ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 03 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 3 ΦΕΒΡΟΥΑΡΙΟΥ 03 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. π.μ.)

2 . Δίνεται η ένταση ανατοκισμού ln για 0 < 3 και 0.0( ) για > 3. Ποια η παρούσα αξία σε χρόνο = 0 πληρωμής 54 μονάδων που έγινε σε χρόνο =6?. (Α) 0.5e (B).. e (Γ) e (Δ) 0. e (Ε) e 0.. Ποιο από τα παρακάτω είναι σωστά: I. am n = a n ( ) m - s n II. ΙΙΙ. ΙV. am n = m ( m a ) n = ( m a ) n = a - n s n / m ( ) ȧ. n / m ȧ. n (Α) I, II, III (Β) I, IV (Γ) ΙI, ΙV (Δ) Ι, II, IV (Ε) Καμία 3. Ένα δάνειο εξοφλείται με 5 δόσεις ύψους κατά τις χρονικές στιγμές R =,,,5 και με επιτόκιο.ο δανειζόμενος αδυνατεί να καταβάλλει τις δόσεις R και R. Την στιγμή = συμφωνείται η αποπληρωμή του υπολειπόμενου ποσού του δανείου σε 3 ισόποσες δόσεις ύψους R.Να βρεθεί η δόση ύψους R. (Α) ( ( Ia) ( Ia) 5 ) a3 3 (Β) ( Ia) ( Ia) 5 ( ) a3 0 (Γ) ( Ia) ( Ia) 5 v a5 3 (Δ) v ( ) 0 Ia) ( Ia 5 a3 (Ε) v ( ) 0 Ia) ( Ia 5 a3

3 4. Η αγοραία τιμή ομολόγων χωρίς τοκομερίδια με αξία εξαγοράς και στιγμή λήξης =0,,,3,, είναι:. Ποια από τα παρακάτω αληθεύουν; P e (Ι) Η καμπύλη των επιτοκίων τρέχουσας τοποθέτησης διάρκειας (spo raes) είναι: s e, =0,,,3,. (II) Η καμπύλη των επιτοκίων για μέλλουσες τοποθετήσεις ετήσιας διάρκειας f (forward raes) είναι:, =0,,,3,. e (III) Η συσσωρευμένη αξία στο =3 από καταβολές ύψους στο =0 και ύψους στο e 5 ( e 4. = είναι ) (Α) Μόνο το (Ι) είναι σωστό (Β) Μόνο το (ΙI) είναι σωστό (Γ) Μόνο το (ΙII) είναι σωστό (Δ) Μόνο τα (Ι) και (ΙΙΙ) είναι σωστά (Ε) Μόνο τα (ΙI) και (ΙΙΙ) είναι σωστά 5. Δίνεται η ισότητα 3 n ( a 4) (4) = a n =0 ( 4) s. Βρείτε το ετήσιο αποτελεσματικό επιτόκιο (Α) 0 (Β) 0 (Γ) 0 3 (Δ) 0 4 (Ε) 0 5

4 6. Από μια επένδυση κατά το έτος 0 κερδίζουμε συνολικό εισόδημα.075. Στην αρχή του έτους επενδύω και στο τέλος του έτους έχουμε συνολικό ποσό Κατά την διάρκεια του έτους έχει γίνει μια κατάθεση ύψους κ την χρονική στιγμή. Καμία άλλη κατάθεση δεν γίνεται κατά την διάρκεια του έτους. Η επένδυση γίνεται με = 0% χρησιμοποιώντας την Dollar Weghed Mehod. Βρείτε το (Α) /3/0 (Β) /4/0 (Γ) /6/0 (Δ) /7/0 (Ε) /9/0 7. Δάνειο διάρκειας n εξοφλείται με n δόσεις, =,,,n. Ο τόκος περιέχεται στην δόση είναι: που I I ( n ), =,,,n και ( 3n ), =n+,n+,, n Το κεφάλαιο που περιέχεται στην δόση θετική σταθερά. Να βρεθεί το επιτόκιο. είναι: C, =,,,n. Το α είναι (Α) (Β) (Γ) (Δ) (Ε) 3(3n ) (n )(4n ) 3 (3n ) ( n )(n ) 3(n ) (n )(4n ) 3 (n ) ( n )(n ) 3 ( n ) ( n )(n )

5 8. Η ανοσοποίηση διηνεκούς αυξανόμενης ληξιπρόθεσμης ράντας ύψους,,3, στα σημεία =,,3 επιχειρείται με ποσό ύψους Κ στο = 0 και διηνεκή ληξιπρόθεσμη ράντα ύψους Μ στα σημεία =,,3 αντίστοιχα. Να βρεθούν τα Κ και Μ. (Α) (Β) (Γ) (Δ) (Ε) Κ Μ 9. Καταθέτω στην αρχή του έτους, σε ένα λογαριασμό Α, ποσό Χ με απλό επιτόκιο (smple neres) = 5%. Επίσης καταθέτω πάλι στην αρχή του έτους σε ένα άλλο λογαριασμό Β, ποσό Χ με ένταση ανατοκισμού, 0. Από το τέλος του ου έτους μέχρι το τέλος του 4 ου ο τόκος που κερδίζω από τον Α λογαριασμό είναι ίσος με αυτόν που κερδίζω από τον Β. Βρείτε το σ. (Α) 80 (Β) 00 (Γ) 0 (Δ) 0 (Ε) 0 0. Η παρούσα αξία διηνεκούς ράντας, με ετήσιο αποτελεσματικό επιτόκιο, που πληρώνει 0 μονάδες στο τέλος κάθε 3ετίας, ισούται με 3. Η παρούσα αξία μιας άλλης διηνεκούς ράντας, με το ίδιο επιτόκιο, που πληρώνει μονάδα στο τέλος κάθε 4μήνου, ισούται με x. Βρείτε το x (Α) 3,6 (Β) 3,6 (Γ) 33,6 (Δ) 34,6 (Ε) 35,6

6 . Ομόλογο διάρκειας 0 ετών για το οποίο F C. 000 και 9% εξαμηνιαία κουπόνια έχει απόδοση 6% μετατρέψιμη φορές το έτος για τα πρώτα 5 έτη και 3% μετατρέψιμη φορές το έτος για τα επόμενα 5 έτη. Να υπολογιστεί η τιμή αγοράς P του ομολόγου. Αν ο αγοραστής επενδύει τα κουπόνια με επιτόκιο 4,8% μετατρέψιμο φορές το έτος, να βρεθεί η απόδοση ( ) μετατρέψιμη φορές το έτος, λαμβάνοντας υπόψη το επιτόκιο επανεπένδυσης. P () (Α).664,05 4,4% (Β).554,05 8,8% (Γ).664,05,% (Δ).554,05 4,4% (Ε).664,05 8,8%. Ένα ευρωπαϊκό δικαίωμα πώλησης (pu opon) και ένα ευρωπαϊκό δικαίωμα αγοράς (call opon) πρόκειται να τιμολογηθούν με βάση το πρότυπο Black-Scholes. Αν S=K, r = 0, T=4 και d 0, 08 d, ποια από τα παρακάτω αληθεύουν; (Ι) d d (ΙΙ) 0, 08 (ΙΙΙ) c = p (IV) c=*s*n(0,009), όπου Ν η συνάρτηση κατανομής της τυπικής κανονικής κατανομής (Α) Μόνο τα (Ι) και (ΙΙ) είναι σωστά (Β) Μόνο τα (ΙII) και (ΙV) είναι σωστά (Γ) Μόνο τα (Ι) και (ΙΙΙ) είναι σωστά (Δ) Μόνο τα (Ι) και (ΙΙΙ) και (IV) είναι σωστά (Ε) Όλα είναι σωστά

7 3. Επενδύω σε ένα λογαριασμό 300 στην αρχή κάθε έτους, για 0 έτη. To ετήσιο αποτελεσματικό επιτόκιο ισούται με. Ο τόκος που λαμβάνω στο τέλος κάθε έτους, επανεπενδύεται σε άλλο λογαριασμό με ετήσιο αποτελεσματικό επιτόκιο. Το ετήσιο επιτόκιο απόδοσης (yeld rae) που επιτυγχάνω για τα 0 έτη είναι 0%. Βρες το (Α) 6,53% (Β) 7,% (Γ) 3,06% (Δ) 4,% (Ε) 5,% 4. Ο Α δανείζει τον Β με Ο Β θα ξεπληρώσει τον Α σε 5 έτη με μηνιαίες () πληρωμές στο τέλος κάθε μήνα, με ονομαστικό επιτόκιο. Ο Α επανεπενδύει της () μηνιαίες πληρωμές σε λογαριασμό με ονομαστικό επιτόκιο j = 6%. Το συνολικό επιτόκιο απόδοσης (yeld rae), που αποκομίζει ο Α στα 5 έτη, είναι () Βρες το () r = 7,45%. (Α) 8,53% (Β) 8,59% (Γ) 8,68% (Δ) 8,80% (Ε) 9,6% 5. Αν η ένταση ανατοκισμού είναι τ.μ. Δ και ακολουθεί την τυπική κανονική κατανομή Ν(0,) (Δίδεται: (Ι) Η σ.π.π. της τ.μ. Ι είναι: (ΙΙ) (ΙΙΙ) 0 E( V ) e 50 E(( I) 0 ) e 50 M e ) ( f ( ) ), ποια από τα παρακάτω αληθεύουν; e (ln( )) I (IV) Αν η ισοδύναμη σταθερή ένταση ανατοκισμού που οδηγεί σε ) και η σταθερή ένταση ανατοκισμού που οδηγεί σε ) E ( V 0, τότε: (( ) 0

8 (Α) Μόνο το (ΙΙ) είναι σωστό (Β) Μόνο τα (ΙI) και (ΙΙΙ) είναι σωστά (Γ) Μόνο τα (Ι) και (ΙI) και (ΙΙΙ) είναι σωστά (Δ) Μόνο τα (ΙΙΙ) και (IV) είναι σωστά (Ε) Μόνο τα (ΙI) και (ΙΙΙ) και (IV) είναι σωστά 6. Ομόλογο διάρκειας 4 ετών με F C. 500 και 8% τριμηνιαία κουπόνια αγοράζεται ώστε να αποδίδει στον επενδυτή απόδοση 6% μετατρέψιμη τριμηνιαίως. Να υπολογιστεί η λογιστική αξία BV του παραπάνω ομολόγου μήνα μετά την έκδοση του δια της πρακτικής μεθόδου καθώς και η αξία P του ομολόγου 40 μήνες μετά την έκδοσή του δια της θεωρητικής μεθόδου. BV P (Α).604,0.59,4 (Β).604,0.5,85 (Γ).554,0.59,4 (Δ).504,0.59,4 (Ε).504,0.5,85 7. Χαρτοφυλάκιο P αποτελείται από ποσοστό x του χαρτοφυλακίου της αγοράς Rm και ποσοστό -x από την χωρίς κίνδυνο επένδυση r f. Η αναμενόμενη απόδοση του χαρτοφυλακίου P είναι 0%, r f = 5%, η αναμενόμενη απόδοση του χαρτοφυλακίου της αγοράς Rm είναι 5%, η τυπική απόκλιση του χαρτοφυλακίου P είναι 3%. Να βρεθεί η αναμενόμενη απόδοση μιας μετοχής R που έχει τυπική απόκλιση % και συντελεστή συσχέτισης με το χαρτοφυλάκιο της αγοράς 0,4. (Α) 5,6% (Β) 5,33% (Γ) 6,3% (Δ) 8,0% (Ε) 9,0%

9 8. Η αγορά αποτελείται από ένα ποσοστό x του χαρτοφυλακίου P, y του χαρτοφυλακίου P και z του χαρτοφυλακίου P 3. Το ποσοστό του χαρτοφυλακίου P είναι διπλάσιο του P, και το ποσοστό του χαρτοφυλακίου P 3 είναι διπλάσιο του P. P, P και P 3 ασυσχέτιστα μεταξύ τους. Δίνονται Βρείτε το βήτα του χαρτοφυλακίου P, P =, =. 4 P P P 3 P (Α) 7 (Β) 7 (Γ) 7 4 (Δ) 7 (Ε) 9. Τα επιτόκια για μελλοντικές τοποθετήσεις ετήσιας διάρκειας (forward raes) είναι: f 0,0, f 0, 05, f 0, Να βρεθεί η τιμή P τριετούς ομολόγου με F C και ετήσιο τοκομερίδιο ύψους 0,05. Να βρεθεί η απόδοση αρτίου (par yeld) για τριετές ομόλογο. P par yeld (Α),0466,86% (Β),079,86% (Γ),0466,49% (Δ),079,49% (Ε),0466 3,% 0. Ένα δάνειο θα αποσβεσθεί με σταθερές ετήσιες δόσεις σε 0 έτη. Το ποσό του κεφαλαίου που περιέχεται στην 9 η δόση είναι 76,5. Το ποσό του κεφαλαίου που περιέχεται στην 5 η δόση είναι 06,95. Να υπολογιστεί το ποσό του κεφαλαίου που περιέχεται στην 9 η δόση. (Α) 54,0 (Β) 44,0 (Γ) 34,0 (Δ) 4,0 (Ε) 4,0

10 . Γνωρίζουμε ότι αν αυξηθεί η αναμενόμενη απόδοση του χαρτοφυλακίου της αγοράς Rm κατά 5 ποσοστιαίες μονάδες θα αυξηθεί η αναμενόμενη απόδοση της μετοχής R κατά ποσοστιαίες μονάδες. Δίνονται = 0%, R = 0%. Βρείτε τον συντελεστή συσχέτισης της R με την Rm. Rm (Α) 5 (Β) 5 (Γ) 5 (Δ) 5 (Ε) 5 4. Επενδύω.000 σε ένα λογαριασμό Α με ετήσιο αποτελεσματικό επιτόκιο 5%. Στο τέλος κάθε έτους ο τόκος που κερδίζω μαζί με 00 που αποσύρω κάθε χρόνο από το λογαριασμό τα επενδύω σε άλλο λογαριασμό Β με ετήσιο αποτελεσματικό επιτόκιο 9%. Μετά από 0 έτη ο λογαριασμός Α μηδενίζεται. Βρείτε το ποσό που συσσωρεύτηκε στο λογαριασμό Β στο τέλος του 0 ου έτους. (Α).63,5 (Β).74,8 (Γ).990,44 (Δ).086,78 (Ε) 4.7,50 3. Περιουσιακά στοιχεία με παρούσα αξία Α=00 και μέση διάρκεια 0 A καλύπτουν υποχρεώσεις με παρούσα αξία L=90 και μέση διάρκεια L. Να υπολογιστεί η μέση διάρκεια που πρέπει να έχουν οι υποχρεώσεις ώστε εάν η L ένταση ανατοκισμού δ μειωθεί κατά %, το μέγεθος A-L να αυξηθεί κατά 0%. (Α) L = (Β) L =,5 (Γ) L = (Δ) L =0,5 (Ε) L =0

11 4. Η σημερινή τιμή του ακίνδυνου ομολόγου και μιας μετοχής είναι. Η χωρίς ρίσκο ένταση ανατοκισμού είναι 0 και στο τέλος μιας περιόδου η τιμή της μετοχής θα είναι ή 0 00 ή. Ποια από τα παρακάτω αληθεύουν; 00 0 (Ι) Ένα χαρτοφυλάκιο με αξία στο τέλος μιας περιόδου όση η αξία ενός δικαιώματος πώλησης (pu opon) της μετοχής έναντι του ποσού Κ= αποτελείται από θέση long 0 00 σε μονάδες ομολόγου και θέση shor σε μονάδες μετοχής. 0 0 (ΙΙ) Ένα χαρτοφυλάκιο με αξία στο τέλος μιας περιόδου όση η αξία ενός δικαιώματος πώλησης (pu opon) της μετοχής έναντι του ποσού Κ= αποτελείται από θέση long 00 0 σε μονάδες ομολόγου και θέση shor σε μονάδες μετοχής. 0 0 (ΙΙΙ) Ένα χαρτοφυλάκιο με αξία στο τέλος μιας περιόδου όση η αξία ενός δικαιώματος αγοράς (call opon) της μετοχής έναντι του ποσού Κ= αποτελείται από θέση shor 00 0 σε μονάδες ομολόγου και θέση long σε μονάδες μετοχής. 0 0 (IV) Ένα χαρτοφυλάκιο με αξία στο τέλος μιας περιόδου όση η αξία ενός δικαιώματος αγοράς (call opon) της μετοχής έναντι του ποσού Κ= αποτελείται από θέση shor 0 00 σε μονάδες ομολόγου και θέση long σε μονάδες μετοχής. 0 0 (Α) Μόνο τα (Ι) και (ΙV) είναι σωστά (Β) Μόνο τα (Ι) και (ΙII) είναι σωστά (Γ) Μόνο τα (ΙI) και (ΙΙΙ) είναι σωστά (Δ) Μόνο το (ΙI) είναι σωστό (Ε) Μόνο το (ΙIΙ) είναι σωστό

12 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟNΟΜΙΑΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΠΡΩΪΝΩΝ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ ΦΕΒΡΟΥΑΡΙΟΥ 03 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 3 ΦΕΒΡΟΥΑΡΙΟΥ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ 9 π.μ. π.μ. .......

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ FW.PR09 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: x Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 /6 FW.PR09 Θέμα ο α) Η παρούσα αξία μιας διηνεκούς ράντας που πληρώνει

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. π.μ.) . Μια

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 013 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 01 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 01 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ. π.μ.)

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ FW.PR09 Όνομα: Επίθετο: Ημερομηνία: 4//07 Πρωί: x Απόγευμα: Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 / FW.PR09. Δίνεται ένταση ανατοκισμού t = την ράντα s 0.0t για 0

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΦΕΒΡΟΥΑΡΙΟΥ 2009

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 2009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 24 ΦΕΒΡΟΥΑΡΙΟΥ 2009 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΑΝΟΥΑΡΙΟΥ 009 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 009 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ.

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 004 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Αν δ t,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 25 ΙΑΝΟΥΑΡΙΟΥ 2005

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 25 ΙΑΝΟΥΑΡΙΟΥ 2005 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 005 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 5 ΙΑΝΟΥΑΡΙΟΥ 005 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Την /,

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1 γ Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος)

Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) Στατιστικές Έννοιες (Υπολογισμός Χρηματοοικονομικού κινδύνου και απόδοσης, διαχρονική αξία του Χρήματος) 1. Ποιος είναι ο αριθμητικός μέσος όρος ενός δείγματος ετησίων αποδόσεων μιας μετοχής, της οποίας

Διαβάστε περισσότερα

ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΠΙΠΕΔΟΥ Δ - ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ (έκδοση )

ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΠΙΠΕΔΟΥ Δ - ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ (έκδοση ) ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΕΠΙΠΕΔΟΥ Δ - ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ (έκδοση 18.4.2016) 440. Για μια κατάθεση 100 με ετήσιο επιτόκιο 12% και τριμηνιαίο ανατοκισμό, η ετήσια πραγματική απόδοση είναι : α) 12,42%

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΜΒΑΝΤΑ ΖΩΗΣ & ΘΑΝΑΤΟΥ ΙΟΥΛΙΟΣ 0 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΛΙΟΥ 0 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 4 ΙΟΥΛΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. μ.)

Διαβάστε περισσότερα

Άσκηση 2 Να βρεθεί η πραγματοποιηθείσα απόδοση της προηγούμενης άσκησης, υποθέτοντας ότι τα τοκομερίδια πληρώνονται δύο φορές το έτος.

Άσκηση 2 Να βρεθεί η πραγματοποιηθείσα απόδοση της προηγούμενης άσκησης, υποθέτοντας ότι τα τοκομερίδια πληρώνονται δύο φορές το έτος. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 4 Άσκηση 1 Η ομολογία Β εκδόθηκε στο παρελθόν και έχει διάρκεια ζωής τρία ακόμη έτη. Η ονομαστική της αξία είναι 1.000 ευρώ και το εκδοτικό της επιτόκιο είναι 8%. Τα τοκομερίδια πληρώνονται

Διαβάστε περισσότερα

Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας

Ράντες. Χρήση ραντών. Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας Ράντες Χρήση ραντών Έννοια ράντας Ορισμοί ράντας Κατάταξη ραντών Εύρεση αρχικής αξίας ράντας Χρήση περιοδικών κεφαλαίων (ράντες) Σχηματισμός κεφαλαίου με ισόποσες καταθέσεις Εξόφληση χρέους με δόσεις Μηνιαίες

Διαβάστε περισσότερα

Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό

Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό 2. ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ 1 Χρονική Αξία Χρήµατος Στη Χρηµατοοικονοµική, κεφάλαιο ονοµάζουµε εκείνο το χρηµατικό ποσό που µπορούµε να διαθέσουµε σε µια επένδυση για όποιο χρονικό διάστηµα θέλουµε. Εκτός

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

β) Αν στο παραπάνω ερώτημα, ο λογαριασμός ήταν σύνθετου τόκου με j(12)=3%, ποιό είναι το ποσό που θα έπρεπε να καταθέσει ;

β) Αν στο παραπάνω ερώτημα, ο λογαριασμός ήταν σύνθετου τόκου με j(12)=3%, ποιό είναι το ποσό που θα έπρεπε να καταθέσει ; Άσκηση 1 α) Κάνει κάποιος κατάθεση ποσού 5 χιλ. σε λογαριασμό απλού τόκου με ετήσιο επιτόκιο 4%. Μετά από 3 μήνες κάνει ανάληψη 3 χιλ. και μετά από άλλους 7 μήνες επιθυμεί να κάνει μία κατάθεση, έτσι ώστε

Διαβάστε περισσότερα

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ)

1. Αν 1. x (Β) (Α) (Γ) (Ε) 2 (Δ) . Αν 4 x, 4 4 d d (Α) x x (Β) x x (Γ) x x x (Δ) x (Ε) x x . Δάνειο ύψους εξοφλείται με τρεις ληξιπρόθεσμες δόσεις, α αι α. Το ποσό τόου σε άθε δόση είναι σταθερό αι ίσο με β. Να βρεθούν τα α αι β αι το

Διαβάστε περισσότερα

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011

Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 14 ΙΟΥΛΙΟΥ 2011 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ. 12 µ.) Σελίδα 1 από

Διαβάστε περισσότερα

MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: ΣΤΑΘΜΙΣΜΕΝΗ ΔΙΑΡΚΕΙΑ (DURATION) Τμήμα Χρηματοοικονομικής

MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: ΣΤΑΘΜΙΣΜΕΝΗ ΔΙΑΡΚΕΙΑ (DURATION) Τμήμα Χρηματοοικονομικής MNGEMENT OF FINNI INSTITUTIONS ΔΙΑΛΕΞΗ: ΣΤΑΘΜΙΣΜΕΝΗ ΔΙΑΡΚΕΙΑ (URTION) Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής Γκ. Χαρδούβελης ΠΕΡΙΕΧΟΜΕΝΑ Παράδειγμα Σταθμισμένης Διάρκειας (uaion) Σταθμισμένη Διάρκεια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ & : ΔΕΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ & : ΔΕΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 41 Αγορές Χρήματος & Κεφαλαίου Ακαδ. Έτος: 1-1 Θέμα 1 α) Ο επενδυτής μπορεί να εκμεταλλευτεί τις

Διαβάστε περισσότερα

Απόδοση/ Κίνδυνος (Είδη κινδύνου, σχέση κινδύνου- απόδοσης)

Απόδοση/ Κίνδυνος (Είδη κινδύνου, σχέση κινδύνου- απόδοσης) Απόδοση/ Κίνδυνος (Είδη κινδύνου, σχέση κινδύνου- απόδοσης) 1. Το ασφάλιστρο κινδύνου (risk premium) μιας μετοχής: 1) Είναι η διαφορά μεταξύ κεφαλαιακού κέρδους της μετοχής και μερισματικής απόδοσης της

Διαβάστε περισσότερα

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i

4 e. υ (Γ) υ (Δ) 1 (Ε) 1+ i . Αν τα 4 6 8 δ, i, d, i και d αντιτοιχούν όλα το ίδιο αποτελεματικό επιτόκιο, τότε i 6 i 6 4 4 d 4 8 d 8 6 4 e δ (Α) 3 υ (Β) υ (Γ) υ (Δ) (Ε) + i . Ένα 0ετές αφαλιτικό προϊόν εγγυάται απόδοη 7% τα πρώτα

Διαβάστε περισσότερα

Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος

Κεφάλαιο , 05. Τέλος το ποσό της τελευταίας κατάθεσης (συμπλήρωση του 17 ου έτους) θα τοκισθεί μόνο για 1 έτος Κεφάλαιο 5 5. Ράντες 5.. Εισαγωγικές έννοιες και ορισμοί Είναι σύνηθες στις μέρες μας να καταθέτουν οι γονείς κάποιο ποσό για τα παιδιά τους σε μηνιαία, εξαμηνιαία ή ετήσια βάση έτσι ώστε να συσσωρευτεί

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: () 1. Α. Με επιτόκιο i=3,5% και πίνακα θνησιμότητας με q 108 =1, υπολογίστε το A και το (), χρησιμοποιώντας την υπόθεση της ομοιόμορφης κατανομής

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 13/7/2016 Πρωί: x Απόγευμα: Θεματική ενότητα: Χρηματοοικονομικά Πρότυπα, Κωδ. Αε 1. Στις χρονικές στιγμές 1 και 2 θα πληρωθεί από 1 αντίστοιχα. Ποιο επιτόκιο εξασφαλίζει ότι

Διαβάστε περισσότερα

Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από

Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από 1 ΔΕΟ31 - Λύση 3ης γραπτής εργασίας 2013-14 Θέμα 1 (1) Γνωρίζουμε ότι η αξία του προθεσμιακού συμβολαίου δίνεται από f ( S I ) Ke t t t r( T t) Aρχικά βρίσκουμε τη παρούσα αξία των μερισμάτων που πληρώνει

Διαβάστε περισσότερα

1 2,55 1.250 3,19 0,870 2,78 2 2,55 1.562 3,98 0,756 3,01 3 2,55 1.953 4,98 0,658 3,28

1 2,55 1.250 3,19 0,870 2,78 2 2,55 1.562 3,98 0,756 3,01 3 2,55 1.953 4,98 0,658 3,28 Άσκηση 1 Η κατασκευαστική εταιρία Κ εξετάζει την περίπτωση αγοράς μετοχών της εταιρίας «Ε» με πληρωμή σε μετρητά. Κατά τη διάρκεια της χρήσης που μόλις ολοκληρώθηκε, η «Ε» είχε κέρδη ανά μετοχή 4,25 και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΜΟΝΤΕΛΟ ΤΗΣ ΛΗΚΤΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 7 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΜΟΝΤΕΛΟ ΤΗΣ ΛΗΚΤΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 7 ΚΙΝΔΥΝΟΣ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΤΟ ΜΟΝΤΕΛΟ ΤΗΣ ΛΗΚΤΟΤΗΤΑΣ Εισαγωγή Ο κίνδυνος επιτοκίων προέρχεται τόσο από τη διαφορά ληκτότητας που υπάρχει μεταξύ των στοιχείων του ενεργητικού και του παθητικού, όσο

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΕΡΩΤΗΣΗ. (5 μονάδες) Θέλετε να αξιολογήσετε τέσσερα ομόλογα. Όλα τα ομόλογα έχουν 0 χρόνια μέχρι την λήξη και ονομαστική αξία.000. Το ομόλογο Α έχει κουπόνι με ετήσια απόδοση % το οποίο παραμένει σταθερό

Διαβάστε περισσότερα

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115

και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115 . Η πιθανότητα ο () να ζήσει για τουλάχιστον χρόνια είναι κατά 0% μεγαλύτερη από την πιθανότητα ο (+) να ζήσει για τουλάχιστον χρόνια. Αν / 0, 4, 9 / 0, και 0, 48 να βρεθεί η τιμή του Α) 0,048 Β) 0,88

Διαβάστε περισσότερα

Χρηματοοικονομική Διοίκηση

Χρηματοοικονομική Διοίκηση Χρηματοοικονομική Διοίκηση Ενότητα 2: Ράντες Γιανναράκης Γρηγόρης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 1

Asset & Liability Management Διάλεξη 1 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asset & Liability Management Διάλεξη Η μέτρηση και η αντιμετώπιση του επιτοκιακού κινδύνου Μιχάλης Ανθρωπέλος anthopel@unipi.g

Διαβάστε περισσότερα

11.1.1 Χρονική αξία του χρήματος

11.1.1 Χρονική αξία του χρήματος Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 1: Κεφαλαιοποίηση Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Ε.ΜΙΧΑΗΛΙΔΟΥ - 1 ΤΟΜΟΣ Β ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ & ΔΙΟΙΚΗΤΙΚΗ Κεφάλαιο 1 Η ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Επιτόκιο: είναι η αμοιβή του κεφαλαίου για κάθε μονάδα χρόνου

Διαβάστε περισσότερα

Κεφάλαιο Δάνεια Γενικά Δάνεια εξοφλητέα εφάπαξ Αν οι τόκοι καταβάλλονται στο τέλος κάθε περιόδου

Κεφάλαιο Δάνεια Γενικά Δάνεια εξοφλητέα εφάπαξ Αν οι τόκοι καταβάλλονται στο τέλος κάθε περιόδου Κεφάλαιο 6 6. Δάνεια 6.. Γενικά Το σημαντικότερο και σίγουρα το πιο διαδεδομένο κεφάλαιο των οικονομικών μαθηματικών είναι αυτό των δανείων. Κράτη, δημόσιοι οργανισμοί, επιχειρήσεις αλλά και ιδιώτες χρειάζονται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 3 ΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Προεξοφλητικό επιτόκιο Η χρονική αξία του χρήματος είναι το κόστος ευκαιρίας του κεφαλαίου της επιχείρησης. Το προεξοφλητικό επιτόκιο ή επιτόκιο αναγωγής σε παρούσα

Διαβάστε περισσότερα

ΔΙΑΔΙΚΑΣΙΑ ARBITRAGE Arbitrage ονομάζεται η διαδικασία εξισορρόπησης των τιμών μεταξύ του υποκείμενου και του παράγωγου τίτλου λαμβανομένου υπόψη του ύψους του επιτοκίου και του χρονικού διαστήματος μέχρι

Διαβάστε περισσότερα

ΔΕΟ31 Λύση 2 ης γραπτής εργασίας

ΔΕΟ31 Λύση 2 ης γραπτής εργασίας 1 ΔΕΟ31 Λύση 2 ης γραπτής εργασίας 2015-16 Προσοχή! Όλες οι εργασίες ελέγχονται για αντιγραφή. Μελετήστε προσεκτικά και δώστε τη δική σας λύση ΘΕΜΑ 1 ο Α) Αρχικά θα πρέπει να υπολογίσουμε τη μηνιαία πραγματοποιηθείσα

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31 Άσκηση η 2 η Εργασία ΔEO3 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ3 Η επιχείρηση Α εκδίδει σήμερα ομολογία ονομαστικής αξίας.000 με ετήσιο επιτόκιο έκδοσης 7%. Το

Διαβάστε περισσότερα

Έννοια της Παρούσας Αξίας και Εφαρμογές: Τιμές των Ομολόγων και Επενδυτικές Αποφάσεις των Επιχειρήσεων 1. Η Έννοια της Παρούσας Αξίας

Έννοια της Παρούσας Αξίας και Εφαρμογές: Τιμές των Ομολόγων και Επενδυτικές Αποφάσεις των Επιχειρήσεων 1. Η Έννοια της Παρούσας Αξίας Έννοια της Παρούσας Αξίας και Εφαρμογές: Τιμές των Ομολόγων και Επενδυτικές Αποφάσεις των Επιχειρήσεων 1. Η Έννοια της Παρούσας Αξίας - Η Παρούσα Αξία (PV) ενός ποσού R που θα εισπραχθεί μετά από μια περίοδο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΤΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΕΠΙΤΟΚΙΩΝ

ΚΕΦΑΛΑΙΟ 11 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΤΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΕΠΙΤΟΚΙΩΝ ΚΕΦΑΛΑΙΟ 11 ΣΤΡΑΤΗΓΙΚΕΣ ΑΝΤΙΣΤΑΘΜΙΣΗΣ ΤΟΥ ΚΙΝΔΥΝΟΥ ΤΩΝ ΕΠΙΤΟΚΙΩΝ Εισαγωγή Αν μια τράπεζα θέλει να μειώσει τις διακυμάνσεις των κερδών που προέρχονται από τις μεταβολές των επιτοκίων θα πρέπει να έχει ένα

Διαβάστε περισσότερα

Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1 δ Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι:

Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1 δ Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι: Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1 δ Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι: α Συναλλάσσονται συνήθως υπέρ το άρτιο. β Καλύπτουν στον επενδυτή

Διαβάστε περισσότερα

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα.

Ράντες. - Κατανόηση και χρησιμοποίηση μιας σειράς πληρωμών που ονομάζεται ράντα. Ράντες Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Αρχική αξία - Τελική αξία - Δόση ή όρος - Περίοδος - Διάρκεια (συμβολισμός n) - Διηνεκής ράντα - Κλασματική ράντα ΣΤΟΧΟΙ - Κατανόηση και χρησιμοποίηση

Διαβάστε περισσότερα

Κάνοντας click στους αριθμούς μέσα σε κόκκινα ορθογώνια, μεταϕέρεστε απευθείας στη λύση ή την εκϕώνηση αντίστοιχα. Άσκηση 1

Κάνοντας click στους αριθμούς μέσα σε κόκκινα ορθογώνια, μεταϕέρεστε απευθείας στη λύση ή την εκϕώνηση αντίστοιχα. Άσκηση 1 ΑΣΚΗΣΕΙΣ ΟΜΟΛΟΓΩΝ Κάνοντας click στους αριθμούς μέσα σε κόκκινα ορθογώνια, μεταϕέρεστε απευθείας στη λύση ή την εκϕώνηση αντίστοιχα. Άσκηση Θεωρείστε ένα αξιόγραϕο το οποίο υπόσχεται τις κάτωθι χρηματικές

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ. ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ

ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ. ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ ΚΑΙ ΚΑΙΝΟΤΟΜΙΑ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΥΡΙΑΚΗ ΚΟΣΜΙΔΟΥ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ kosmid@econ.auth.gr ΣΗΜΕΙΩςΕΙς ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗςΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ,

Διαβάστε περισσότερα

(3) ... (2) Ο συντελεστής Προεξόφλησης (ΣΠΑ) υπολογίζεται από τον Πίνακα Π.2. στο Παράρτηµα.

(3) ... (2) Ο συντελεστής Προεξόφλησης (ΣΠΑ) υπολογίζεται από τον Πίνακα Π.2. στο Παράρτηµα. ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Α.Α.Δράκος 2015-2016 ΣΗΜΕΙΩΣΕΙΣ ΔΙΔΑΣΚΟΝΤΑ ΣΤΗ ΧΡΗΜΑΤΟΔΟΤΙΚΗ ΔΙΟΙΚΗΣΗ 1 1 ο ΣΕΤ. ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΚΑΙ ΤΡΑΠΕΖΙΚΑ ΔΑΝΕΙΑ

Διαβάστε περισσότερα

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ

ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ Α: ΑΠΟΤΙΜΗΣΗ ΚΙΝ ΥΝΟΥ ΚΑΙ ΕΠΕΝ ΥΣΕΩΝ Κεφάλαιο 1: Το θεωρητικό υπόβαθρο της διαδικασίας λήψεως αποφάσεων και η χρονική αξία του χρήµατος Κεφάλαιο 2: Η καθαρή παρούσα αξία ως κριτήριο επενδυτικών

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Γ ΤΟΜΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ. Άσκηση 1 (τελικές 2011 θέμα 3)

Γ ΤΟΜΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ. Άσκηση 1 (τελικές 2011 θέμα 3) Γ ΤΟΜΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Άσκηση 1 (τελικές 2011 θέμα 3) Ένας επενδυτής έχει αγοράσει μία μετοχή. Για να προστατευτεί από πιθανή μικρή πτώση της τιμής της μετοχής λαμβάνει θέση αγοράς σε ένα δικαίωμα

Διαβάστε περισσότερα

Mακροοικονομική Κεφάλαιο 7 Αγορά περιουσιακών στοιχείων, χρήμα και τιμές

Mακροοικονομική Κεφάλαιο 7 Αγορά περιουσιακών στοιχείων, χρήμα και τιμές 7.1 Τι είναι το χρήμα; Mακροοικονομική Κεφάλαιο 7 Αγορά περιουσιακών στοιχείων, χρήμα και τιμές 1) Ένα μειονέκτημα του συστήματος του αντιπραγματισμού είναι ότι Α) δεν υπάρχει εμπόριο. Β) οι άνθρωποι πρέπει

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 9: Διηνεκείς Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ

ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ Ενότητα 1: Αξιολόγηση Επενδύσεων (1/5) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Asset & Liability Management Διάλεξη 2

Asset & Liability Management Διάλεξη 2 Πανεπιστήμιο Πειραιώς ΠΜΣ στην «Αναλογιστική Επιστήμη και Διοικητική Κινδύνου» Asse & Liabiliy Managemen Διάλεξη 2 Η μέτρηση και η αντιμετώπιση του επιτοκιακού κινδύνου (συνέχεια) Μιχάλης Ανθρωπέλος anhropel@unipi.gr

Διαβάστε περισσότερα

ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Παράδειγµα 1 Να βρεθεί ο τόκος κεφαλαίου 100.000 ευρώ, το οποίο τοκίστηκε µε ετήσιο επιτόκιο 12% για 2 χρόνια. Απάντηση: Ο τόκος ανέρχεται σε I = (100.000 0,12 2=) 24.000 ευρώ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 2ο ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ 7 ΚΕΦΑΛΑΙΟ 2ο ΔΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Στα κεφάλαια που ακολουθούν θα ασχοληθούμε με την αξιολόγηση διάφορων επενδυτικών προτάσεων. Πριν από την ανάλυση των προτάσεων αυτών, είναι απαραίτητο να έχετε

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-)

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) 5. Ράντες 5.1.1.Ορισμοι- Κατηγορίες Ράντα ονομάζουμε σειρά κεφαλαίων που καταβάλλονται ανά ισα χρονικά διαστήματα. Για τα κεφάλαια αυτά ισχύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #17: Σειρές Πληρωμών ή Ράντες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

Διάφορες αποδόσεις και Αποτίμηση Ομολόγων

Διάφορες αποδόσεις και Αποτίμηση Ομολόγων Διάφορες αποδόσεις και Αποτίμηση Ομολόγων Α. Διάφοροι ορισμοί απόδοσης ή επιτοκίων Spot rate Spot rate: ορίζεται ως η απόδοση του ομολόγου του ομολόγου χωρίς τοκομερίδιο. Αποτελεί συγχρόνως και την απόδοση

Διαβάστε περισσότερα

Εσωτερικός βαθμός απόδοσης

Εσωτερικός βαθμός απόδοσης Εσωτερικός βαθμός απόδοσης Διεθνώς ονομάζεται internal rate of return, και συμβολίζεται με IRR. Με τη μέθοδο αυτή δεν χρησιμοποιούμε επιτόκιο υπολογισμού της αξίας της επένδυσης, αλλά υπολογίζουμε το επιτόκιο

Διαβάστε περισσότερα

Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις)

Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) Ομόλογα (Τίτλοι σταθερού εισοδήματος, δικαιώματα και υποχρεώσεις) 1. Για τα ομόλογα μηδενικού τοκομεριδίου (zero coupon bonds) ισχύει ότι: 1) Συναλλάσσονται συνήθως υπέρ το άρτιο. 2) Καλύπτουν στον επενδυτή

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016

ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016 Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1. Μια ισόβια ασφάλιση, με ασφαλισμένο κεφάλαιο ύψους 1, πληρωτέο τη χρονική στιγμή του θανάτου του (x), περιλαμβάνει πρόσθετη κάλυψη (rider),

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...13 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...13 ΜΕΡΟΣ Ι: ΕΙΣΑΓΩΓΗ... 17 1 ΤΙ ΕΙΝΑΙ Η ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ;... 19 Το διευθυντικό στέλεχος ως αντιπρόσωπος...22 Ο κίνδυνος σε σχέση με τα κέρδη...24 Βασικές δεξιότητες της χρηματοοικονομικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Εισαγωγή στην Τιμολόγηση Παραγώγων Διωνυμικό Μοντέλο μιας Περιόδου

ΚΕΦΑΛΑΙΟ 2. Εισαγωγή στην Τιμολόγηση Παραγώγων Διωνυμικό Μοντέλο μιας Περιόδου ΚΕΦΑΛΑΙΟ 2 Εισαγωγή στην Τιμολόγηση Παραγώγων Διωνυμικό Μοντέλο μιας Περιόδου 2.1. Χρονική Αξία Χρήματος - Επιτόκια Αν ένα άτομο ή εταιρία Α κατέχει ένα χρηματικό ποσό P και δεν σκοπεύει να το χρησιμοποιήσει

Διαβάστε περισσότερα

Διαχείριση Χαρτοφυλακίου ΟΕΕ. Σεμινάριο

Διαχείριση Χαρτοφυλακίου ΟΕΕ. Σεμινάριο Διαχείριση Χαρτοφυλακίου ΟΕΕ Σεμινάριο 1 Ενότητες Διαχείριση Χαρτοφυλακίου ΚΙΝΔΥΝΟΣ ΟΜΟΛΟΓΙΕΣ ΜΕΤΟΧΕΣ ΚΙΝΔΥΝΟΣ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΥΠΟΔΕΙΓΜΑΤΑ ΜΕΤΡΑ ΑΞΙΟΛΟΓΗΣΗΣ ΤΗΣ ΑΠΟΔΟΣΗΣ ΧΑΡΤΟΦΥΛΑΚΙΟΥ 2 ΠΑΡΑΔΕΙΓΜΑ 1 Ένας

Διαβάστε περισσότερα

Κεφάλαιο 2. Πώς υπολογίζονται οι παρούσες αξίες. Αρχές Χρηµατοοικονοµικής των επιχειρήσεων

Κεφάλαιο 2. Πώς υπολογίζονται οι παρούσες αξίες. Αρχές Χρηµατοοικονοµικής των επιχειρήσεων Κεφάλαιο 2 Αρχές Χρηµατοοικονοµικής των επιχειρήσεων Πώς υπολογίζονται οι παρούσες αξίες McGraw-Hill/Irwin. Θέµατα που καλύπτονται 2-2 Μελλοντικές αξίες και παρούσες αξίες Αναζητώντας εύκολες λύσεις ιηνεκείς

Διαβάστε περισσότερα

MANAGEMENT OF FINANCIAL INSTITUTIONS

MANAGEMENT OF FINANCIAL INSTITUTIONS MANAGEMENT OF FINANCIAL INSTITUTIONS ΔΙΑΛΕΞΗ: «ΣΥΝΑΛΛΑΓΜΑΤΙΚΟΣ ΚΙΝΔΥΝΟΣ» (Foreign Exchange Risk) Πανεπιστήμιο Πειραιώς Τμήμα Χρηματοοικονομικής Καθηγητής Γκίκας Χαρδούβελης 1 ΠΕΡΙΕΧΟΜΕΝΑ Ορισμός Συναλλαγματικού

Διαβάστε περισσότερα

Αξιολόγηση Επενδύσεων ιαχρονική Αξία Χρήµατος

Αξιολόγηση Επενδύσεων ιαχρονική Αξία Χρήµατος Αξιολόγηση Επενδύσεων ιαχρονική Αξία Χρήµατος Βασικά Σηµεία ιάλεξης Ορισµός Επένδυσης Μελλοντική Αξία Επένδυσης Παρούσα Αξία Επένδυσης Αξιολόγηση Επενδυτικών Έργων Ορθολογικά Κριτήρια Μέθοδος της Καθαρής

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΙΣΤΟΠΟΙΗΣΗΣ (Α1)

ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΙΣΤΟΠΟΙΗΣΗΣ (Α1) ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΙΣΤΟΠΟΙΗΣΗΣ (Α1) 1. Η τυπική απόκλιση της τιμής ενός χρηματοοικονομικού στοιχείου αποτελεί μέτρο: (α) Αποδοτικότητας (β) Ρευστότητας (γ) Κινδύνου (δ) Κανένα από τα

Διαβάστε περισσότερα

ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ-ΔΕΟ41-ΙΟΥΝΙΟΣ 2007

ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ-ΔΕΟ41-ΙΟΥΝΙΟΣ 2007 1 Πειραιεύς, 23 Ιουνίου 20076 ΤΕΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ-ΔΕΟ41-ΙΟΥΝΙΟΣ 2007 Απαντήστε σε 3 από τα 4 θέματα (Άριστα 100 μονάδες) Θέμα 1. Α) Υποθέσατε ότι το trading desk της Citibank ανακοινώνει τα ακόλουθα στοιχεία

Διαβάστε περισσότερα

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ Όνομα: Επίθετο: Ημερομηνία: 20/2/2017 Πρωί: Απόγευμα: Θεματική ενότητα: Βα, Συνταξιοδοτικά Σχήματα & Κοινωνική ασφάλιση 1/18 1.Ποια από τα παρακάτω αληθεύουν ; α) Οι οικονομικές και οι δημογραφικές μεταβλητές

Διαβάστε περισσότερα

ΧΡΗΣΙΜΟΙ ΟΡΟΙ ΟΜΟΛΟΓΩΝ

ΧΡΗΣΙΜΟΙ ΟΡΟΙ ΟΜΟΛΟΓΩΝ A Δεδουλευμένος τόκος Τοκοχρεωλυτικό ομόλογο Accrued interest Amortized or amortizing bond Ο οφειλόμενος από τον εκδότη αλλά μη απαιτητός ακόμα από τον επενδυτή (κάτοχο του ομολόγου) τόκος που έχει σωρευτεί

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 5: Ονομαστικό και Πραγματικό Επιτόκιο Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Αποτελεσματικό ονομάζεται το χαρτοφυλάκιο το οποίο έχει τη μεγαλύτερη απόδοση για δεδομένο επίπεδο κινδύνου ή το μικρότερο κίνδυνο για δεδομένο επίπεδο απόδοσης. Το σύνολο των αποτελεσματικών χαρτοφυλακίων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραµµα Σπουδών: ΤΡΑΠΕΖΙΚΗ Θεµατική Ενότητα: ΤΡΑ-61 Στρατηγική Τραπεζών Ακαδηµαϊκό Έτος: 2012-2013 Τρίτη Γραπτή Εργασία Γενικές οδηγίες για την εργασία Όλες οι ερωτήσεις

Διαβάστε περισσότερα

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους

, όταν ο χρόνος αντιστοιχεί σε ακέραιες περιόδους Τμήμα Διεθνούς Εμπορίου Οικονομικά Μαθηματικά Καλογηράτου Ζ. Μονοβασίλης Θ. ΑΝΑΤΟΚΙΣΜΟΣ 4.. Εισαγωγή Στον σύνθετο τόκο (ή ανατοκισμό), στο τέλος κάθε περιόδου, ο τόκος και το κεφάλαιο αθροίζονται και το

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΟΙΚΟΝΟΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ FV Η συνάρτηση αυτή υπολογίζει την μελλοντική αξία μιας επένδυσης βάσει περιοδικών, σταθερών πληρωμών και σταθερού επιτοκίου. =FV(επιτόκιο; αριθμός περιόδων; δόση αποπληρωμής; παρούσα

Διαβάστε περισσότερα

Με την βοήθεια του Microsoft Excel μεταφέρουμε τα παραδείγματα σε ένα φύλλο εργασίας και στην συνέχεια λύνουμε την άσκηση που ακολουθεί.

Με την βοήθεια του Microsoft Excel μεταφέρουμε τα παραδείγματα σε ένα φύλλο εργασίας και στην συνέχεια λύνουμε την άσκηση που ακολουθεί. Εργαστήριο 9 ο Με την βοήθεια του Microsoft Excel μεταφέρουμε τα παραδείγματα σε ένα φύλλο εργασίας και στην συνέχεια λύνουμε την άσκηση που ακολουθεί. NPER Αποδίδει το πλήθος των περιόδων μιας επένδυσης,

Διαβάστε περισσότερα

Άρα η θεωρητική αξία του γραμματίου σήμερα με εφαρμογή του προαναφερομένου τύπου (1) θα είναι

Άρα η θεωρητική αξία του γραμματίου σήμερα με εφαρμογή του προαναφερομένου τύπου (1) θα είναι Ομάδα Α Θέμα 1 ο Έστω ότι ένας επενδυτής αποταμιευτής αγοράζει σήμερα ένα έντοκο γραμμάτιο διάρκειας 180 ημερών, που εκδόθηκε πριν από 60 ημέρες. Η ετήσια απόδοση του είναι 5%. Το δημόσιο οφείλει να του

Διαβάστε περισσότερα

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104 ΘΕΜΑ 3 ΙΑ) Η οικονομική αξία της μετοχής BC θα υπολογιστεί από το συνδυασμό των υποδειγμάτων α) D D προεξόφλησης IV για τα πρώτα έτη 05 και 06 και β) σταθερής k k αύξησης μερισμάτων D IV (τυπολόγιο σελ.

Διαβάστε περισσότερα

εκτοκιζόµενοι τόκοι ενσωµατώνονται στο κεφάλαιο και ανατοκίζονται. Εφαρµόζεται τ και 4 1=

εκτοκιζόµενοι τόκοι ενσωµατώνονται στο κεφάλαιο και ανατοκίζονται. Εφαρµόζεται τ και 4 1= ΑΣΚΗΣΗ Έστω τραπεζική κατάθεση ταµιευτηρίου µε ετήσιο επιτόκιο 8%. Ποιο είναι το πραγµατικό (effective) ετήσιο επιτόκιο, αν ο εκτοκισµός γίνεται κάθε τρίµηνο (εξάµηνο); Το πραγµατικό επιτόκιο είναι η ετήσια

Διαβάστε περισσότερα

Θεοδωράκη Ελένη Μαρία

Θεοδωράκη Ελένη Μαρία Εισαγωγή στην ασφάλεια Θεοδωράκη Ελένη Μαρία elma.theodoraki@aegean.gr Κεφάλαιο (Principal) ονομάζουμε το αρχικό ποσό που διαθέτουμε για μια επένδυση, για μία χρονική περίοδο Συσσωρευμένη αξία (accumulated

Διαβάστε περισσότερα

Διεθνείς Αγορές Χρήματος και Κεφαλαίου. Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων

Διεθνείς Αγορές Χρήματος και Κεφαλαίου. Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων Διεθνείς Αγορές Χρήματος και Κεφαλαίου Ομολογίες, Διάρκεια, Προθεσμιακά Επιτόκια, Ανταλλαγές Επιτοκίων 1 Η ομολογία είναι ένα εμπορικό έγγραφο, με το οποίο η εκδότρια εταιρεία αναγνωρίζει (ομολογεί) ότι

Διαβάστε περισσότερα

Χρηματοοικονομική Ι. Ενότητα 7: Μετοχικοί τίτλοι. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι

Χρηματοοικονομική Ι. Ενότητα 7: Μετοχικοί τίτλοι. Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι Χρηματοοικονομική Ι Ενότητα 7: Μετοχικοί τίτλοι Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Οικονομικά Μαθηματικά

Οικονομικά Μαθηματικά Οικονομικά Μαθηματικά Ενότητα 4: Ανατοκισμός Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ

ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΞΑΜΗΝΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΑΤΕΙ ΠΑΤΡΩΝ Απλός Τόκος Εφαρμόζεται στις βραχυπρόθεσμες οικονομικές πράξεις, συνήθως μέχρι τριών μηνών ή το πολύ μέχρι ενός έτους.

Διαβάστε περισσότερα

C n = D [(l + r) n - 1]/r. D = C n r/[(l + r) n - 1]

C n = D [(l + r) n - 1]/r. D = C n r/[(l + r) n - 1] Ο υπολογισμός των δόσεων που οφείλει ένας δανειζόμενος στον δανειστή του, για την εξόφληση ενός χρέους, βασίζεται στις προηγούμενες εξισώσεις και εξαρτάται από την ημερομηνία αξιολόγησης. Σε αυτές τις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΑΠΟΤΙΜΗΣΗ ΑΞΙΟΓΡΑΦΩΝ ΣΤΑΘΕΡΟΥ ΕΙΣΟΔΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 4ο ΑΠΟΤΙΜΗΣΗ ΑΞΙΟΓΡΑΦΩΝ ΣΤΑΘΕΡΟΥ ΕΙΣΟΔΗΜΑΤΟΣ 80 ΚΕΦΑΛΑΙΟ 4ο ΑΠΟΤΙΜΗΣΗ ΑΞΙΟΓΡΑΦΩΝ ΣΤΑΘΕΡΟΥ ΕΙΣΟΔΗΜΑΤΟΣ Στο προηγούμενο κεφάλαιο μάθατε τα βασικά χαρακτηριστικά των αξιογράφων σταθερού εισοδήματος. Οι έννοιες αυτές είναι απαραίτητες για την αποτίμηση

Διαβάστε περισσότερα

Εφαρμογές με Ράντες. 1 Εισαγωγή. 2 Απόσβεση στοιχείων. Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι. - Απόσβεση

Εφαρμογές με Ράντες. 1 Εισαγωγή. 2 Απόσβεση στοιχείων. Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι. - Απόσβεση Εφαρμογές με Ράντες Σύνοψη Οι βασικές έννοιες αυτού του κεφαλαίου είναι - Απόσβεση - Σύνθετη παραγωγική διάρκεια παγίων - Κεφαλαιοποιημένο κόστος - Καθαρά παρούσα αξία - Εσωτερικός βαθμός απόδοσης - Αξιολόγηση

Διαβάστε περισσότερα

Ομόλογα. Ορισμός, χαρακτηριστικά. Στοιχεία αποτίμησης ομολόγων 27/3/2014. Ομόλογα Ελληνικού Δημοσίου (ΟΕΔ) Ομόλογα Χαρακτηριστικά, Είδη

Ομόλογα. Ορισμός, χαρακτηριστικά. Στοιχεία αποτίμησης ομολόγων 27/3/2014. Ομόλογα Ελληνικού Δημοσίου (ΟΕΔ) Ομόλογα Χαρακτηριστικά, Είδη Ομόλογα Ελληνικού Δημοσίου (ΟΕΔ) Ομόλογα Ομόλογα Χαρακτηριστικά, Είδη Ομόλογα Ελληνικού Δημοσίου (ΟΕΔ) Τιμή και απόδοση ομολόγων Τα ΟΕΔ διατίθενται στην πρωτογενή αγορά είτε με δημοπρασία (auction), είτε

Διαβάστε περισσότερα

ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου κόστος ευκαιρίας των κεφαλαίων Υποθέσεις υπολογισμού Στάδια υπολογισμού Πηγές χρηματοδότησης (κεφαλαίου)

ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου κόστος ευκαιρίας των κεφαλαίων Υποθέσεις υπολογισμού Στάδια υπολογισμού Πηγές χρηματοδότησης (κεφαλαίου) ΚΟΣΤΟΣ ΚΕΦΑΛΑΙΟΥ Κόστος κεφαλαίου Ορισμός: είναι το κόστος ευκαιρίας των κεφαλαίων που έχουν όλοι οι επενδυτές της εταιρείας (μέτοχοι και δανειστές) Κόστος ευκαιρίας: είναι η απόδοση της καλύτερης εναλλακτικής

Διαβάστε περισσότερα

ΠΡΑΞΗ ΕΚΤΕΛΕΣΤΙΚΗΣ ΕΠΙΤΡΟΠΗΣ 76/

ΠΡΑΞΗ ΕΚΤΕΛΕΣΤΙΚΗΣ ΕΠΙΤΡΟΠΗΣ 76/ Η ΕΚΤΕΛΕΣΤΙΚΗ ΕΠΙΤΡΟΠΗ ΠΡΑΞΗ ΕΚΤΕΛΕΣΤΙΚΗΣ ΕΠΙΤΡΟΠΗΣ 76/12.2.2016 Θέμα: Υιοθέτηση Κατευθυντήριων Γραμμών της Ευρωπαϊκής Αρχής Ασφαλίσεων και Επαγγελματικών Συντάξεων (EIOPA) σχετικά με την μέθοδο εξέτασης

Διαβάστε περισσότερα

Υπολογισμός αρχικού ποσού C 0, όταν είναι γνωστό το τελικό ποσό C t Από την εξίσωση (2) και επιλύνοντας ως προς C 0 ή από την εξίσωση (3) λαμβάνουμε:

Υπολογισμός αρχικού ποσού C 0, όταν είναι γνωστό το τελικό ποσό C t Από την εξίσωση (2) και επιλύνοντας ως προς C 0 ή από την εξίσωση (3) λαμβάνουμε: Ημερομηνία αξιολόγησης Η αξία του κεφαλαίου δεν είναι σταθερή στο χρόνο, και κάθε εξίσωση που περιλαμβάνει το επιτόκιο είναι εξίσωση αξίας, γιατί απεικονίζει ισοδυναμία μεταξύ δυο χρηματικών ποσών σε μια

Διαβάστε περισσότερα

Τραπεζική Λογιστική Θέματα εξετάσεων Σεπτεμβρίου 15 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2015

Τραπεζική Λογιστική Θέματα εξετάσεων Σεπτεμβρίου 15 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2015 Τραπεζική Λογιστική Θέματα εξετάσεων Σεπτεμβρίου 15 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2015 Άσκηση 1 Η τράπεζα Α αγόρασε την 31.12.2014,

Διαβάστε περισσότερα

Τελική ή μέλλουσα αξία (future value) ή τελικό κεφάλαιο

Τελική ή μέλλουσα αξία (future value) ή τελικό κεφάλαιο Όρος Τελική ή μέλλουσα αξία (future value) ή τελικό κεφάλαιο Απλός τόκος Έτος πολιτικό Έτος εμπορικό Έτος μικτό Τοκάριθμος Είδη καταθέσεων Συναλλαγματική Γραμμάτιο σε διαταγή Ονομαστική αξία Παρούσα αξία

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΕΠΙΜΕΛΕΙΑ: ρ. ΑΠΟΣΤΟΛΟΣ ΑΣΙΛΑΣ ΑΚΑ ΗΜΑΙΚΟ ΕΤΟΣ 2012-2013 1 ΠΕΡΙΓΡΑΜΜΑ ΥΛΗΣ 1. Απλός τόκος 2. Ανατοκισµός 3. Ράντες 4. άνεια 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ι ΕΑ ΤΟΥ ΕΠΙΤΟΚΙΟΥ

Διαβάστε περισσότερα