Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011"

Transcript

1 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 14 ΙΟΥΛΙΟΥ 2011 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ. 12 µ.) Σελίδα 1 από 16

2 1. Μία ισόβια ασφάλιση προβλέπει την καταβολή στο θάνατο κατά τη διάρκεια αεροπορικού ατυχήµατος. Αν ο θάνατος συµβεί από άλλα ατυχήµατα, καταβάλλονται ενώ αν ο θάνατος συµβεί από άλλα αίτια, πλην ατυχηµάτων, καταβάλλονται εδοµένου ότι: a. Το ασφαλισµένο κεφάλαιο καταβάλλεται τη στιγµή του θανάτου. b. µ (1) = 1 / , όπου (1) αντιστοιχεί σε θάνατο κατά τη διάρκεια αεροπορικού ατυχήµατος. c. µ (2) = 1 / , όπου (2) αντιστοιχεί σε θάνατο από άλλα ατυχήµατα. d. µ (3) = 1 / , όπου (3) αντιστοιχεί σε θάνατο από άλλα αίτια, πλην ατυχηµάτων. e. δ = 0,06 Να βρεθεί το εφάπαξ καθαρό ασφάλιστρο για αυτή την ασφάλιση. (Α) 450 (Β) 460 (Γ) 470 ( ) 480 (Ε) Σε µια ισόβια ασφάλιση µε ασφαλισµένο κεφάλαιο 1 σε άτοµο (41), το ασφαλισµένο κεφάλαιο καταβάλλεται στο τέλος του έτους του θανάτου. ίδονται: a. i = 0,05 b. p 40 = 0,9972 c. A 41 A 40 = 0,00822 d. 2 A 41 2 A 40 = 0,00433 e. Z είναι η τυχαία µεταβλητή της παρούσας αξίας της παροχής για αυτή την ασφάλιση. Να υπολογιστεί η διασπορά της τυχαίας µεταβλητής Ζ. (Α) 0,023 (Β) 0,024 (Γ) 0,025 ( ) 0,026 (Ε) 0,027 Σελίδα 2 από 16

3 3. Σε έναν πολλαπλό πίνακα µε 2 αίτια εξόδου, δίδονται: a. µ (1) (t) = 0,2 * µ (τ) (t), t > 0 b. µ (τ) (t) = k * t 2, t > 0 c. q (1) = 0,04 (2) Να υπολογιστεί το 2 q (Α) 0,45 (Β) 0,53 (Γ) 0,58 ( ) 0,64 (Ε) 0,73 4. Για ένα πλήθος ασφαλιστηρίων συµβολαίων πλήρως διακριτών ισοβίων ασφαλίσεων κεφαλαίου 1 σε ανεξάρτητες ζωές (), δίδονται: a. i = 0,06 b. A = 0,24905 c. 2 A = 0,09476 d. π = 0,025, όπου π είναι το ετήσιο καθαρό ασφάλιστρο για κάθε ασφαλιστήριο συµβόλαιο e. Η ζηµιά κάθε συµβολαίου (τ.µ. παρούσα αξία παροχής µείον παρούσα αξία µελλοντικών ασφαλίστρων) υπολογίζεται µε βάση το ασφάλιστρο π f. Φ(1,645) = 0,95 Χρησιµοποιώντας την προσέγγιση της κανονικής κατανοµής, να υπολογιστεί το ελάχιστο πλήθος των παραπάνω ασφαλιστηρίων συµβολαίων που πρέπει να εκδοθούν ώστε η πιθανότητα θετικής συνολικής ζηµιάς από όλα τα ασφαλιστήρια που θα εκδοθούν να µην υπερβαίνει το 5%. (Α) 25 (Β) 27 (Γ) 29 ( ) 31 (Ε) 33 Σελίδα 3 από 16

4 5. ίδονται ότι: a. Η θνησιµότητα ακολουθεί το νόµο DeMoivre µε ω = 105. b. (45) και (65) είναι ανεξάρτητες ζωές. Να υπολογιστεί το e 45: 65 o (Α) 33 (Β) 34 (Γ) 35 ( ) 36 (Ε) Για µία ειδική πλήρως συνεχή ισόβια ασφάλιση κεφαλαίου 1 στον τελευταίο επιζήσαντα (last survivor) των () και (y), δίδονται: a. T() και T(y) είναι ανεξάρτητες τ.µ. b. µ (t) = µ y (t) = 0,07, t > 0 c. δ = 0,05 d. Τα ασφάλιστρα καταβάλλονται µέχρι τον πρώτο θάνατο. Να υπολογιστεί το ετήσιο καθαρό ασφάλιστρο για αυτή την ασφάλιση. (Α) 0,04 (Β) 0,07 (Γ) 0,08 ( ) 0,10 (Ε) 0,14 7. Για µία συνεχώς αυξανόµενη ισόβια ασφάλιση στον (), δίδονται: a. Η ένταση θνησιµότητας είναι σταθερή b. δ = 0,06 2 c. A = 0, 25 Να υπολογιστεί το ( IA ) (Α) 2,889 (Β) 3,125 (Γ) 4,000 ( ) 4,667 (Ε) 5,500 Σελίδα 4 από 16

5 8. Για µία ισόβια ασφάλιση κεφαλαίου 1 σε άτοµο (), δίδονται: a. Η ένταση θνησιµότητας είναι µ (t) b. Οι παροχές καταβάλλονται τη στιγµή του θανάτου c. δ = 0,06 d. A = 0, 60 Να υπολογιστεί η τροποποιηµένη αναλογιστική παρούσα για αυτή την ασφάλιση υποθέτοντας ότι η µ (t) αυξάνεται κατά 0,03 για όλα τα t και η δ µειώνεται κατά 0,03. (Α) 0,5 (Β) 0,6 (Γ) 0,7 ( ) 0,8 (Ε) 0,9 9. Για µία ειδική πλήρως διακριτή ισόβια ασφάλιση σε άτοµο (), δίδονται: a. Το ασφαλισµένο κεφάλαιο είναι 0 τον πρώτο χρόνο και µετά. b. Τα ασφάλιστρα καταβάλλονται ισόβια c. q = 0,05 d. v = 0,90 e. a& & = 5, 00 f. 10V = 0,20 g. 10 V είναι το µαθηµατικό απόθεµα στο τέλος του 10 ου έτους αυτής της ασφάλισης Να υπολογιστεί το 10 V. (Α) 795 (Β) (Γ) ( ) (Ε) Σελίδα 5 από 16

6 10. ίδονται ότι: a. Η θνησιµότητα ακολουθεί το νόµο DeMoivre µε ω = 100 b. i = 0,05 c. a 40 = 17, 58, a 50 = 18, 71, a 60 = 19, 40 Να υπολογιστεί το 10V ( A40 ) (Α) 0,075 (Β) 0,077 (Γ) 0,079 ( ) 0,081 (Ε) 0, Για µία ειδική πλήρως συνεχή ισόβια ασφάλιση σε άτοµο (65), δίδονται: a. Το ασφαλισµένο κεφάλαιο τη χρονική στιγµή t είναι b t = 1000 * e 0,04t, t>0 b. Το ετήσιο ασφάλιστρο είναι σταθερό και καταβάλλεται ισοβίως c. µ 65 (t) = 0,02, t > 0 d. δ = 0,04 Να υπολογιστεί το µαθηµατικό απόθεµα στο τέλος του 2 ου έτους αυτής της ειδικής ασφάλισης. (Α) 0 (Β) 29 (Γ) 37 ( ) 61 (Ε) 83 Σελίδα 6 από 16

7 12. Για µία ειδική ισόβια συνταξιοδοτική ασφάλιση, αναβαλλόµενη για 3 έτη σε άτοµο (), δίδονται: a. i = 0,04 b. Η σύνταξη προκαταβάλλεται και το ποσό της 1 ης ετήσιας σύνταξης είναι c. Το ποσό της ετήσιας σύνταξης των επόµενων ετών αυξάνει κατά 4% το χρόνο d. εν υπάρχει παροχή θανάτου κατά τη διάρκεια της περιόδου αναβολής των 3 ετών e. Τα ασφάλιστρα είναι σταθερά και καταβάλλονται στην αρχή καθενός από τα 3 πρώτα έτη f. e = 11,05 g. k kp 0,99 0,98 0,97 Να υπολογιστεί το ετήσιο καθαρό ασφάλιστρο. (Α) (Β) (Γ) ( ) (Ε) () και (y) είναι δύο ζωές µε την ίδια αναµενόµενη θνησιµότητα. ίδονται: a. P = P y = 0,1 b. P = 0, 06, όπου P είναι το ετήσιο καθαρό ασφάλιστρο για µία πλήρως διακριτή y y ισόβια ασφάλιση στο (y) c. d = 0,06 Να υπολογιστεί το P y, το ετήσιο καθαρό ασφάλιστρο για µία πλήρως διακριτή ισόβια ασφάλιση στο (y). (Α) 0,14 (Β) 0,16 (Γ) 0,18 ( ) 0,20 (Ε) 0,22 Σελίδα 7 από 16

8 14. Άτοµο ηλικίας 40 ετών κέρδισε σε αναλογιστική λοταρία. Αντί να λάβει το έπαθλο εφάπαξ, επέλεξε να λάβει την αναλογιστικά ισοδύναµη επιλογή µε ετήσιες δόσεις ύψους K (στην αρχή κάθε έτους) εγγυηµένη για 10 έτη και ισόβια από εκεί και µετά. ίδονται: a. i = 0,04 b. A 40 = 0,30 c. A 50 = 0,35 d. A 0, 09 = 40:10 1 Να υπολογιστεί το K. (Α) 538 (Β) 541 (Γ) 545 ( ) 548 (Ε) 551 ( τ ) 15. Σε ένα πολλαπλό πίνακα µε 2 αίτια εξόδου και l , ισχύει: 40 = (1) q (2) q (1) q 40 0,24 0,10 0,25 y 41 0,20 2y q (2) Να βρεθεί το l ( τ ) 42 (Α) 800 (Β) 820 (Γ) 840 ( ) 860 (Ε) 880 Σελίδα 8 από 16

9 16. ίδονται: a. K = πιθανότητα ο () να πεθαίνει στο πρώτο 4µηνο του έτους, µε την υπόθεση Balducci b. L = πιθανότητα ο () πεθαίνει στο τελευταίο 8µηνο του έτους, µε την υπόθεση της οµοιόµορφης κατανοµής των θανάτων c. l = 9 d. l +1 = 6 Να υπολογιστεί το K+L (Α) 19/63 (Β) 1/3 (Γ) 23/63 ( ) 11/28 (Ε) 23/ Αν l = 10 * (100 ) 2, να υπολογιστεί το Var(T()) (Α) (100-) 2 /18 (Β) (100-)/3 (Γ) (100-) 3 /6 ( ) (100-) 2 /6 (Ε) (100-) 2 /3 18. Με την υπόθεση της οµοιόµορφης κατανοµής των θανάτων σε κάθε έτος ηλικίας, να ( I A) ( IA) εκφραστεί το µε συναρτήσεις επιτοκίου A (Α) (i-δ)/δ 2 (Β) (1+i)/δ (Γ) (i/δ) * (i/δ 1) ( ) 1/d 1/δ (Ε) (1+i)/δ i/δ 2 Σελίδα 9 από 16

10 19. Υ είναι η τ.µ. της παρούσας αξίας µίας ισόβιας προκαταβλητέας ράντας ποσού 1 ανά έτος σε άτοµο (). Να υπολογιστεί η διασπορά της Y, δεδοµένων των παρακάτω: a. a& & = 10 2 b. a& & = 6 c. i = 1/24 (Α) 10 (Β) 36 (Γ) 100 ( ) 106 (Ε) Μία πλήρως συνεχής ισόβια ασφάλιση ποσού 1 σε άτοµο (). ίδονται τα ακόλουθα: T L = v P( A ) * at µε την υπόθεση ότι η ένταση θνησιµότητας µ() ισούται µε µ για όλα τα και η ένταση ανατοκισµού ισούται µε δ. Να υπολογιστεί η Var(L). (Α) (Β) (Γ) ( ) (Ε) µ/(µ+2δ) µ/(µ+δ) (µ+δ)/(µ+2δ) (µ+2δ)/(2µ+2δ) (2µ+δ)/(2µ+2δ) 21. Ο () αγοράζει ισόβια ασφάλιση µε αρχικό κεφάλαιο θανάτου 1. Το τεχνικό επιτόκιο ισούται µε 4%. Το ετήσιο καθαρό ασφάλιστρο και το κεφάλαιο θανάτου αυξάνει κάθε χρόνο κατά 4%. Το κεφάλαιο θανάτου καταβάλλεται στο τέλος του έτους του θανάτου. Να υπολογιστεί το καθαρό ασφάλιστρο στην αρχή του 1 ου έτους. (Α) v 2 /(1+e ) (Β) v/(1+e ) (Γ) 1/(1+e ) ( ) (1+i)/(1+e ) (Ε) (1+i) 2 /(1+e ) Σελίδα 10 από 16

11 22. Για µία ειδική 2ετή µικτή ασφάλιση σε άτοµο () µε εφάπαξ ασφάλιστρο, δίδονται: a. Το κεφάλαιο θανάτου καταβάλλεται στο τέλος του έτους του θανάτου και ισούται µε b 1 = και b 2 = b. Το κεφάλαιο λήξης ισούται µε c. Τα έξοδα καταβάλλονται στην αρχή του έτους: d. i = 0,04 i. Προµήθειες ίσες µε 3% του εµπορικού ασφαλίστρου ii. Λοιπά έξοδα πρόσκτησης ίσα µε 2% του εµπορικού ασφαλίστρου iii. Λοιπά έξοδα διαχείρισης είναι 15 τον 1 ο χρόνο και 2 το 2 ο χρόνο e. p = 0,9 p +1 = 0,8 Να υπολογιστεί το εφάπαξ εµπορικό ασφάλιστρο, χρησιµοποιώντας την αρχή της ισοδυναµίας. (Α) 670 (Β) 940 (Γ) ( ) (Ε) ίδονται: a. T(30) και Τ(40) είναι ανεξάρτητες τ.µ. b. Οι θάνατοι των (30) και (40) κατανέµονται οµοιόµορφα σε κάθε έτος ηλικίας c. q 30 = 0,4 και q 40 = 0,6 q 0, ,5:40,5 (Α) 0,0134 (Β) 0,0166 (Γ) 0,0221 ( ) 0,0275 (Ε) 0,0300 Σελίδα 11 από 16

12 Να χρησιµοποιηθούν οι ακόλουθες πληροφορίες στις ερωτήσεις 24 26: a. Οι (30) και (50) είναι ανεξάρτητες ζωές και για κάθε µία η ένταση θνησιµότητας είναι σταθερή και ίση µε µ = 0,05 b. δ = 0, Να υπολογιστεί το 10 q 30: 50 (Α) 0,155 (Β) 0,368 (Γ) 0,424 ( ) 0,632 (Ε) 0, Να υπολογιστεί το 30: 50 o e (Α) 10 (Β) 20 (Γ) 30 ( ) 40 (Ε) 50 A 26. Να υπολογιστεί το 30: 1 50 (Α) 0,23 (Β) 0,38 (Γ) 0,51 ( ) 0,64 (Ε) 0,77 Σελίδα 12 από 16

13 27. Σε µια 20ετή µικτή ασφάλιση ποσού σε άτοµο (40), το ασφάλιστρο πληρώνεται µε 10 ετήσιες δόσεις και δίδονται: a. Τα έξοδα είναι: 1 ο έτος Επόµενα έτη % του Ανά Συµβόλαιο % του Ανά Συµβόλαιο Ασφαλίστρου Ασφαλίστρου Προµήθειες 25% - 5% - Λοιπά Έξοδα 4% - 4% - Πρόσκτησης Έξοδα ιαχείρισης b. Τα έξοδα καταβάλλονται στην αρχή του κάθε έτους. c. Το κεφάλαιο θανάτου καταβάλλεται τη στιγµή του θανάτου. Να βρεθεί το ετήσιο εµπορικό ασφάλιστρο χρησιµοποιώντας την αρχή της ισοδυναµίας. (Α) ( 1000A 40: a )/( 0,96a& 0,25 0, 05a& ) 40:9 40:10 (Β) ( 1000A 40: a )/( 0,91a& 0,2) 40:9 40: 10 (Γ) ( 1000A 40: a )/( 0,96a& 0,25 0, 05a& ) 40: 19 40:10 ( ) ( 1000A 40: a )/( 0,91a& 0,2) 40:19 (Ε) ( 1000A 40: a )/( 0,95a& 0,2 0, 04a& ) 40:9 40:10 40:10 40:9 40:9 40:20 Σελίδα 13 από 16

14 28. Να βρεθεί το m 40 (m ο κεντρικός δείκτης θνησιµότητας για το έτος ηλικίας [,+1]), όταν s( ) = 1, (Α) 0, (Β) 0, (Γ) 0, ( ) 0, (Ε) 0, Η ένταση θνησιµότητας είναι σταθερή και ίση µε µ στο [,+1], να βρεθεί το α(). (Α) 1/µ q /p (Β) 1/µ p /q (Γ) 1/µ + p /q ( ) 1/µ + q /p (Ε) µ + p /q 30. Αν l 40+t * µ 40+t = 20 * t 3, 0 t 1 m 40 = 0,05 Να βρεθεί το l 40 (Α) 99 (Β) 100 (Γ) 101 ( ) 96 (Ε) Μια προκαταβλητέα ράντα στον () µε εφάπαξ ασφάλιστρο G προβλέπει, σε περίπτωση θανάτου του () µέσα στο έτος t (t = 1, 2, ) από την αγορά της ράντας, την καταβολή στο τέλος του έτους του θανάτου του ποσού G-t (t το άτοκο άθροισµα των δόσεων της ράντας που εισπράχθηκαν πριν επέλθει ο θάνατος). Αν το G είναι ακέραιος n+1και a& & = 16,4 A 1 = 0, 2 ( IA ) 1 = 0, 4 Να βρεθεί το G. : n : n (Α) 17 (Β) 18 (Γ) 19 ( ) 20 (Ε) 21 Σελίδα 14 από 16

15 32. Αν ισχύουν 1 = 0, 01 P np =0,035 P +n = 0,05 P = 0, 05 : n Να βρεθεί το i. (Α) 0,042 (Β) 0,035 (Γ) 0,031 ( ) 0,028 (Ε) 0,025 : n 33. Αν i = 0 και µε την υπόθεση της οµοιόµορφης κατανοµής των θανάτων σε κάθε έτος (4) ηλικίας να βρεθεί το & a& (Α) e + 3/4 (Β) e + 1/2 (Γ) e 1/2 ( ) e 3/4 (Ε) e 1/4 34. Ποιο από τα παρακάτω είναι ο τύπος για τον υπολογισµό P +1 από το P (Α) (Β) (Γ) P v P P vq v P P vq v ( P + d) ( ) P vq ( P + d) v P (Ε) P vq ( P v ( P + d) + d) Σελίδα 15 από 16

16 35. Αν η θνησιµότητα είναι σταθερή και ίση µε µ = µ για όλα τα και 2 Α = 10/13, i = 1/10, να βρεθεί η πιθανότητα p (Α) 0,091 (Β) 0,063 (Γ) 0,079 ( ) 0,054 (Ε) 0, Αν η θνησιµότητα ακολουθεί το νόµο DeMoivre µε ω = 100 και δ = 0,04, τότε να βρεθεί το P ( A40 ) (Α) 0,0265 (Β) 0,0244 (Γ) 0,0226 ( ) 0,0185 (Ε) 0,0172 Σελίδα 16 από 16

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΜΒΑΝΤΑ ΖΩΗΣ & ΘΑΝΑΤΟΥ ΙΟΥΛΙΟΣ 0 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΛΙΟΥ 0 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 4 ΙΟΥΛΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. μ.)

Διαβάστε περισσότερα

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115 . Η πιθανότητα ο () να ζήσει για τουλάχιστον χρόνια είναι κατά 0% μεγαλύτερη από την πιθανότητα ο (+) να ζήσει για τουλάχιστον χρόνια. Αν / 0, 4, 9 / 0, και 0, 48 να βρεθεί η τιμή του Α) 0,048 Β) 0,88

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e =

ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e = ΑΣΚΗΣΕΙΣ Να συµπληρωθεί ο παρακάτω πίνακας 47 48 49 50 5 l 348480 299692 d 43306 q 0.0 0.2 0.5 2 3 4 5 Η ένταση θνησιµότητας µ +t, 0 t, αλλάζει σε µ +t - c, όπου το c είναι θετικός σταθερός αριθµός. Να

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1. Μια ισόβια ασφάλιση, με ασφαλισμένο κεφάλαιο ύψους 1, πληρωτέο τη χρονική στιγμή του θανάτου του (x), περιλαμβάνει πρόσθετη κάλυψη (rider),

Διαβάστε περισσότερα

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις

Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: () 1. Α. Με επιτόκιο i=3,5% και πίνακα θνησιμότητας με q 108 =1, υπολογίστε το A και το (), χρησιμοποιώντας την υπόθεση της ομοιόμορφης κατανομής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #17: Σειρές Πληρωμών ή Ράντες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 8/7/206 Πρωί: Απόγευμα: X Θεματική ενότητα: Βδ Ασφαλίσεις Υγείας Ερώτημα (0 μονάδες) i) Έχουμε ένα συμβόλαιο σοβαρών ασθενειών με 2-έτη διάρκεια, με τις εξής πληροφορίες: ο

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ 9 π.μ. π.μ. .......

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 13/7/2015 Πρωί: x Απόγευμα: Θεματική ενότητα: Ποσοτικοποίηση και Αναλογιστική Διαχείριση των Κινδύνων και Φερεγγυότητα 1. Στο πλαίσιο φερεγγυότητα ΙΙ, όσον αφορά στη δραστηριότητα

Διαβάστε περισσότερα

ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΖΩΗΣ ΣΥΝΔΕΔΕΜΕΝΟΥ ΜΕ ΕΠΕΝΔΥΣΕΙΣ ΕΥΕΛΙΚΤΗ ΕΘΝΙΚΗ ΣΥΝΤΑΞΗ

ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΖΩΗΣ ΣΥΝΔΕΔΕΜΕΝΟΥ ΜΕ ΕΠΕΝΔΥΣΕΙΣ ΕΥΕΛΙΚΤΗ ΕΘΝΙΚΗ ΣΥΝΤΑΞΗ ΕΕΣ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΖΩΗΣ ΣΥΝΔΕΔΕΜΕΝΟΥ ΜΕ ΕΠΕΝΔΥΣΕΙΣ ΕΥΕΛΙΚΤΗ ΕΘΝΙΚΗ ΣΥΝΤΑΞΗ ΑΡΘΡΟ 1ο : ΟΡΙΣΜΟΙ 1. Εσωτερικό Μεταβλητό Κεφάλαιο Ευέλικτης Εθνικής Σύνταξης (ΕΜΚΕΕΣ). Το Κεφάλαιο που διατηρεί η

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12

Διαβάστε περισσότερα

Πρόγραμμα Easy Plan άμεση σύνταξη

Πρόγραμμα Easy Plan άμεση σύνταξη Πρόγραμμα Easy Plan άμεση σύνταξη 7 ος 2017 Η σημερινή κατάσταση 2 Η ανάγκη μας για συμπληρωματική σύνταξη 3 Θα σας ενδιέφερε να μπορούσατε να μετατρέψετε σήμερα ένα μέρος από τις διαθέσιμες αποταμιεύσεις

Διαβάστε περισσότερα

Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ )

Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ ) Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ. 10442) Η Εταιρία αναλαμβάνει την υποχρέωση να καταβάλλει στον Ασφαλισμένο, εάν αυτός βρίσκεται

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΦΕΒΡΟΥΑΡΙΟΥ 2009

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΦΕΒΡΟΥΑΡΙΟΥ 2009 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 009 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 004 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Αν δ t,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 18 ΙΟΥΛΙΟΥ 2014

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 18 ΙΟΥΛΙΟΥ 2014 ΕΝΩΣΗ ΑΝΑΛΟΓΙΣΤΩΝ ΕΛΛΑΔΟΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 18 ΙΟΥΛΙΟΥ 2014 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12 μ. 2 μ.μ.) 1. (5 βαθμοί) Δίνεται ο ακόλουθος πίνακας με εμπειρικά δεδομένα από

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2010 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 9 ΙΟΥΛΙΟΥ 2010

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2010 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 9 ΙΟΥΛΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 010 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 9 ΙΟΥΛΙΟΥ 010 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ. 11 π.μ.) 1. Το πλήθος των αποζημιώσεων

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΣΥΝΤΑΞΙΟ ΟΤΙΚΑ ΣΧΗΜΑΤΑ ΚΑΙ ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2008

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΣΥΝΤΑΞΙΟ ΟΤΙΚΑ ΣΧΗΜΑΤΑ ΚΑΙ ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2008 ΣΥΝΤΑΞΙΟ ΟΤΙΚΑ ΣΧΗΜΑΤΑ ΚΑΙ ΚΟΙΝΩΝΙΚΗ ΑΣΦΑΛΙΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2008 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (09:00 :00) . Για

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. π.μ.) . Μια

Διαβάστε περισσότερα

Προπαρασκευαστικό μάθημα: Αναλογισμός. Κ. Πολίτης. Πανεπιστήμιο Πειραιά, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Οκτώβριος 2014

Προπαρασκευαστικό μάθημα: Αναλογισμός. Κ. Πολίτης. Πανεπιστήμιο Πειραιά, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Οκτώβριος 2014 ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Προπαρασκευαστικό μάθημα: Αναλογισμός Κ. Πολίτης Πανεπιστήμιο Πειραιά, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Οκτώβριος 2014 1 Τι είναι αναλογισμός;

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: //017 Πρωί: x Απόγευμα: Θεματική ενότητα: Ποσοτικοποίηση και Αναλογιστική Διαχείριση των Κινδύνων και Φερεγγυότητα ΚΑΛΗ ΕΠΙΤΥΧΙΑ! 1/10 1. Για ποια από τα παρακάτω έχει καθήκον

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 8/7/2016 Πρωί: Χ Απόγευμα: Θεματική ενότητα: Βδ Ασφαλίσεις Υγείας 1. Σε ένα χαρτοφυλάκιο managed care προϊόντων, το 2015 συνέβησαν οι εξής ζημιές: Ζημιές ( ) 1.500 10.000 40.000

Διαβάστε περισσότερα

ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΤΙΜΟΛΟΓΙΟ Ρ23

ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΤΙΜΟΛΟΓΙΟ Ρ23 ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΤΙΜΟΛΟΓΙΟ Ρ23 ΑΡΘΡΟ 1ο : ΟΡΙΣΜΟΙ «ΑΣΦΑΛΙΖΟΜΕΝΟ ΠΟΣΟ»:Το κεφάλαιο επιβίωσης και το κεφάλαιο θανάτου όπου: α. «Κεφάλαιο επιβίωσης» είναι το ποσό της μηνιαίας σύνταξης

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 20/2/2017 Πρωί: Απόγευμα: Θεματική ενότητα: Βα, Συνταξιοδοτικά Σχήματα & Κοινωνική ασφάλιση 1/18 1.Ποια από τα παρακάτω αληθεύουν ; α) Οι οικονομικές και οι δημογραφικές μεταβλητές

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ ΚΑΙ ΥΓΕΙΑΣ

ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ ΚΑΙ ΥΓΕΙΑΣ ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ ΚΑΙ ΥΓΕΙΑΣ Αριθ.Πρωτ. 147532/4-10-2010 Προς τις Περιφερειακές Υποδιευθύνσεις, Περιφερειακούς Τομείς, Υποκαταστήματα, τις Επιθεωρήσεις και τις λοιπές Μονάδες Παραγωγής.

Διαβάστε περισσότερα

Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας

Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας Ράντες Χρήση ραντών Έννοια ράντας Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας Χρήση περιοδικών κεφαλαίων (ράντες) Σχηματισμός κεφαλαίου με ισόποσες καταθέσεις Εξόφληση χρέους με δόσεις Μηνιαίες

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 5/7/2016 Πρωί: X Απόγευμα: Θεματική ενότητα: Ασφαλίσεις Κατά Ζημιών Τα θέματα 1 και 2 σχετίζονται με το παρακάτω τρίγωνο σωρευτικών πληρωθεισών ζημιών Παράμετρος Bondy = 0,7

Διαβάστε περισσότερα

XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ

XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ Στο παρελθόν ασχοληθήκαµε µε τα µαθηµατικά αποθέµατα ("αποθέµατα καθαρού ασφαλίστρου" και µε τα αποθέµατα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ ΚΙΝΔΥΝΟΣ ΜΑΚΡΟΖΩΙΑΣ ΑΚΡΙΒΟΣ ΓΙΑΝΝΗΣ 331/ 2009 127 ΕΠΙΒΛΕΠΟΝ : Π.

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΤΙΜΟΛΟΓΗΣΗ ΑΣΦΑΛΙΣΤΗΡΙΩΝ ΖΩΗΣ ΜΕ ΕΓΓΥΗΜΕΝΕΣ ΑΠΟΔΟΣΕΙΣ - ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Κωνσταντίνος Παπαγιαννόπουλος ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1 γ Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1. Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής

Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής Αλέξανδρος Α. Ζυµπίδης Λέκτορας Οικονοµικού Πανεπιστηµίου Αθηνών Αναλογιστής τ. Πρόεδρος της Εθνικής Αναλογιστικής Αρχής Αθήνα, Φεβρουάριος 2009 ii Π Ε Ρ Ι Ε Χ Ο

Διαβάστε περισσότερα

Παρουσίαση ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ. 5 ος

Παρουσίαση ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ. 5 ος Παρουσίαση ΕΞΑΣΦΑΛΙΖΩ 5 ος 2016 1 Η αγορά σήμερα αποτελεί μια δύσκολη εξίσωση 2 Οι πελάτες αναζητούν ευκαιρίες σε περιβάλλον αρνητικών αποδόσεων επιτοκίων...τρόπους για να αυξήσουν την αποτελεσματικότητα

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ F3W.PR09 Όνομα: Επίθετο: Ημερομηνία: //07 Πρωί: Απόγευμα: x Θεματική ενότητα: Ποσοτικοποίηση και Αναλογιστική Διαχείριση των Κινδύνων και Φερεγγυότητα ΚΑΛΗ ΕΠΙΤΥΧΙΑ! F3W.PR09 /5 F3W.PR09 Θέμα α) Ποια η

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ SMART PENSION 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ

ΔΕΙΓΜΑ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ SMART PENSION 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ SMART PENSION 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ Η πλήρης Σύμβαση Ασφάλισης με την MetLife A.E.A.Z. αποτελείται από: Τους Γενικούς και Ειδικούς Όρους του Ασφαλιστηρίου, Τη Σελίδα Ειδικών

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 10: ΡΑΝΤΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commos εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-)

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) 5. Ράντες 5.1.1.Ορισμοι- Κατηγορίες Ράντα ονομάζουμε σειρά κεφαλαίων που καταβάλλονται ανά ισα χρονικά διαστήματα. Για τα κεφάλαια αυτά ισχύει

Διαβάστε περισσότερα

ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ & ΥΓΕΙΑΣ Αριθ.Πρωτ : / Αθήνα, 30/9/2011

ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ & ΥΓΕΙΑΣ Αριθ.Πρωτ : / Αθήνα, 30/9/2011 ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ & ΥΓΕΙΑΣ Αριθ.Πρωτ : 122966/28-09-2011 Αθήνα, 30/9/2011 Προς Τις Περιφερειακές Υποδιευθύνσεις, τα Υποκαταστήματα, τους Περιφερειακούς Τομείς, τις Επιθεωρήσεις και τις

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ACCELERATOR PLUS

ΠΡΟΓΡΑΜΜΑ ACCELERATOR PLUS ΠΡΟΓΡΑΜΜΑ ACCELERATOR PLUS Το Accelerator Plus είναι το νέο πρόγραμμα Unit Linked περιοδικών καταβολών της MetLife Alico AEAZ. Θα αντικαταστήσει τα βασικά Προγράμματα ScoreInvest και Accelerator καθώς

Διαβάστε περισσότερα

2. Στα Ταμεία Επαγγελματικής Ασφάλισης οι εισφορές καταβάλλονται :

2. Στα Ταμεία Επαγγελματικής Ασφάλισης οι εισφορές καταβάλλονται : 1. Προκειμένου να είναι επαρκής, στο μέτρο του ευλόγως προβλεπτού, η εκτίμηση για το ύψος της ελάχιστης ελεύθερης περιουσίας που πρέπει να διαθέτει ασφαλιστική εταιρία, πρέπει να ληφθούν υπόψη οι κίνδυνοι

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 01 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 01 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ. π.μ.)

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ Απλός Τόκος Εφαρμόζεται στις βραχυπρόθεσμες οικονομικές πράξεις, συνήθως μέχρι τριών μηνών ή το πολύ μέχρι ενός έτους.

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 6 Μέθοδοι Αντασφάλισης σε οµαδικές ασφαλίσεις (Group Business)... 9 7 Παραδείγµατα... 10

ΠΕΡΙΕΧΟΜΕΝΑ. 6 Μέθοδοι Αντασφάλισης σε οµαδικές ασφαλίσεις (Group Business)... 9 7 Παραδείγµατα... 10 ΠΕΡΙΕΧΟΜΕΝΑ ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ - ΑΝΤΑΣΦΑΛΙΣΗ... 2 1 Risk premium (yearly renewable term) reinsurance... 2 2 Risk premium with financing commission... 5 3 Risk premium with profit sharing... 6 4 Άλλες αναλογικές

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ FX LINK 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ

ΔΕΙΓΜΑ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ FX LINK 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ FX LINK 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ Η πλήρης Σύμβαση Ασφάλισης με την MetLife Alico A.E.A.Z. αποτελείται από: Τους Γενικούς και Ειδικούς Όρους του Ασφαλιστηρίου, Τη Σελίδα Ειδικών

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 12 ΙΟΥΛΙΟΥ 2011

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 12 ΙΟΥΛΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 0 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΙΟΥΛΙΟΥ 0 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ. π.μ.) . Το πλήθος των αποζημιώσεων N

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ F3W.PR09 Όνομα: Επίθετο: Ημερομηνία: 7/0/07 Πρωί: Απόγευμα: Θεματική ενότητα: Αναλογιστικά Πρότυπα Επιβίωσης Ερώτηση Εάν η τυχαία μεταβλητή Τ έχει συνάρτηση πυκνότητας f ep 3 3 να υπολογίσετε το 90 ο εκατοστημόριο

Διαβάστε περισσότερα

Easy Plan Εφάπαξ ασφαλίστρου

Easy Plan Εφάπαξ ασφαλίστρου Easy Plan Εφάπαξ ασφαλίστρου κωδ.10446 8 ος 2017 1 Η αγορά σήμερα αποτελεί μια δύσκολη εξίσωση 2 Οι πελάτες αναζητούν ευκαιρίες σε περιβάλλον αρνητικών αποδόσεων επιτοκίων...τρόπους για να αυξήσουν την

Διαβάστε περισσότερα

ΘΕΜΑ : Καθορισμός των τεχνικών παραμέτρων σχετικά με τη τις παροχές του ΕΤΕΑ ΑΠΟΦΑΣΗ Ο ΥΦΥΠΟΥΡΓΟΣ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΚΑΙ ΠΡΟΝΟΙΑΣ

ΘΕΜΑ : Καθορισμός των τεχνικών παραμέτρων σχετικά με τη τις παροχές του ΕΤΕΑ ΑΠΟΦΑΣΗ Ο ΥΦΥΠΟΥΡΓΟΣ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ, Αθήνα, 7 / 06 /06 ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ ΓΕΝ. ΓΡΑΜ. ΚΟΙΝΩΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΓΕΝ. Δ/ΝΣΗ ΚΟΙΝ. ΑΣΦΑΛΙΣΗΣ Δ5-Δ/ΝΣΗ ΠΡΟΣΘΕΤΗΣ ΑΣΦΑΛΙΣΗΣ ΓΕΝ. Δ/ΝΣΗ

Διαβάστε περισσότερα

PENSION MASTER PLAN ΣΥΝΤΑΞΗ MΕ ΕΓΓΥΗΜΕΝΟ ΕΠΙΤΟΚΙΟ

PENSION MASTER PLAN ΣΥΝΤΑΞΗ MΕ ΕΓΓΥΗΜΕΝΟ ΕΠΙΤΟΚΙΟ ΒΑΣΙΚΗ ΠΑΡΟΧΗ PENSION MASTER PLAN ΣΥΝΤΑΞΗ MΕ ΕΓΓΥΗΜΕΝΟ ΕΠΙΤΟΚΙΟ ΑΣΦΑΛΙΣΤΗΡΙΟ Το παρόν Ασφαλιστήριο συνάπτεται σύμφωνα με την ισχύουσα Νομοθεσία και όλα τα παρακάτω αποτελούν αναπόσπαστο μέρος του: οι Γενικοί

Διαβάστε περισσότερα

Β E ln { 1+0,8i. 17. H συνάρτηση κόστους ασφαλιστικής επιχείρησης Α είναι f(t)=500t για

Β E ln { 1+0,8i. 17. H συνάρτηση κόστους ασφαλιστικής επιχείρησης Α είναι f(t)=500t για 1. Ποια από τα παρακάτω περιλαμβάνονται υποχρεωτικά στα στοιχεία που χορηγούνται πριν τη σύναψη ασφαλιστικής σύμβασης : Ι. το κράτος-μέλος καταγωγής της επιχείρησης ή το κράτος-μέλος στο οποίο βρίσκεται

Διαβάστε περισσότερα

ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ

ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΆΡΘΡΟ 1ο: ΕΞΑΓΟΡΑ Το ασφαλιστήριο μπορεί να εξαγορασθεί : α. όταν πρόκειται για συμβόλαια διάρκειας πληρωμής ασφαλίστρων μέχρι και δέκα (10) χρόνων, μετά την πληρωμή

Διαβάστε περισσότερα

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ

ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ ΜΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΙΣΗ Τα μη γραμμικά μοντέλα έχουν την πιο κάτω μορφή: η μορφή αυτή μοιάζει με τη μορφή που έχουμε για τα γραμμικά μοντέλα ( δηλαδή η παρατήρηση Y i είναι το άθροισμα της αναμενόμενης

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ FW.PR09 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: x Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 /6 FW.PR09 Θέμα ο α) Η παρούσα αξία μιας διηνεκούς ράντας που πληρώνει

Διαβάστε περισσότερα

Προτεινόμενος για Ασφάλιση : ΣΤΡΑΪΤΟΥΡΗΣ ΘΑΝΑΣΗΣ Ημερομηνία Γέννησης : 7/12/1979 Ηλικία : 33

Προτεινόμενος για Ασφάλιση : ΣΤΡΑΪΤΟΥΡΗΣ ΘΑΝΑΣΗΣ Ημερομηνία Γέννησης : 7/12/1979 Ηλικία : 33 Κεντρικά Γραφεία: Λεωφ. Κηφισίας 119, 151 24, Μαρούσι, Αθήνα Τηλ: 210 87.87.000 e-mail: contact@metlifealico.gr www.metlifealico.gr Σπύρος Γεωργιάδης Ασφαλιστικός Σύμβουλος Γραφείο Πωλήσεων DSF 581 Δ.:

Διαβάστε περισσότερα

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία

Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία ΚΕΦΑΛΑΙΟ 4 ΠΙΝΑΚΕΣ ΠΟΛΛΑΠΛΩΝ ΚΙΝ ΥΝΩΝ (MULTIPLE DECREMENT TABLES) Στον πίνακα επιβίωσης θεωρούµε τον αριθµό ζώντων στην κάθε ηλικία αρχίζοντας από µια οµάδα γεννήσεων ζώντων που αποτελεί την ρίζα του πίνακα

Διαβάστε περισσότερα

UNIT LINKED ΠΕΡΙΕΧΟΜΕΝΑ GENERALI JUNIOR PRINCIPLE ΕΘΝΙΚΗ ΑΣΦΑΛΙΣΤΙΚΗ ΕΘΝΙΚΗ ΚΑΙ ΠΑΙ Ι ALLIANZ ALL KID ALICO SCORE INVEST

UNIT LINKED ΠΕΡΙΕΧΟΜΕΝΑ GENERALI JUNIOR PRINCIPLE ΕΘΝΙΚΗ ΑΣΦΑΛΙΣΤΙΚΗ ΕΘΝΙΚΗ ΚΑΙ ΠΑΙ Ι ALLIANZ ALL KID ALICO SCORE INVEST UNIT LINKED ΠΕΡΙΕΧΟΜΕΝΑ GENERALI ΕΘΝΙΚΗ ΑΣΦΑΛΙΣΤΙΚΗ ALLIANZ ALICO JUNIOR PRINCIPLE ΕΘΝΙΚΗ ΚΑΙ ΠΑΙ Ι ALL KID SCORE INVEST UL ΕΠΕΝ ΥΣΗ Είδος προγράµµατος Unit Linked Unit Linked Τρόπος καταβολής Επενδυτικές

Διαβάστε περισσότερα

Ξανασχεδιάστε το Συνταξιοδοτικό σας πρόγραµµα

Ξανασχεδιάστε το Συνταξιοδοτικό σας πρόγραµµα Ξανασχεδιάστε το Συνταξιοδοτικό σας πρόγραµµα Pension Re-Planning Ξανασχεδιάστε το Συνταξιοδοτικό σας πρόγραμμα Απευθύνεται σε όσους θέλουν να δημιουργήσουν, ή να συνεχίσουν ένα πρόγραμμα Ισόβιας Εγγυημένης

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΜΕΛΕΙΑ: ρ. ΑΠΟΣΤΟΛΟΣ ΑΣΙΛΑΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013 1 ΠΕΡΙΓΡΑΜΜΑ ΥΛΗΣ 1. Απλός τόκος 2. Ανατοκισµός 3. Ράντες 4. άνεια 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ι ΕΑ ΤΟΥ ΕΠΙΤΟΚΙΟΥ

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 12 ΙΟΥΛΙΟΥ 2011

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 12 ΙΟΥΛΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 0 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΙΟΥΛΙΟΥ 0 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ ( μ. μ.μ.) . (6 βαθμοί) Μια ασφαλιστική

Διαβάστε περισσότερα

Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος

Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος Κεφάλαιο 5 5. Ράντες 5.. Εισαγωγικές έννοιες και ορισμοί Είναι σύνηθες στις μέρες μας να καταθέτουν οι γονείς κάποιο ποσό για τα παιδιά τους σε μηνιαία, εξαμηνιαία ή ετήσια βάση έτσι ώστε να συσσωρευτεί

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 9: Διηνεκείς Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Κεφάλαιο Δάνεια Γενικά Δάνεια εξοφλητέα εφάπαξ Αν οι τόκοι καταβάλλονται στο τέλος κάθε περιόδου

Κεφάλαιο Δάνεια Γενικά Δάνεια εξοφλητέα εφάπαξ Αν οι τόκοι καταβάλλονται στο τέλος κάθε περιόδου Κεφάλαιο 6 6. Δάνεια 6.. Γενικά Το σημαντικότερο και σίγουρα το πιο διαδεδομένο κεφάλαιο των οικονομικών μαθηματικών είναι αυτό των δανείων. Κράτη, δημόσιοι οργανισμοί, επιχειρήσεις αλλά και ιδιώτες χρειάζονται

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 013 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ.

Διαβάστε περισσότερα

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t

S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΘΝΗΣΙΜΟΤΗΤΑΣ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014

Διαβάστε περισσότερα

ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x)

ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x) ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ Ο πρώτος νόµος θνησιµότητας οφείλεται στον D Moivr, είναι γραµµικός, s(), ω ω, ή ισοδύναµα κ( ω ), ω και κ θετική σταθερά, και φυσικά δεν έχει καµιά εφαρµογή

Διαβάστε περισσότερα

ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ

ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Κ Ι ΚΟΥΤΣΟΠΟΥΛΟΣ ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ Ι & ΙΙ (ΠΕΡΙΛΗΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΤΩΝ ΠΑΡΑ ΟΣΕΩΝ ΚΑΙ ΑΣΚΗΣΕΙΣ) ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ FW.PR09 Όνομα: Επίθετο: Ημερομηνία: 4//07 Πρωί: x Απόγευμα: Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 / FW.PR09. Δίνεται ένταση ανατοκισμού t = την ράντα s 0.0t για 0

Διαβάστε περισσότερα

Γενικοί Όροι Ασφαλιστηρίου

Γενικοί Όροι Ασφαλιστηρίου ENTYΠO 1600 Γενικοί Όροι Ασφαλιστηρίου ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ Η πλήρης Σύμβαση Ασφάλισης με την MetLife Α.Ε.Α.Ζ. αποτελείται από: Τους Γενικούς και Ειδικούς Όρους του Ασφαλιστηρίου,

Διαβάστε περισσότερα

ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ

ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ Άρθρο 1. Εισαγωγικές Παρατηρήσεις Η παρούσα ασφάλιση συνάπτεται σύµφωνα µε: την ισχύουσα Ασφαλιστική Νοµοθεσία, τις ασφαλιστικές παροχές και τα εγκεκριµένα τιµολόγια, τους παρόντες

Διαβάστε περισσότερα

ΤΡΟΠΟΠΟΙΗΣΕΙΣ ΚΑΤΑΣΤΑΤΙΚΟΥ

ΤΡΟΠΟΠΟΙΗΣΕΙΣ ΚΑΤΑΣΤΑΤΙΚΟΥ ΤΡΟΠΟΠΟΙΗΣΕΙΣ ΚΑΤΑΣΤΑΤΙΚΟΥ ΠΡΟΣΟΧΗ ΕΝΗΜΕΡΩΤΙΚΟ ΔΕΝ ΕΠΙΣΤΡΦΕΤΑΙ ΣΤΟ ΤΑΜΕΙΟ 2009 ΤΡΟΠΟΠΟΙΗΣΕΙΣ ΚΑΤΑΣΤΑΤΙΚΟΥ (Όπως εγκρίθηκαν από τη Γενική Συνέλευση των μελών της 11ης Μαρτίου 2009) 1. O Κλάδος Εφάπαξ επεκτείνεται

Διαβάστε περισσότερα

MetLife Οδηγούμε με σιγουριά στον δρόμο της ανάπτυξης

MetLife Οδηγούμε με σιγουριά στον δρόμο της ανάπτυξης MetLife Οδηγούμε με σιγουριά στον δρόμο της ανάπτυξης Γιατί να κάνω Αποταμιευτικό / Συνταξιοδοτικό Πρόγραμμα Αύξηση Ορίων Συνταξιοδότησης Μείωση Βασικών Συντάξεων Μείωση Επικουρικών Συντάξεων Αξιοπρεπείς

Διαβάστε περισσότερα

Γενικοί Όροι Ασφαλιστηρίου

Γενικοί Όροι Ασφαλιστηρίου ENTYΠO 1600 Γενικοί Όροι Ασφαλιστηρίου ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ Η πλήρης Σύμβαση Ασφάλισης με την MetLife Alico Α.Ε.Α.Ζ. αποτελείται από: Τους Γενικούς και Ειδικούς Όρους του

Διαβάστε περισσότερα

EΛΟΤ ΕΝ ISO/IEC 17024:2012

EΛΟΤ ΕΝ ISO/IEC 17024:2012 ΕΙ ΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΠΙΣΤΟΠΟΙΗΣΗΣ ΠΡΟΣΩΠΩΝ ΓΙΑ ΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ ΚΑΙ EΛΟΤ ΕΝ ISO/IEC 17024:2012 Έκδοση 01 / 01-10-2014 Σελ. 1 από 11 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. ΕΙΣΑΓΩΓΗ...

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΣΦΑΛΕΙΕΣ ΖΩΗΣ ΜΕ ΣΥΜΜΕΤΟΧΗ ΣΤΑ ΚΕΡ Η ΤΩΝ ΕΠΕΝ ΥΣΕΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΠΟΘΕΜΑΤΙΚΩΝ ΤΗΣ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΤΑΙΡΕΙΑΣ Ιωάννης Ηλία Τσίγκανος ΕΡΓΑΣΙΑ Που υποβλήθηκε

Διαβάστε περισσότερα

Γενικοί Όροι Ασφαλιστηρίου

Γενικοί Όροι Ασφαλιστηρίου ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ Η πλήρης Σύμβαση Ασφάλισης με την MetLife Α.Ε.Α.Ζ. αποτελείται από: Τους Γενικούς και Ειδικούς Όρους του Ασφαλιστηρίου, Τη Σελίδα Ειδικών Στοιχείων,

Διαβάστε περισσότερα

ΑΣΦΑΛΙΣΤΗΡΙΟ : GL/60000540 ΚΩ ΙΚΟΣ : 0-8000

ΑΣΦΑΛΙΣΤΗΡΙΟ : GL/60000540 ΚΩ ΙΚΟΣ : 0-8000 ΑΣΦΑΛΙΣΤΗΡΙΟ : GL/60000540 ΚΩ ΙΚΟΣ : 0-8000 ΣΥΜΒΑΛΛΟΜΕΝΟΣ : Λ.Ε.Α.. ΠΡΟΣΘΕΤΗ ΠΡΑΞΗ GL/3146/02 Το ανωτέρω Οµαδικό Ασφαλιστήριο Συµβόλαιο ανανεώνεται και τροποποιείται όπως ακολουθεί, µε την παρούσα Πρόσθετη

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 25 ΙΑΝΟΥΑΡΙΟΥ 2005

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 25 ΙΑΝΟΥΑΡΙΟΥ 2005 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 5 ΙΑΝΟΥΑΡΙΟΥ 005 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Την /,

Διαβάστε περισσότερα

Ανάλυση Νεκρού Σημείου Σημειώσεις

Ανάλυση Νεκρού Σημείου Σημειώσεις Ανάλυση Νεκρού Σημείου Σημειώσεις ΜΑΘΗΜΑ: ΣΥΣΤΗΜΑΤΑ ΔΙΟΙΚΗΣΗΣ Αν. Καθ. Δημήτρης Ασκούνης Εισαγωγή Η ανάλυση του Νεκρού Σημείου είναι ένα σπουδαίο χρηματοοικονομικό μέσο και αποτελεί βασικά μια αναλυτική

Διαβάστε περισσότερα

ΣΥΜΜΕΤΟΧΕΣ ΚΑΙ ΕΠΕΝΔΥΣΕΙΣ ΣΕ ΣΥΝΔΕΔΕΜΕΝΕΣ ΚΑΙ ΛΟΙΠΕΣ ΣΥΜΜΕΤΟΧΙΚΟΥ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΕΠΙΧΕΙΡΗΣΕΙΣ

ΣΥΜΜΕΤΟΧΕΣ ΚΑΙ ΕΠΕΝΔΥΣΕΙΣ ΣΕ ΣΥΝΔΕΔΕΜΕΝΕΣ ΚΑΙ ΛΟΙΠΕΣ ΣΥΜΜΕΤΟΧΙΚΟΥ ΕΝΔΙΑΦΕΡΟΝΤΟΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΚΑΤΑΣΤΑΣΗ ΙΣΟΛΟΓΙΣΜΟΥ ΕΝΕΡΓΗΤΙΚΟ Συνολικά Ποσά A ΟΦΕΙΛΟΜΕΝΟ ΚΕΦΑΛΑΙΟ 0,00 Οφειλόμενο Κεφάλαιο (από το οποίο έχει κληθεί να καταβληθεί στις επόμενες χρήσεις ποσό σε Ευρώ) 0,00 Β EΞΟΔΑ ΕΓΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΑΫΛΑ

Διαβάστε περισσότερα

Βασικοί Όροι Προγραμμάτων Ασφαλίσεων Υγείας και Περίθαλψης. Προστατεύουν Άριστα το Πολυτιμότερο Αγαθό της Ζωής μας

Βασικοί Όροι Προγραμμάτων Ασφαλίσεων Υγείας και Περίθαλψης. Προστατεύουν Άριστα το Πολυτιμότερο Αγαθό της Ζωής μας Βασικοί Όροι Προγραμμάτων Ασφαλίσεων Υγείας και Περίθαλψης Προστατεύουν Άριστα το Πολυτιμότερο Αγαθό της Ζωής μας Τα προγράμματα ασφαλίσεων υγείας της INTERAMERICAN καλύπτουν κάθε βαθμίδα υγειονομικού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ & ΟΡΓΑΝΩΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : Ρόλος και λειτουργία της ιδιωτικής ασφάλισης ΕΙΣΗΓΗΤΗΣ : ΔΟΥΝΙΑΣ ΓΕΩΡΓΙΟΣ ΣΠΟΥΔΑΣΤΗΣ

Διαβάστε περισσότερα

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα.

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα. Ράντες Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχική αξία - Τελική αξία - Δόση ή όρος - Περίοδος - Διάρκεια (συμβολισμός n) - Διηνεκής ράντα - Κλασματική ράντα ΣΤΟΧΟΙ - Κατανόηση και χρησιμοποίηση

Διαβάστε περισσότερα

Άσκηση 2 Να βρεθεί η πραγματοποιηθείσα απόδοση της προηγούμενης άσκησης, υποθέτοντας ότι τα τοκομερίδια πληρώνονται δύο φορές το έτος.

Άσκηση 2 Να βρεθεί η πραγματοποιηθείσα απόδοση της προηγούμενης άσκησης, υποθέτοντας ότι τα τοκομερίδια πληρώνονται δύο φορές το έτος. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 4 Άσκηση 1 Η ομολογία Β εκδόθηκε στο παρελθόν και έχει διάρκεια ζωής τρία ακόμη έτη. Η ονομαστική της αξία είναι 1.000 ευρώ και το εκδοτικό της επιτόκιο είναι 8%. Τα τοκομερίδια πληρώνονται

Διαβάστε περισσότερα

ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ AΡΘΡΟ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ

ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ AΡΘΡΟ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ AΡΘΡΟ 1. ΕΙΣΑΓΩΓΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Η παρούσα ασφάλιση συνάπτεται σύμφωνα με: Την ισχύουσα Ασφαλιστική Νομοθεσία. Τους παρόντες Γενικούς Όρους Ασφάλισης Ζωής. Τους Ειδικούς Όρους

Διαβάστε περισσότερα

1 Ο Κεφάλαιο ΑΝΑΛΥΣΗ ΔΑΝΕΙΩΝ

1 Ο Κεφάλαιο ΑΝΑΛΥΣΗ ΔΑΝΕΙΩΝ Σηµειώσεις στο Μάθηµα Ειδικά Θέµατα Χρηµατοδοτικής Διοίκησης. Π. Φ. Διαµάντης Α.Α.Δράκος 1 Ο Κεφάλαιο ΑΝΑΛΥΣΗ ΔΑΝΕΙΩΝ Τα Δάνεια, είναι τα πολύ γνωστά σε όλους µας πιστωτικά προϊόντα στα οποία η αποπληρωµή

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 20/02/2017 Πρωί: Απόγευμα: Θεματική ενότητα: Βα, Συνταξιοδοτικά Σχήματα & Κοινωνική ασφάλιση 1/7 Θέμα 1 Ταμείο Κοινωνικής Ασφάλισης έχει 3 κλάδους : Κύρια σύνταξη, Επικουρική

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ & ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΑΝΑΛΟΓΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΚΙΝΔΥΝΟΥ Αναλογιστικά Μοντέλα

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

ΑΣΦΑΛΙΣΗ ΖΩΗΣ & ΑΝΙΚΑΝΟΤΗΤΑΣ

ΑΣΦΑΛΙΣΗ ΖΩΗΣ & ΑΝΙΚΑΝΟΤΗΤΑΣ ΑΣΦΑΛΙΣΗ ΖΩΗΣ Παροχή Σε περίπτωση θανάτου του ασφαλισμένου από οποιαδήποτε αιτία, οι δικαιούχοι δικαιούνται να εισπράξουν το ποσό που ορίζεται από το Συμβόλαιο για την κάλυψη αυτή (28 μηνιαίους μισθούς).

Διαβάστε περισσότερα

ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ ΒΑΣΙΚΕΣ ΕΝΟΙΕΣ, ΟΡΙΣΜΟΙ ΠΑΡΑ ΟΣΙΑΚΕΣ ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ ΣΥΓΧΡΟΝΟΙ ΤΥΠΟΙ ΑΣΦΑΛΙΣΤΗΡΙΩΝ ΖΩΗΣ ΤΑ ΠΡΟΪΟΝΤΑ UNIT LINKED

ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ ΒΑΣΙΚΕΣ ΕΝΟΙΕΣ, ΟΡΙΣΜΟΙ ΠΑΡΑ ΟΣΙΑΚΕΣ ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ ΣΥΓΧΡΟΝΟΙ ΤΥΠΟΙ ΑΣΦΑΛΙΣΤΗΡΙΩΝ ΖΩΗΣ ΤΑ ΠΡΟΪΟΝΤΑ UNIT LINKED ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ ΒΑΣΙΚΕΣ ΕΝΟΙΕΣ, ΟΡΙΣΜΟΙ ΠΑΡΑ ΟΣΙΑΚΕΣ ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ ΣΥΓΧΡΟΝΟΙ ΤΥΠΟΙ ΑΣΦΑΛΙΣΤΗΡΙΩΝ ΖΩΗΣ ΤΑ ΠΡΟΪΟΝΤΑ UNIT LINKED ΣΥΜΒΑΤΙΚΟΙ ΟΡΟΙ - ΠΑΡΟΧΕΣ Ατοµική ασφάλιση υγείας Οµαδικές ασφαλίσεις Οµαδικά

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΡΧΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΙΔΙΚΟΤΗΤΑΣ Ι.Ε.Κ. "ΕΙΔΙΚΟΣ ΑΣΦΑΛΙΣΤΙΚΩΝ ΕΡΓΑΣΙΩΝ"

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΡΧΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΙΔΙΚΟΤΗΤΑΣ Ι.Ε.Κ. ΕΙΔΙΚΟΣ ΑΣΦΑΛΙΣΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΠΙΣΤΟΠΟΙΗΣΗΣ ΑΡΧΙΚΗΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΙΔΙΚΟΤΗΤΑΣ Ι.Ε.Κ. "" 1 η ΠΕΡΙΟΔΟΣ 2015 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εξετάσεις Πιστοποίησης Αρχικής Επαγγελματικής

Διαβάστε περισσότερα

ΕΠΩΝΥΜΙΑ ΕΠΙΧΕΙΡΗΣΗΣ :ΙΝΤΕΡΑΜΕΡΙΚΑΝ ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΙΑ ΑΣΦΑΛΙΣΕΩΝ ΖΗΜΙΩΝ ΑΕ ΑΡ.Μ.Α.Ε :12865/05/Β/86/45

ΕΠΩΝΥΜΙΑ ΕΠΙΧΕΙΡΗΣΗΣ :ΙΝΤΕΡΑΜΕΡΙΚΑΝ ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΙΑ ΑΣΦΑΛΙΣΕΩΝ ΖΗΜΙΩΝ ΑΕ ΑΡ.Μ.Α.Ε :12865/05/Β/86/45 ΕΠΩΝΥΜΙΑ ΕΠΙΧΕΙΡΗΣΗΣ :ΙΝΤΕΡΑΜΕΡΙΚΑΝ ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΙΑ ΑΣΦΑΛΙΣΕΩΝ ΖΗΜΙΩΝ ΑΕ ΑΡ.Μ.Α.Ε :12865/05/Β/86/45 ΣΥΝΟΠΤΙΚΗ ΟΙΚΟΝΟΜΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΗΣ ΠΕΡΙΟΔΟΥ 1/1-30/6/2008 ΚΑΤΑΣΤΑΣΗ ΙΣΟΛΟΓΙΣΜΟΥ ΤΗΣ ΠΕΡΙΟΔΟΥ 1/1-30/6/2008

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΤΑΞΙΟΔΟΤΗΣΗΣ ΜΕΛΕΤΗ - ΠΡΟΤΑΣΗ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΤΑΞΙΟΔΟΤΗΣΗΣ ΜΕΛΕΤΗ - ΠΡΟΤΑΣΗ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΥΝΤΑΞΙΟΔΟΤΗΣΗΣ ΜΕΛΕΤΗ - ΠΡΟΤΑΣΗ Μέλος του Ομίλου της Εθνικής Τράπεζας 2 Επιτρέψτε μας να συστηθούμε Είμαστε η ΕΘΝΙΚΗ. Είμαστε η Πρώτη Επιθεώρηση της Πρώτης Ασφαλιστικής στην Ελλάδα. Είμαστε

Διαβάστε περισσότερα