγκεντρώνεται περίπου το 84% της συνοικής φωτεινής ισχύος. Οι τιμές του πd sin θ x = μεταξύ 0 και 3, 83 αντιστοιχούν στο φωτεινό δίσκο στο κέντρο του σχήματος 2. Αυτός ο δισκος καείται δίσκος του Airy. 1

2 Σχήμα 1: Περίθαση από ένα κυκικό διάφραγμα. Σχήμα 2: Φωτογραφία περίθασης από κυκικό διάφραγμα για πράσινο φως. Παρατηρείστε την ύπαρξη ενός ιδιαίτερα φωτεινού κεντρικού δίσκου και την ακόουθη ενααγή φωτεινών και σκοτεινών κύκων. Σχήμα 3: Γραφική παράσταση της συνάρτησης του Airy Ai(x).ι 2

3 Σχήμα 4: Γραφική παράσταση της έντασης της ακτινοβοίας I ως συνάρτηση της γωνίας θ. Παρατηρείστε ότι σχεδόν όη η ενέργεια αντιστοιχεί στην περιοχή μέχρι το πρώτο σημείο μηδενισμού. Από τη σχέση 3, 83 = πd sin θ/, βρίσκουμε ότι τα όρια του δίσκου του Airy αντιστοιχούν σε γωνία θ που ικανοποιεί τη σχέση sin θ = 1, 22 D. (2) Συνοψίζοντας, όταν το φως που προέρχεται από μία φωτεινή πηγή περνά μέσα από ένα διάφραγμα διαμέτρου D συγκεντρώνεται σχεδόν όο μέσα σε ένα δίσκο, ο οποίος προσδιορίζεται από την τιμή της γωνίας θ της εξίσωσης (2). Όπως φαίνεται από το σχήμα 1, αν το πέτασμα απέχει απόσταση ίση με b από το διάφραγμα, τότε η ακτίνα r του δίσκου του Airy είναι r = b tan θ. (3) Όταν το πέτασμα είναι μακριά από το διάφραγμα, τότε η γωνία θ είναι μικρή και tan θ sin θ, οπότε η εξίσωση (3) γράφεται r = 1, 22 (b/d), ή ισοδύναμα r = 1, 22, (4) f# όπου f# είναι ο αριθμός f του συστήματος. Παρατηρούμε ότι όσο μεγαώνει ο αριθμός f ενός οπτικού συστήματος, τόσο μικραίνει η ακτίνα του δισκου του Airy. 2 Όρια διακρισιμότητας 2.1 Κριτήρια διακρισιμότητας Η εμφάνιση του δίσκου του Airy όταν το φως περνά μέσα από διαφράγματα θέτει όρια στο κατά πόσο μπορεί να διακρίνει ένα οπτικό όργανο δύο διαφορετικές φωτεινές πηγές. Ας θεωρήσουμε ένα οπτικό σύστημα που χαρακτηρίζεται από διάφραγμα διαμέτρου D, όπως στο σχήμα 5, και ας θεωρήσουμε δύο φωτεινά σημεία του αντικειμένου A και B. Μέσω του οπτικού συστήματος, τα και απεικονίζονται στα σημεία A και B. Ωστόσο, όγω της ύπαρξης του διαφράγματος, το είδωο δεν αντιστοιχεί σε δύο σημεία, αά σε δύο δίσκους του Airy, έναν γύρω από το A και έναν γύρω από τοb. Αν οι δύο δίσκοι του Airy δεν τέμνονται, τότε τα δύο σημεία A και B είναι σαφώς διακρίσιμα. Στο αντίθετο όριο, όταν η απόσταση των A και είναι πού μικρότερη από την ακτίνα των δισκων Airy, δεν υπάρχει τρόπος να ξεχωρίσουν. Οπότε έμε ότι το οπτικό σύστημα δεν μπορεί να αναύσει 3

4 Σχήμα 5: Τα είδωα δύο ξεχωριστών σημείωνa και B αντιστοιχούν σε δύο δίσκους του Airy στην επιφάνεια προβοής του ειδώου. Σχήμα 6: Επικαυπτόμενοι κύκοι του Airy που αντιστοιχούν σε δύο ξεχωριστές φωτεινές πηγές. Φωτογραφία από h p://www.justshootsomething.com. 4

5 τη διαφορά των αρχικών σημείων και. Για να προσδιορίσουμε όμως ακριβώς, πότε δύο σημεία δεν μπορούν να διακριθούν πρέπει να εξετάσουμε την περιπτωση που οι κύκοι του Airy είναι μερικώς επικαυπτόμενοι, όπως στο σχήμα 6. Σ αυτήν την περίπτωση, μπορούμε σαφώς να πούμε ότι πρόκειται για δύο διαφορετικές πηγές. Ποιος είναι ο βαθμός επικάυψης που καθιστά απαγορευτική τη διάκριση μεταξύ των δύο φωτεινών πηγών; Η απάντηση είναι ότι δεν υπάρχει απόυτο κριτήριο, αά πρακτικοί κανόνες. Ο πιο παιός είναι ο κανόνας του Rayleigh. Κανόνας του Rayleigh: Δύο σημεία του ειδώου δεν μπορούν να διακριθούν αν το κέντρο του δίσκου του Airy του ενός βρίσκεται στο όριο του δίσκου του Rayleigh του άου. Αυτό σημαίνει ότι δύο σημεία και B του ειδώου δε διαχωρίζονται αν η απόστασή τους x είναι μικρότερη από την ακτίνα r του δίσκου του Airy, δηαδή το οπτικό όργανο δεν μπορεί να αναύσει αποστάσεις ειδώου μικρότερες από x = 1, 22b D (5) Ο κανόνας του Rayleigh είναι χρήσιμος αά όχι καθοικής εφαρμογής. Στο σχήμα 7 δίνεται η γραφική παράσταση της έντασης του φωτός στην οθόνη για δύο δίσκους Airy και για διαφορετικές τιμές της απόστασης x των κέντρων τους. Στα σχήματα 7.α και 7.β, όπου x > r είναι σαφές ότι μπορεί να διαχωριστούν τα δύο είδωα. Το διάγραμμα 7.γ αντιστοιχεί στον κανόνα του Rayleigh, όπου x = r. Παρατηρούμε ότι η ένταση ανάμεσα στα δύο σημεία δεν είναι σταθερή και παρουσιάζει ένα εάχιστο. Ένας καός φωτοανιχνευτής μπορεί να αντιηφθεί αυτή τη διαφορά και να μας επιτρέψει να συμπεράνουμε ότι το είδωο αντιστοιχεί σε δύο διαφορετικές πηγές. Αυτή η συμπεριφορά συνεχίζεται και για μικρότερες τιμές του x (σχήμα 7.δ), μέχρι μία κρίσιμη τιμή x = 0, 78r (σχήμα 1.ε), όπου η ένταση εμφανίζει μόνο ένα μέγιστο και είναι πρακτικά αδύνατο να ξεχωρίσουμε αν βέπουμε είδωο από μία ή από δύο πηγές. Οδηγούμαστε οιπόν στο ακριβέστερο κριτήριο διακρισιμότητας (που οφείεται στον Sparrow). Κανόνας του Sparrow: Δύο σημεία του ειδώου δεν μπορούν να διακριθούν αν η ένταση της ακτινοβοίας στην ανάμεσα τους περιοχή δεν παρουσιάζει κάποιο εάχιστο. Με βάση τον κανόνα του Sparrow, ένα οπτικό όργανο δεν μπορεί νααναύσει αποστάσεις ειδώου μικρότερες από x = 0, 78r, δηαδή το όριο ανάυσης αντιστοιχεί σε x = 0, 95b D (6) Ο κανόνας του Sparrow είναι καύτερος όταν θέουμε να μιήσουμε για την ανάυση ειδώων από δύο πηγές που είναι πού πιο φωτεινές από το υπόβαθρο τους. Ο κανόνας του Rayleigh είναι πιο χρήσιμος όταν θέουμε να συζητήσουμε για τη διάκριση μεταξύ σημείων του αντικειμένου σε οπτικά όργανα που χρησιμοποιούνται για άμεση παρατήρηση μέσω του οφθαμού. 2.2 Λεπτός φακός Εφαρμόζουμε τον κανόνα του Rayleigh σε ένα επτό φακό εστιακής απόστασης f και διαμετρου D. Αν τοποθετήσουμε το αντικείμενο σε απόσταση s από το φακό, τότε το είδωο σχηματίζεται σε απόσταση b = s και έχει μεγέθυνση M = s /s. Η απόσταση εάχιστης ανάυσης x στο χώρο του ειδώου, αντιστοιχεί σε απόσταση εάχιστης ανάυσης x 0 = x/m στο χώρο του αντικειμένου, δηαδή x 0 = 1, 22s. (7) D 5

6 Σχήμα 7: Η ένταση I του φωτός στην οθόνη του σχήματος 5 για διαφορετικές τιμές της απόστασης x μεταξύ A και B. (α) x = 3r, (β) x = 1, 5r, (γ) x = r, (δ) x = 0, 9r, (δ) x = 0, 78r και (στ) x = 0, 5r, όπου r η ακτίνα του δισκου του Airy. Σχήμα 8: Διάγραμμα για τη μεέτη της ανάυσης ενός μικροσκοπίου. Η γωνία α υπό την οποία παρατηρείται ένα διάστημα μήκους x 0 σε απόσταση s είναι ίση με x o /s, οπότε η εάχιστη διακρίσιμη γωνία είναι ίση με α = 1, 22/D. Για τους φακούς του οφθαμού, το D αντιστοιχεί στη διάμετρο της κόρης του οφθαμού, δηαδή D = 0, 5cm. Θεωρώντας μέσο οπτικό μήκος κύματος = 500nm παίρνουμε ως εάχιστη διακρίσιμη γωνία α min = 1, nm 0, 5cm 1, rad (8) το οποίο δίνει σωστή εκτίμηση ως προς την τάξη μεγέθους. 2.3 Μικροσκόπιο Για να βρούμε τα όρια ανάυσης ενός μικροσκοπίου, θεωρούμε δύο σημεία του αντικειμένου O και A που απέχουν απόσταση x o, βέπε σχήμα 8. Το O βρίσκεται πάνω στον οπτικό άξονα. Έστω O και A τα είδωα των O και A μέσα από τον αντικειμενικό φακό αντίστοιχα και x η μεταξύ τους απόσταση. Αν P το ακρότατο σημείο του φακού, ορίζουμε ως θ τη γωνία που σχηματίζει η ευθεία OP με τον οπτικό άξονα και ως θ τη γωνία που σχηματίζει η ευθεία O P με τον οπτικό άξονα. Αν D είναι η διάμετρος του φακού, τότε με βάση το κριτήριο του Sparrow, η εάχιστη διακρισιμότητα του ειδώου αντιστοιχεί σε x = 0.95s /D. Η γωνία θ ικανοποιεί tan θ = D 2s. Καθώς ο 6

7 αντικειμενικός φακός ενός μικροσκοπίου είναι πού ισχυρός και το αντικείμενο τοποθετείται κοντά στην εστία του αντικειμενικού φακού, η απόσταση s είναι πού μεγαύτερη από την εστιακή απόσταση f o του αντικειμενικού. Αυτό σημαίνει ότι η γωνία θ είναι μικρή, οπότε tan θ θ.το όριο ανάυσης του ειδώου γίνεται x = 0, 48 θ, (9) όπου χρησιμοποιήσαμε το κριτήριο του Sparrow. Ένα μικροσκόπιο κατασκευάζεται έτσι ώστε να ισχύει η εγόμενη συνθήκη του ημιτόνου x 0 sin θ = x sin θ, (10) έτσι ώστε το σημείο A να έχει ευκρινές είδωο, χωρίς σφάματα όγο αστιγματισμού. Για μικρό θ, sin θ θ, οπότε xθ = x 0 sin θ. Αντικαθιστώντας στην Εξ. (9) παίρνουμε την τιμή της εάχιστης απόστασης x 0 που μπορεί να διακρίνει ένα μικροσκόπιο x 0 = 0, 48 sin θ. (11) Προσοχή, σε αντίθεση με τη γωνία θ, η γωνία θ δεν είναι μικρή. Αν στην περιοχή μεταξύ αντικειμένου και αντικειμενικού φακού τοποθετηθεί ένα υγρό με δείκτη διάθασης n, τότε η συνθήκη του ημιτόνου γίνεται n x 0 sin θ = x sin θ, οπότε παίρνουμε x 0 = 0, 48 n sin θ, (12) και το μικροσκόπιο μπορεί να επιτύχει καύτερη ανάυση, δηαδή μικρότερο x 0. Στα περισσότερα μικροσκόπια, τοποθετείται ένα διαφανές άδι, μεταξύ αντικειμένου και αντικειμενικού φακού, προκειμένου να επιτευχθεί καύτερη ανάυση. Η ποσότητα n sin θ καείται συχνά αριθμητικό ανοιγμα (numerical aperture) του μικροσκοπίου, συμβοίζεται ως N A και είναι ένα από τα βασικά χαρακτηριστικά που δίνει ο κατασκευαστής. Όσο μεγαύτερο είναι το αριθμητικό άνοιγμα, τόσο καύτερη ανάυση επιτυγχάνει το μικροσκόπιο. Το είδωο του τμήματος OA μέσα από το μικροσκόπιο σχηματίζεται σε απόσταση και έχει μήκος M x 0, όπου M η μεγέθυνση του μικροσκοπίου. Η γωνία υπό την οποία βέπει ο οφθαμός αυτό το είδωο είναι α = M x 0 /. Η εάχιστη οιπόν γωνία παρατήρησης ειδώου την οποία μπορεί να αναύσει ένα μικροσκόπιο είναι Για = 500nm και = 25cm παίρνουμε α = 0, 48M (NA). (13) α = 0, M NA. (14) Δεδομένου ότι αυτή η γωνία δεν μπορεί να είναι μεγαύτερη από την εάχιστη γωνία α min = rad που μπορεί να αναύσει ο οφθαμός, βρίσκουμε τη μέγιστη μεγέθυνση M max που μπορεί να επιτευχθεί με μικροσκόπιο θέτοντας α = α min στην Εξ. (14). Καταήγουμε ότι M max = 208NA. (15) Το μικροσκόπιο μπορεί να επιτύχει μεγαύτερες μεγεθύνσεις από M max, αά αυτές δεν είναι χρήσιμες γιατί δεν αποδίδουν τη επτομέρεια του αντικειμένου που μεετάμε. Μεγεθύνσεις μεγαύτερες από M max καούνται άδειες μεγεθύνσεις. Πρέπει να παρατηρήσουμε ότι η τιμή M max = 208NA που βρήκαμε είναι πού συντηρητική εκτίμηση. Στην πράξη μπορεί να βετιωθεί κατά έναν παράγοντα του 4 5 έτσι ώστε τα καύτερα μικροσκόπια να έχουν μεγεθύνσεις M max 1000NA. 7

8 2.4 Τηεσκόπιο Σε ένα τηεσκόπιο το διάφραγμα αντιστοιχεί στον αντικειμενικό φακό. Η εάχιστη δυνατή γωνία παρατήρησης α μετά την είσοδο της ακτίνας στον αντικειμενικό φακό (βέπε κεφ. 3, σχήμα 16) προσδιορίζεται από το κριτήριο του Sparrow, α = 0, 95 D, (16) όπου D είναι η διάμετρος του αντικειμενικού φακού. Η παραπάνω σχέση ισχύει τόσο για διαθαστικά όσο και για ανακαστικά τηεσκόπια. Για το μεγαύτερο οπτικό τηεσκόπιο, D = 10, 4m. Για = 500nm η εάχιστη γωνία παρατήρησης είναι α = 4, rad. (17) Αν το τηεσκόπιο έχει γωνιακή μεγέθυνση γ, τότε η εάχιστη γωνία β υπό την οποία βέπει ο παρατηρητής είναι β = α γ = 0, 95 γ D. (18) Για παρατήρηση με το μάτι πρέπει να ισχύει β > α min = rad, οπότε βρίσκουμε ένα άνω όριο χρήσιμης μεγέθυνσης που μπορεί να επιτευχθεί σε τηεσκόπιο γ max = 3, 8D(cm), (19) όπου το D υποογιζεται σε cm. Δηαδή η μέγιστη μεγέθυνση του τηεσκοπίου είναι ανάογη της διαμέτρου του αντικειμενικού φακού. 3 Ερωτήσεις-Ασκήσεις 1. Δώστε έναν ορισμό του δίσκου του Airy, εξηγώντας και τις συνθήκες υπό τις οποίες εμφανίζεται. 2. Εξηγείστε το κριτηριο ανάυσης του Rayleigh, φέρνοντας και όποια διαγράμματα κρίνετε ότι χρειάζονται. 3. Εξηγείστε το κριτηριο ανάυσης του Sparrow, φέρνοντας και όποια διαγράμματα κρίνετε ότι χρειάζονται. 4. Γενικά, η διακριτική ικανότητα ενός οργάνου αυξάνεται ή μειώνεται όταν αυξάνει ο αριθμός f; 5. Στο φως ή στο σκοτάδι είναι μεγαύτερη η διακριτική ικανότητα του οφθαμού; Εξηγείστε. 6. Βρείτε την εάχιστη διακρίσιμη γωνία του οφθαμού χρησιμοποιώντας το κριτήριο του Sparrow και θεωρώντας = 560nm. 7. Τι καείται αριθμητικό άνοιγμα και η ποια η σχέση του με τη διακριτική ικανότητα ενός μικροσκοπίου; 8. Τί σημαίνει άδεια μεγέθυνση; 9. Σας δίνεται ένα τηεσκόπιο f/10 με f o = 80cm και f e = 2cm και ένα τηεσκόπιο f/6 με f o = 60cm και f e = 2cm. Ποιο από τα δύο είναι καύτερο για να διακρίνετε μακρινά αντικείμενα; 8

9 Άσκηση 1. Θεωρείστε ότι ο αντικειμενικός φακός μικροσκοποίου είναι ένας επιπεδόκυρτος επτός φακός με εστιακή απόσταση f και δείκτη διάθασης n = 1, 5. α) Βρείτε το μέγιστο αριθμητικό άνοιγμα που μπορεί να έχει το μικροσκόπιο, αν δεν έχουμε βάει κάποιο υγρό μεταξύ αντικειμένου και αντικειμενικού φακού. Επαναάβετε το ίδιο αν β) ο αντικειμενικός φακός είναι συμμετρικός, και γ) αν ο αντικειμενικός φακός αποτεείται από δύο συμμετρικούς φακούς που εφάπτονται. Άσκηση 2. Μικροσκόπιο έχει χαρακτηριστικά f e = 0, 8cm, l = 16cm και διάμετρο αντικειμενικού φακού D = 1, 2cm. Μεταξύ αντικειμενικού φακού και αντικειμένου τοποθετείται υγρό με δεικτη διάθασης n = 1, 6. α) Βρείτε το αριθμητικό άνοιγμα του μικροσκοπίου. β) Υποογίστε τη μέγιστη μεγέθυνση. γ) Τι εστιακής απόστασης προσοφθάμιο πρέπει να χρησιμοποιήσουμε, ώστε το μικροσκόπιο να επιτυγχάνει ακριβώς τη μέγιστη μεγέθυνση; Άσκηση 3. Τηεσκόπιο έχει χαρακτηριστικά f o = 40cm, f e = 2cm και D = 10cm. Βρείτε την εάχιστη γωνία παρατήρησης α που μπορει να αναύσει. Πόσο πρέπει να απέχουν δύο άνθρωποι σε απόσταση 100km ώστε να διακρίνονται με το τηεσκόπιο; Άσκηση 4. Η εάχιστη απόσταση που μπορεί να βρεθεί (ιδανικά) ένας κατασκοπευτικός δορυφόρος από τη Γη είναι 200km. Βρείτε τί διάμετρο πρέπει να έχει το τηεσκόπιο που τοποθετείται στο δορυφόρο ώστε να μπορεί να ξεχωρίζει πρόσωπα στην επιφάνεια της Γης. (Θεωρείστε = 550nm.) Άσκηση 5. Στην πραγματικότητα, οι κατασκοπευτικοί δορυφόροι βρίσκονται σε τροχιά απόστασης 6000km από την επιφάνεια της Γης (ώστε να έχει μεγαύτερο πεδίο παρατήρησης) και χρησιμοποιεί τηεσκόπια διαμέτρου D = 1m το πού. Πόσο πρέπει να απέχουν δυο αντικείμενα στην επιφανεια της Γης ώστε να μπορεί να τα διαχωρίσει; 9

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΟΠΤΙΚΩΝ ΟΡΓΑΝΩΝ Άσκηση 4. Διαφράγματα. Θεωρία Στο σχεδιασμό οπτικών οργάνων πρέπει να λάβει κανείς υπόψη και άλλες παραμέτρους πέρα από το πού και πώς σχηματίζεται το είδωλο ενός

Διαβάστε περισσότερα

ΦΥΕ34 Λύσεις 6 ης Εργασίας Ασκήσεις

ΦΥΕ34 Λύσεις 6 ης Εργασίας Ασκήσεις ΦΥΕ4 Λύσεις 6 ης Εργασίας Ασκήσεις ) α)η διακριτική ικανότητα του φράγµατος ορίζεται ως ο όγος, όπου, +δ, δ δύο µήκη κύµατος που µόις διακρίνονται µε γυµνό οφθαµό και δ πού µικρό Αυτό συµβαίνει σύµφωνα

Διαβάστε περισσότερα

Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ

Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Κυματική Φύση του φωτός και εφαρμογές Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Επαλληλία κυμάτων Διαφορά φάσης Δφ=0 Ενίσχυση Δφ=180 Απόσβεση Κάθε σημείο του μετώπου ενός κύματος λειτουργεί

Διαβάστε περισσότερα

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα.

Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. ΕΙΣΑΓΩΓΗ ΕΝΝΟΙΑ ΤΟΥ ΚΥΜΑΤΟΣ Τι ονομάζουμε κύμα; Κύμα ονομάζουμε τη διάδοση μιας διαταραχής από σημείο σε σημείο του χώρου με ορισμένη ταχύτητα. Η διαταραχή μπορεί να είναι α. Η ταάντωση των μορίων του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 1. Ένα αυτοκίνητο κινείται με κατεύθυνση από το Νότο προς το Βορρά. Κάποια στιγμή ο οδηγός αντιαμβάνεται ένα εμπόδιο και φρενἀρει. Εάν το αυτοκίνητο διαθέτει Α.Β.S.,

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1

Μεγεθυντικός φακός. 1. Σκοπός. 2. Θεωρία. θ 1 Μεγεθυντικός φακός 1. Σκοπός Οι μεγεθυντικοί φακοί ή απλά μικροσκόπια (magnifiers) χρησιμοποιούνται για την παρατήρηση μικροσκοπικών αντικειμένων ώστε να γίνουν καθαρά παρατηρήσιμες οι λεπτομέρειες τους.

Διαβάστε περισσότερα

3. Απλά οπτικά όργανα

3. Απλά οπτικά όργανα 3. Απλά οπτικά όργανα 20 Απριλίου 2013 1 Διαφράγματα Στο σχεδιασμό οπτικών οργάνων πρέπει να λάβει κανείς υπόψη και άλλες παραμέτρους πέρα από το πού και πώς σχηματίζεται το είδωλο ενός αντικειμένου. Μας

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Εξαιτίας της συμβολής δύο κυμάτων του ίδιου πλάτους και της ίδιας συχνότητας. που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό ελαστικό μέσο

Εξαιτίας της συμβολής δύο κυμάτων του ίδιου πλάτους και της ίδιας συχνότητας. που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό ελαστικό μέσο ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Τι ονομάζουμε στάσιμο κύμα f()=0.5sin() Εξαιτίας της συμβοής δύο κυμάτων του ίδιου πάτους και της ίδιας συχνότητας που διαδίδονται ταυτόχρονα στο ίδιο γραμμικό εαστικό μέσο με αντίθετη φορά,

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

Εικόνες περίθλασης - Πόλωση. Περίθλαση. Εικόνες (διαμορφώματα) περίθλασης. Διαμόρφωμα περίθλασης

Εικόνες περίθλασης - Πόλωση. Περίθλαση. Εικόνες (διαμορφώματα) περίθλασης. Διαμόρφωμα περίθλασης Εικόνες (διαμορφώματα) περίθασης Εικόνες περίθασης - Πόωση Πηγή Αδιαφανές αντικείμενο htt://www.h.unimelb.edu.u/~ssk/fresnel/edge.html Φωτεινή κηίδα Poisson Διαμόρφωμα περίθασης Περίθαση περιγράφει «την

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνοογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πηροφορικής & Επικοινωνιών Δίκτυα Τηεπικοινωνιών και Μετάδοσης Ίνες βηματικού δείκτη (step index fibres) Ίνα βηματικού δείκτη: απότομη (βηματική) μεταβοή του

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΦΕΒΡΟΥΑΡΙΟΣ 0: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτεείς προτάσεις - να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπα το γράμμα

Διαβάστε περισσότερα

Νέα Οπτικά Μικροσκόπια

Νέα Οπτικά Μικροσκόπια Νέα Οπτικά Μικροσκόπια Αντίθεση εικόνας (contrast) Αντίθεση πλάτους Αντίθεση φάσης Αντίθεση εικόνας =100 x (Ι υποβ -Ι δειγμα )/ Ι υποβ Μικροσκοπία φθορισμού (Χρησιμοποιεί φθορίζουσες χρωστικές για το

Διαβάστε περισσότερα

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ OΠΤΙΚΑ ΣΤΟΙΧΕΙΑ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μοίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 www.pmoira.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση =0.0 mm είναι τοποθετημένο σε απόσταση =1,0 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές φωτίζεται

Διαβάστε περισσότερα

1. Υποθέτοντας ότι η τριβή είναι αρκετά μεγάλη, το σημείο επαφής θα έχει συνεχώς

1. Υποθέτοντας ότι η τριβή είναι αρκετά μεγάλη, το σημείο επαφής θα έχει συνεχώς Διονύσης Μητρόπουος Άνοδος κάθοδος κυιόμενου αρχικά σώματος σε κεκιμένο επίπεδο, με ή χωρίς οίσθηση ΕΚΦΩΝΗΣΗ Ένα «στρογγυό» σώμα έχει μάζα m, ακτίνα R και ροπή αδράνειας Ι cm m R². Οι τιμές του είναι ⅖

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες

1. Ιδιότητες φακών. 1 Λεπτοί φακοί. 2 Απριλίου Βασικές έννοιες . Ιδιότητες φακών 2 Απριλίου 203 Λεπτοί φακοί. Βασικές έννοιες Φακός είναι ένα οπτικό σύστημα με δύο διαθλαστικές επιφάνειες. Ο απλούστερος φακός έχει δύο σφαιρικές επιφάνειες αρκετά κοντά η μία με την

Διαβάστε περισσότερα

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική

Εφαρμοσμένη Οπτική. Γεωμετρική Οπτική Εφαρμοσμένη Οπτική Γεωμετρική Οπτική Κύρια σημεία του μαθήματος Η προσέγγιση της γεωμετρικής οπτικής Νόμοι της ανάκλασης και της διάθλασης Αρχή του Huygens Αρχή του Fermat Αρχή της αντιστρεψιμότητας (principle

Διαβάστε περισσότερα

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες.

ΑΝΑΚΛΑΣΗ. β' νόμος της ανάκλασης: Η γωνία πρόσπτωσης και η γωνία ανάκλασης είναι ίσες. ΑΝΑΚΛΑΣΗ Η ακτίνα (ή η δέσμη) πριν ανακλασθεί ονομάζεται προσπίπτουσα ή αρχική, ενώ μετά την ανάκλαση ονομάζεται ανακλώμενη. Η γωνία που σχηματίζει η προσπίπτουσα με την κάθετη στην επιφάνεια στο σημείο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ερωτήσεις κλειστού τύπου. Ερωτήσεις ανοικτού τύπου

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ερωτήσεις κλειστού τύπου. Ερωτήσεις ανοικτού τύπου ΟΠΤΙΚΗ Περιεχόμενα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ... 2 Ερωτήσεις κλειστού τύπου... 2 Ερωτήσεις ανοικτού τύπου... 2 Ασκήσεις... 3 ΚΥΜΑΤΙΚΗ ΟΠΤΙΚΗ... 4 Ερωτήσεις κλειστού τύπου... 4 Ερωτήσεις ανοικτού τύπου... 4 Ασκήσεις...

Διαβάστε περισσότερα

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση

Κυματική οπτική. Συμβολή Περίθλαση Πόλωση Κυματική οπτική Η κυματική οπτική ασχολείται με τη μελέτη φαινομένων τα οποία δεν μπορούμε να εξηγήσουμε επαρκώς με τις αρχές της γεωμετρικής οπτικής. Στα φαινόμενα αυτά περιλαμβάνονται τα εξής: Συμβολή

Διαβάστε περισσότερα

Κύματα (Βασική θεωρία)

Κύματα (Βασική θεωρία) Κύματα (Βασική θεωρία) Λεεδάκης Κωστής ( koleygr@gmailcom ) 10 Δεκεμβρίου 015 1 1 Βασικά στοιχεία Κύμα ονομάζεται οποιαδήποτε διαταραχή διαδίδεται μέσα στο χώρο Τα ηεκτρομαγνητικά κύματα είναι τα μόνα

Διαβάστε περισσότερα

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση ΠεριεχόµεναΚεφαλαίου 35 Περίθλαση απλής σχισµής ή δίσκου Intensity in Single-Slit Diffraction Pattern Περίθλαση διπλής σχισµής ιακριτική ικανότητα; Κυκλικές ίριδες ιακριτική

Διαβάστε περισσότερα

Μελέτη συστήματος φακών με τη Μέθοδο του Newton

Μελέτη συστήματος φακών με τη Μέθοδο του Newton Μελέτη συστήματος φακών με τη Μέθοδο του Newton.Σκοπός Σκοπός της άσκησης είναι η μελέτη της εστιακής απόστασης συστήματος φακών, η εύρεση της ισοδύναμης εστιακής απόστασης του συστήματος αυτού καθώς και

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

2.3 Στάσιμο κύμα. ημ 2π. συν = 2A. + τα οποία T. t x. T λ T λ ολ

2.3 Στάσιμο κύμα. ημ 2π. συν = 2A. + τα οποία T. t x. T λ T λ ολ .3 Στάσιμο Κύμα.3 Στάσιμο κύμα.3.1 Μαθηματική Επεξεργασία Ας υποθέσουμε ότι έχουμε μία χορδή και σε αυτήν την χορδή διαδίδονται δύο πανομοιότυπα κύματα σε αντίθετες κατευθύνσεις. Δηαδή αν το δούμε από

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ

ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

Σφάλματα φακών (Σφαιρικό - Χρωματικό).

Σφάλματα φακών (Σφαιρικό - Χρωματικό). O12 Σφάλματα φακών (Σφαιρικό - Χρωματικό). 1. Σκοπός Στην άσκηση αυτή υπολογίζονται πειραματικά δυο από τα πιο σημαντικά οπτικά σφάλματα (η αποκλίσεις) που παρουσιάζονται όταν φωτεινές ακτίνες διέλθουν

Διαβάστε περισσότερα

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) :

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) : ΠΑΝΕΠΙΣΤΗΜΙΟ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ Τομέας Περιβάοντος και Χρήσης Ενέργειας Εργαστήριο Τεχνοογίας Περιβάοντος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ (3 ο ΕΞΑΜΗΝΟ)

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που

Διαβάστε περισσότερα

Το οπτικό μικροσκόπιο και ο τρόπος χρήσης του

Το οπτικό μικροσκόπιο και ο τρόπος χρήσης του Το οπτικό μικροσκόπιο και ο τρόπος χρήσης του Το ανθρώπινο μάτι μπορεί να διακρίνει λεπτομέρειες της τάξης των 50-200 μm. Ο άνθρωπος με τις πρωτοποριακές εφευρέσεις των Malpighi, Hooke, Van Leeuwenhook

Διαβάστε περισσότερα

Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ

Κυματική Φύση του φωτός και εφαρμογές. Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Κυματική Φύση του φωτός και εφαρμογές Περίθλαση Νέα οπτικά μικροσκόπια Κρυσταλλογραφία ακτίνων Χ Επαλληλία κυμάτων Διαφορά φάσης Δφ=0 Ενίσχυση Δφ=180 Απόσβεση ΣΥΜΒΟΛΗ Φως διερχόμενο από δύο σχισμές 1801,

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

ˆ Αποτελείται από σωµατίδια, τα οποία πληρούν το µέσο χωρίς διάκενα. ˆ Τα σωµατίδια αυτά συνδέονται µεταξύ τους µε ελαστικές δυνάµεις.

ˆ Αποτελείται από σωµατίδια, τα οποία πληρούν το µέσο χωρίς διάκενα. ˆ Τα σωµατίδια αυτά συνδέονται µεταξύ τους µε ελαστικές δυνάµεις. 6 Κύµατα 6.1 Ορισµός του κύµατος Κύµα ονοµάζεται η διάδοση µιας διαταραχής που µεταφέρει ενέργεια και ορµή µε στα- ϑερή ταχύτητα. Εαστικό µέσο ονοµάζεται κάθε υικό µέσο που, για όγους απότητας, δεχόµαστε

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 2ο: ΜΗΧΑΝΙΚΑ- ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΕΚΦΕ ΕΥΒΟΙΑΣ. ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΕΠΙΛΟΓΗ ΟΜΑΔΑΣ ΜΑΘΗΤΩΝ ΓΙΑ ΤΗΝ 13 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2015 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ

ΕΚΦΕ ΕΥΒΟΙΑΣ. ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΕΠΙΛΟΓΗ ΟΜΑΔΑΣ ΜΑΘΗΤΩΝ ΓΙΑ ΤΗΝ 13 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2015 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΕΚΦΕ ΕΥΒΟΙΑΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΓΙΑ ΤΗΝ ΕΠΙΛΟΓΗ ΟΜΑΔΑΣ ΜΑΘΗΤΩΝ ΓΙΑ ΤΗΝ 13 η ΕΥΡΩΠΑΪΚΗ ΟΛΥΜΠΙΑΔΑ ΕΠΙΣΤΗΜΩΝ EUSO 2015 Διάρκεια: 60 min ΣΑΒΒΑΤΟ 06/12/2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Μαθητές: Σχολική Μονάδα 1.

Διαβάστε περισσότερα

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά

Ασκήσεις (Ηλεκτρισμός-Οπτική) Κ.-Α. Θ. Θωμά Ασκήσεις (Ηλεκτρισμός-Οπτική) Ηλεκτρισμός 6 η. Ηλεκτρόνια κινούμενα με ταχύτητα 0 m / sec εισέρχονται σε χώρο μαγνητικού πεδίου όπου διαγράφουν κυκλική τροχιά ακτίνας 0.0m. Να βρεθεί η ένταση του μαγνητικού

Διαβάστε περισσότερα

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34

Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική ΚΕΦΑΛΑΙΟ 34 Γεωμετρική Οπτική Γνωρίζουμε τα βασικά Δηλαδή, πως το φως διαδίδεται και αλληλεπιδρά με σώματα διαστάσεων πολύ μεγαλύτερων από το μήκος κύματος. Ανάκλαση: Προσπίπτουσα ακτίνα

Διαβάστε περισσότερα

14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

14. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. ΜΕΘΟ ΟΙ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΜΗ-ΓΡΑΜΜΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ 4. Η µέθοδος Newn-Raphsn για µη γραµµική ανάυση Η γενική εξίσωση ισορροπίας ενός µη γραµµικού συστήµατος γράφεται: F ( ) = F q () όπου είναι οι εσωτερικές

Διαβάστε περισσότερα

Επειδή η χορδή ταλαντώνεται µε την θεµελιώδη συχνότητα θα ισχύει. Όπου L είναι το µήκος της χορδής. Εποµένως, =2 0,635 m 245 Hz =311 m/s

Επειδή η χορδή ταλαντώνεται µε την θεµελιώδη συχνότητα θα ισχύει. Όπου L είναι το µήκος της χορδής. Εποµένως, =2 0,635 m 245 Hz =311 m/s 1. Μία χορδή κιθάρας µήκους 636 cm ρυθµίζεται ώστε να παράγει νότα συχνότητας 245 Hz, όταν ταλαντώνεται µε την θεµελιώδη συχνότητα. (a) Βρείτε την ταχύτητα των εγκαρσίων κυµάτων στην χορδή. (b) Αν η τάση

Διαβάστε περισσότερα

Μηχανικά Κύματα. ελαστικού μέσου διάδοσης στο οποίο διαδίδεται το κύμα.

Μηχανικά Κύματα. ελαστικού μέσου διάδοσης στο οποίο διαδίδεται το κύμα. Μηχανικά Κύματα Τρέχον αρμονικό κύμα Ταχύτητα διάδοσης: υ δ = Δx Δt απόσταση που διένυσε το κύμα χρονικό διάστημα για την απόσταση αυτή ΣΗΜΑΝΤΙΚΟ: η ταχύτητα διάδοσης εξαρτάται ΜΟΝΟ από τις ιδιότητες του

Διαβάστε περισσότερα

Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ο ΘΕΜΑ Α. Ερωτήσεις ποαπής επιογής ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. Το μήκος κύματος δύο κυμάτων που συμβάουν και δημιουργούν στάσιμο κύμα είναι. Η απόσταση μεταξύ δύο διαδοχικών δεσμών του στάσιμου κύματος θα είναι α..

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΟΠΤΙΚΗΣ Μάθημα προς τους ειδικευόμενους γιατρούς στην Οφθαλμολογία, Στο Κ.Οφ.Κ.Α. την 18/11/2003. Υπό: Δρος Κων. Ρούγγα, Οφθαλμιάτρου. 1. ΑΝΑΚΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Όταν μια φωτεινή ακτίνα ή

Διαβάστε περισσότερα

Περίθλαση Fraunhofer. απλή σχισμή, πολλαπλές σχισμές, κυκλική οπή

Περίθλαση Fraunhofer. απλή σχισμή, πολλαπλές σχισμές, κυκλική οπή Περίθλαση Fraunhofer απλή σχισμή, πολλαπλές σχισμές, κυκλική οπή ETY-4 C. C. Katsidis 3 Συμβολή από δύο σχισμές ETY-4 C. C. Katsidis 3 Εποικοδομητική συμβολή l -l =nλ, n=,,,3, ETY-4 C. C. Katsidis 3 3

Διαβάστε περισσότερα

Θέµα Α: Ερωτήσεις πολλαπλής επιλογής

Θέµα Α: Ερωτήσεις πολλαπλής επιλογής Θέµα : Ερωτήσεις ποαπής επιογής Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις ποαπής επιογής αρκεί να γράψετε τον αριθμό της ερώτησης και δεξιά από αυτόν το γράμμα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK

ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK ΤΟ ΦΩΣ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΕΩΣ ΚΑΙ Η ΣΤΑΘΕΡΑ ΤΟΥ PLANK To 1900 o Plank εισήγαγε την υπόθεση ότι το φως εκπέμπεται από την ύη με τη μορφή κβάντων ενέργειας hν. Το 190 ο Einstein επέκτεινε αυτή την ιδέα προτείνοντας

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. 5. Τα θετικά φορτισµένα σωµάτια α αποκλίνουν προς µία κατεύθυνση µε τη βοήθεια ενός µαγνητικού πεδίου. Άρα σωστή απάντηση είναι η δ.

ΑΠΑΝΤΗΣΕΙΣ. 5. Τα θετικά φορτισµένα σωµάτια α αποκλίνουν προς µία κατεύθυνση µε τη βοήθεια ενός µαγνητικού πεδίου. Άρα σωστή απάντηση είναι η δ. ΑΠΑΝΤΗΣΕΙΣ Ζήτηµα 1ο 1. Σωστή απάντηση είναι η δ.. Η ενέργεια σύνδεσης ανά νουκεόνιο µετράει τη σταθερότητα του πυρήνα. Όσο µεγαύτερη είναι η ενέργεια σύνδεσης ανά νουκεόνιο, τόσο σταθερότερος είναι ο

Διαβάστε περισσότερα

ΟΝΟΜΑ * A * HM/NIA ΤΕΣΤ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΗ ΦΩΤΟΣ ΔΙΑΔΟΣΗ ΤΟΥ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ

ΟΝΟΜΑ * A * HM/NIA ΤΕΣΤ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΗ ΦΩΤΟΣ ΔΙΑΔΟΣΗ ΤΟΥ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ ΟΝΟΜΑ * A * HM/NIA ΤΕΣΤ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΗ ΦΩΤΟΣ ΔΙΑΔΟΣΗ ΤΟΥ ΣΕ ΟΠΤΙΚΑ ΜΕΣΑ Κυκώστε τις σωστές απαντήσεις στις παρακάτω ερωτήσεις ποαπής επιογής (6Χ2 = 12 μονάδες): 1) Ποια από

Διαβάστε περισσότερα

Ζήτημα ) Κατά την διάδοση ενός αρμονικού μηχανικού κύματος : 2) α) Οι υπέρυθρες ακτίνες παράγονται από την επιβράδυνση ηλεκτρονίων που

Ζήτημα ) Κατά την διάδοση ενός αρμονικού μηχανικού κύματος : 2) α) Οι υπέρυθρες ακτίνες παράγονται από την επιβράδυνση ηλεκτρονίων που - 1 - Επώνυμο.. Όνομα.. Αγρίνιο 1/2/2015. Να επιλεγεί η σωστή πρόταση Ζήτημα 1 0 1) Κατά την διάδοση ενός αρμονικού μηχανικού κύματος : α) Η συχνότητα ταλάντωσης της πηγής είναι διαφορετική της συχνότητας

Διαβάστε περισσότερα

Εργαστήριο Οπτικής ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ. Μάκης Αγγελακέρης 2010

Εργαστήριο Οπτικής ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ. Μάκης Αγγελακέρης 2010 ΠΕΡΙΘΛΑΣΗ ΤΟΥ ΦΩΤΟΣ Μάκης Αγγελακέρης 2010 Σκοπός της άσκησης Να μπορείτε να περιγράψετε ποιοτικά το φαινόμενο της περίθλασης του φωτός καθώς επίσης να μπορείτε να διακρίνετε τις συνθήκες που χαρακτηρίζουν

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0. ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιιαακκήή 1133 ΙΙααννοουυααρρί ίίοουυ 001133 Θέμα 1 ο (Μονάδες 5) 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος

Διαβάστε περισσότερα

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες:

Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: ΔΙΑΓΩΝΙΣΜΑ ΚΥΜΑΤΩΝ (1) ΘΕΜΑ 1 ο Ονοματεπώνυμο. Α) Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες: 1) Κατά τη διάδοση ενός κύματος μεταφέρεται ενέργεια και ορμή, αλλά όχι ύλη. 2) Σε

Διαβάστε περισσότερα

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,,

γ) Να σχεδιάσετε τις γραφικές παραστάσεις απομάκρυνσης - χρόνου, για τα σημεία Α, Β και Γ, τα οποία απέχουν από το ελεύθερο άκρο αντίστοιχα,, 1. Κατά μήκος μιας ελαστικής χορδής μεγάλου μήκους που το ένα άκρο της είναι ακλόνητα στερεωμένο, διαδίδονται δύο κύματα, των οποίων οι εξισώσεις είναι αντίστοιχα: και, όπου και είναι μετρημένα σε και

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ

ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ ΔΡ. ΒΑΣΙΛΕΙΟΣ ΜΠΙΝΑΣ Τμήμα Φυσικής, Πανεπιστήμιο Κρήτης Email: binasbill@iesl.forth.gr Thl. 1269 Crete Center for Quantum Complexity and Nanotechnology Department of Physics, University

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα

ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ. Ανάκλαση. Κάτοπτρα. Διάθλαση. Ολική ανάκλαση. Φαινόμενη ανύψωση αντικειμένου. Μετατόπιση ακτίνας. Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ Ανάκλαση Κάτοπτρα Διάθλαση Ολική ανάκλαση Φαινόμενη ανύψωση αντικειμένου Μετατόπιση ακτίνας Πρίσματα ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ - Ανάκλαση Επιστροφή σε «γεωμετρική οπτική» Ανάκλαση φωτός ονομάζεται

Διαβάστε περισσότερα

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική

Διαβάστε περισσότερα

Διάθλαση φωτεινής δέσμης σε διαφανές υλικό (Επιβεβαίωση, αξιοποίηση του νόμου Snell)

Διάθλαση φωτεινής δέσμης σε διαφανές υλικό (Επιβεβαίωση, αξιοποίηση του νόμου Snell) Διάθλαση φωτεινής δέσμης σε διαφανές υλικό (Επιβεβαίωση, αξιοποίηση του νόμου Snell) 1. Σκοπός Αξιοποιώντας τις μετρήσεις των γωνιών πρόσπτωσης, διάθλασης α και δ αντίστοιχα μίας πολύ στενής φωτεινής δέσμης

Διαβάστε περισσότερα

Πείραμα - 4 Σύζευξη Οπτικών Ινών με Laser

Πείραμα - 4 Σύζευξη Οπτικών Ινών με Laser Πείραμα - 4 Σύζευξη Οπτικών Ινών με Laser Σύζευξη Οπτικών Ινών με Laser 1 1.1 Αρχή της άσκησης Σκοπός αυτής της άσκησης είναι η εξοικείωση των φοιτητών με τις Οπτικές Ίνες (optical fibers) μέσω διαφόρων

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 3 ΑΠΑΝΤΗΣΕΙΣ Επιµέεια: Οµάδα Φυσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 3 ευτέρα, Μαΐου 3 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις Α-Α3 να γράψετε στο τετράδιό σας τον αριθμό της

Διαβάστε περισσότερα

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του

Διαβάστε περισσότερα

Περίθλαση και εικόνα περίθλασης

Περίθλαση και εικόνα περίθλασης Περίθλαση και εικόνα περίθλασης Η περίθλαση αναφέρεται στη γενική συμπεριφορά των κυμάτων, τα οποία διαδίδονται προς όλες τις κατευθύνσεις καθώς περνούν μέσα από μια σχισμή. Ο όρος εικόνα περίθλασης είναι

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Στις ερωτήσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπα το γράμμα που αντιστοιχεί στη φράση η οποία συμπηρώνει σωστά

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό

ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό ΚΕΦΑΛΑΙΟ 2 Ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικά κύματα 7. Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό κύμα; 7.2 Ποιες εξισώσεις περιγράφουν την ένταση του ηλεκτρικού

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό.

ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012. Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό. ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 Α) γ Α) β Α)γ Α4) γ Α5) α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό ΘΕΜΑ Β n a n ( ύ) a n (), ( ύ ) n

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 Μελέτη φακών

ΑΣΚΗΣΗ 8 Μελέτη φακών Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 8 Μελέτη φακών 8. Απαραίτητα όργανα και υλικά. Οπτική τράπεζα.. Πέτασμα. 3. Συγκεντρωτικός φακός. 4. Φωτεινή πηγή. 5. Διάφραγμα με δακτύλιο και οπή. 6. Φίλτρο κόκκινο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. ψ =0,5 ημ 2π 8t 10 x, u=8 πσυν 2π 8t 5

ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. ψ =0,5 ημ 2π 8t 10 x, u=8 πσυν 2π 8t 5 ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ 1. Σ ένα σημείο Ο ενός ελαστικού μέσου υπάρχει μια πηγή κυμάτων, η οποία τη χρονική στιγμή t =0 αρχίζει να εκτελεί απλή αρμονική ταλάντωση με εξίσωση y=0,5 ημω t (y σε m, t σε sec). Στη

Διαβάστε περισσότερα

ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2001 Τρίτη, 12 Ιουνίου 2001 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ

ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2001 Τρίτη, 12 Ιουνίου 2001 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 00 Τρίτη, Ιουνίου 00 ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

Συμβολή φωτός. Συμβολή κυμάτων. Κυματική Οπτική: Συμβολή του φωτός. Συμβολή. Περίθλαση Πόλωση

Συμβολή φωτός. Συμβολή κυμάτων. Κυματική Οπτική: Συμβολή του φωτός. Συμβολή. Περίθλαση Πόλωση Κυματική Οπτική Κυματική Οπτική: Συμβοή του ωτός Συμβοή Περίθαση Πόωση Συμβοή ωτός Συμβοή κυμάτων Αναγκαίες συνθήκες παρατήρησης στάσιμης συμβοής ορατού ωτός (~ 4-7 10-7 m): Σύμωνες πηγές Μονοχρωματικές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΕΦΑΛΑΙΟ 1 - ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Σύμφωνα με την ηλεκτρομαγνητική θεωρία του Maxwell, το φως είναι εγκάρσιο ηλεκτρομαγνητικό κύμα. Η θεωρία αυτή α. δέχεται ότι κάθε φωτεινή πηγή εκπέμπει φωτόνια.

Διαβάστε περισσότερα

ΣΥΜΒΟΛΟΜΕΤΡΙΑ FABRY - PEROT

ΣΥΜΒΟΛΟΜΕΤΡΙΑ FABRY - PEROT ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΟΠΤΙΚΗΣ - ΟΠΤΟΗΛΕΚΤΡΟΝΙΚΗΣ & LASER ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ & Τ/Υ FSR ν ΙΜ ΣΥΜΒΟΛΟΜΕΤΡΙΑ FABRY - PEROT Γ. Μήτσου εκέµβριος 007 Α. Θεωρία Εισαγωγή Το συµβοόµετρο Fabry-Perot σχεδιάστηκε

Διαβάστε περισσότερα

Οπτική Μικροκυμάτων ΜΚ 2

Οπτική Μικροκυμάτων ΜΚ 2 Οπτική Μικροκυμάτων ΜΚ Εισαγωγή Τα Μικροκύματα είναι ηεκτρομαγνητικά κύματα με μήκος κύματος 0.cm

Διαβάστε περισσότερα

Φυσικά Μεγέθη Μονάδες Μέτρησης

Φυσικά Μεγέθη Μονάδες Μέτρησης ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΤΑΞΗ: Α Λυκείου Προσανατολισμού 1,3,4. ΚΕΦΑΛΑΙΑ ΕΝΟΤΗΤΕΣ ΜΑΘΗΣΙΑΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ Οι μαθητές και οι μαθήτριες να είναι σε θέση να: ΑΝΤΙΣΤΟΙΧΑ

Διαβάστε περισσότερα

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας

Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Η συμβολή του φωτός και η μέτρηση του μήκους κύματος μονοχρωματικής ακτινοβολίας Α. Στόχοι Οι μαθητές: Να παρατηρήσουν το φαινόμενο της συμβολής / περίθλασης Να αξιοποιήσουν το φαινόμενο της περίθλασης

Διαβάστε περισσότερα

γ. είναι η απόσταση που διανύει το κύμα σε χρόνο T, όπου Τ η περίοδος του κύματος.

γ. είναι η απόσταση που διανύει το κύμα σε χρόνο T, όπου Τ η περίοδος του κύματος. ΕΥΤΕΡΟ ΚΕΦΑΛΑΙΟ ΚΥΜΑΤΑ Ερωτήσεις ποαπής επιογής Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις ποαπής επιογής αρκεί να γράψετε στο φύο απαντήσεων τον αριθμό της ερώτησης και δεξιά από αυτόν το γράμμα

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, July 2009 ΠΕΙΡΑΜΑΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 2 ΔΕΙΚΤΗΣ ΔΙΑΘΛΑΣΗΣ ΚΡΥΣΤΑΛΛΟΥ (MCA) Σκοπός αυτού του πειράματος είναι ο υπολογισμός του δείκτη διάθλασης ενός κρυσταλλικού υλικού (mica). ΟΡΓΑΝΑ ΚΑΙ ΥΛΙΚΑ Επιπρόσθετα από τα υλικά

Διαβάστε περισσότερα

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β)

( ) ( ) ( ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Β. κ Θέµα 1 ο Α. Έστω η συνάρτηση f ορισµένη και συνεχής στο διάστηµα [ α,β ] µε f ( α) f ( β) Μαθηματικά Κατεύθυνσης Γ Λυκείου κ Θέµα 1 ο Α. Έστω η συνάρτηση ορισµένη και συνεχής στο διάστηµα [ α,β ] µε ( α) ( β). Να δειχτεί ότι για κάθε αριθµό η µεταξύ των ( α ) και ( β ) υπάρχει ένας τουάχιστον

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ LASER ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΚΥΜΑΤΟΣ ΜΟΝΟΧΡΩΜΑΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΚΟΠΟΙ H εξάσκηση στην παρατήρηση και περιγραφή φαινοµένων, όπως το φαινόµενο της συµβολής των κυµάτων H παρατήρηση των αποτελεσµάτων της διάδοσης της

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο

ΑΝΤΙΚΕΙΜΕΝΟ ΘΕΜΑ 1 Ο ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» 2 ο κεφάλαιο: «ΚΥΜΑΤΑ» 1.1 Ένα σώµα εκτελεί ταυτόχρονα δύο γραµµικές αρµονικές ταλαντώσεις γύρω από την ίδια θέση ισορροπίας και µε την ίδια διεύθυνση, που περιγράφονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας

Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Μέτρηση μήκους κύματος μονοχρωματικής ακτινοβολίας Όταν φωτεινή δέσμη φωτός συναντά στην πορεία του εμπόδια ή περνάει από λεπτές σχισμές υφίσταται περίθλαση, φτάνει δηλαδή σε σημεία που δεν προβλέπονται

Διαβάστε περισσότερα

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση. Επαναηπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα, που αντιστοιχεί στη σωστή απάντηση.. Μια δέσµη

Διαβάστε περισσότερα

Ο χρόνος που απαιτείται για να διανύσει το κύµα κάθε τµήµα της χορδής είναι

Ο χρόνος που απαιτείται για να διανύσει το κύµα κάθε τµήµα της χορδής είναι ΜΑΘΗΜΑ 213 ΟΜΑ Α Β ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΡΙΘΜΟΣ ΤΑΥΤΟΤΗΤΑΣ: ΗΜΕΡΟΜΗΝΙΑ:6 ΕΚΕΜΒΡΙΟΥ 2010 ΘΕΜΑ 1 2 3 4 5 6 7 8 ΒΑΘΜΟΣ ΚΥΜΑΤΙΚΗ Θέµα 1 ο. Τρία κοµµάτια χορδής, καθένα µήκους L, δένονται µεταξύ τους από άκρο σε

Διαβάστε περισσότερα

Τρίτη, 4 Ιουνίου 2002 ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ

Τρίτη, 4 Ιουνίου 2002 ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΘΝΙΚΕΣ ΕΞΕΤΣΕΙΣ 00 Τρίτη, 4 Ιουνίου 00 ΓΕΝΙΚΗΣ ΠΙ ΕΙΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜ Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΣΤΟΝ ΕΛΕΥΘΕΡΟ ΧΩΡΟ

ΜΕΤΑΔΟΣΗ ΣΤΟΝ ΕΛΕΥΘΕΡΟ ΧΩΡΟ ΔΙΑΔΟΣΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΤΥΠΟΛΟΓΙΟ ΜΕΤΑΔΟΣΗ ΣΤΟΝ ΕΛΕΥΘΕΡΟ ΧΩΡΟ ΒΑΣΙΚΑ ΜΕΓΕΘΗ ΓΕΝΙΚΕΣ ΣΧΕΣΕΙΣ Φασική ταχύτητα διάδοσης των Η/Μ κυμάτων στο μέσο διάδοσης c [m s - ] Για τον αέρα: c 0 8 m s - Συχνότητα

Διαβάστε περισσότερα

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ

ΠΟΥ ΔΙΑΔΙΔΕΤΑΙ ΤΟ ΦΩΣ 1 ΦΩΣ Στο μικρόκοσμο θεωρούμε ότι το φως έχει δυο μορφές. Άλλοτε το αντιμετωπίζουμε με τη μορφή σωματιδίων που ονομάζουμε φωτόνια. Τα φωτόνια δεν έχουν μάζα αλλά μόνον ενέργεια. Άλλοτε πάλι αντιμετωπίζουμε

Διαβάστε περισσότερα

6.8 Συµβολή Κυµάτων. y = y 1 + y 2 +... http : //perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου

6.8 Συµβολή Κυµάτων. y = y 1 + y 2 +... http : //perif ysikhs.wordpress.com 55 Μιχάλης Ε. Καραδηµητριου 6.8 Συµβοή Κυµάτων Οταν δύο ή περισσότερα κύµατα διαδίδονται ταυτόχρονα στο ίδιο εαστικό µέσο έµε ότι συµβάουν. Εχει διαπιστωθεί ότι για την κίνηση των σωµατιδίων του µέσου τα κύµατα ακοουθούν την αρχή

Διαβάστε περισσότερα

3. Εγκάρσιο γραμμικό κύμα που διαδίδεται σε ένα ομογενές ελαστικό μέσον και κατά την

3. Εγκάρσιο γραμμικό κύμα που διαδίδεται σε ένα ομογενές ελαστικό μέσον και κατά την ΚΥΜΑΤΑ 1. Μια πηγή Ο που βρίσκεται στην αρχή του άξονα, αρχίζει να εκτελεί τη χρονική στιγμή 0, απλή αρμονική ταλάντωση με εξίσωση 6 10 ημ S. I.. Το παραγόμενο γραμμικό αρμονικό κύμα διαδίδεται κατά τη

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα