Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1"

Transcript

1 Ορμή - Κρούσεις, ΦΥΣ Διαλ.19 1

2 ΦΥΣ Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση (x,y) και υπάρχει και µια τρίτη εξίσωση λόγω διατήρησης της µηχανικής ενέργειας Αν m 1, m 2, v 1, v 2 είναι γνωστά τότε έχουµε 3 εξισώσεις µε 4 αγνώστους p' 1x, p' 1y, p' 2x, p' 2y Ø Εποµένως χρειαζόµαστε κάτι ακόµα για τη τελική κατάσταση

3 ΦΥΣ Διαλ.19 3 Κρούσεις σε 2 διαστάσεις - Παράδειγµα Ø Το σώμα 1 πριν την κρούση κινείται με ταχύτητα v 1i ενώ το σώμα 2 είναι σε ηρεμία v 2i =0 Πριν τη κρούση Ø Στη x-διεύθυνση η αρχική ορμή είναι m 1 v 1i Ø Στη y-διεύθυνση η αρχική ορμή είναι μηδέν q Μετά την κρούση τα σώματα κινούνται με κάποιες γωνίες θ και φ ως προς την x-διεύθυνση Μετά την κρούση Το σώμα 1 έχει ταχύτητα:! 1x! 2x =! 1 cos" =! 2 cos" q Μετά την κρούση τα σώματα έχουν συνιστώσες ταχύτητας στη y-διεύθυνση. Το σώμα 1 έχει ταχύτητα: ενώ το σώμα 2 έχει ταχύτητα:! 1y! 2y =! 1 sin" =! 2 sin" Η ορµή στην x-διεύθυνση είναι m 1! 1 cos" + m 2! 2 cos# ( ) Η ορµή στην y-διεύθυνση είναι m 1! 2 sin" + m 2! 2 sin #$! m 1 " 2 sin# $ m 2 " 2 sin%! 2y =! 2 sin ("#) (κανονικά )

4 Μεθοδολογία λύσης ασκήσεων q Προσδιορίστε ένα σύστηµα συντεταγµένων και ορίστε τις ταχύτητες των σωµάτων του συστήµατος ως προς τους άξονες αυτού του συστήµατος q Σχεδιάστε και προσδιορίστε όλα τα διανύσµατα των ταχυτήτων και ότι άλλη πληροφορία σας δίνεται στο πρόβληµα q Γράψτε τις εξισώσεις για την x- και y- συνιστώσα της ορµής κάθε σώµατος πριν και µετά την κρούση. Μην ξεχνάτε τα απαραίτητα πρόσηµα ανάλογα µε τη διεύθυνση q Γράψτε τις εξισώσεις για την ολική ορµή του συστήµατος στην x-διεύθυνση πριν και µετά την κρούση και εξισώστε Επαναλάβετε και για την ολική ορµή στην y-διεύθυνση q Εξετάστε το είδος της κρούσης: Ø Για µη ελαστική κρούση, η µηχανική ενέργεια δεν διατηρείται και θα χρειάζεστε και άλλες πληροφορίες από το πρόβληµα. Ø Για πλαστική κρούση, τα σώµατα έχουν την ίδια ταχύτητα µετά την κρούση. Λύστε τις εξισώσεις των ορµών ως προς τους αγνώστους. Ø Για ελαστική κρούση, η µηχανική ενέργεια διατηρείται. Εξισώστε την µηχανική ενέργεια πριν και µετά την κρούση για να βρείτε επιπλέον σχέσεις µεταξύ των ταχυτήτων ΦΥΣ Διαλ.19 4

5 Κρούσεις - Παραδείγματα ΦΥΣ Διαλ.19 5 q Θα αποδείξουμε ότι σε ελαστική μη κεντρική κρούση δύο σωμάτων ίδιας μάζας, ένα εκ των οποίων αρχικά είναι ακίνητο, η γωνία μεταξύ των διανυσμάτων των τελικών ταχυτήτων είναι πάντοτε 90 ο m 1 v 1 Πριν ŷ m 2 q Από διατήρηση της ορμής έχουμε: (1) ˆ x mv = m! v 1 cos" 1 + m! v 2 cos" 2 (2) ˆ y = m! v 1 sin" 1 # m! v 2 sin" 2 q Από διατήρηση της ενέργειας έχουμε: 1 2 mv = 1 2 m v 12! m v! 2 2 (3)! v 2 1 = v 1 " 2 + v "! v 2 1 # v 1 " 2 # v " = 0 Έχουμε 3 εξισώσεις και θέλουμε να ξέρουμε θ 1 +θ 2 xˆ θ 1 θ 2! v 1 = v 1 " cos# 1 + v " 2 cos# 2! 0 = " v 1 sin# 1 $ " v 2 sin# 2 Μετά

6 ΦΥΣ Διαλ.19 6 Παράδειγμα (συνέχεια) Υψώνουμε στο τετράγωνο τις σχέσεις (1) και (2) οπότε και παίρνουμε (1) v 1 = v 1! cos" 1 + v! 2 cos" 2! v 2 1 = v 1 " 2 cos 2 # 1 + " v cos 2 # v 1 " v " 2 cos# 1 cos# 2 (2) 0 = v 1! sin" 1 #! v 2 sin" 2! 0 = v 1 " 2 sin 2 # 1 + v " sin 2 # 2 $ 2 v 1 " v " 2 sin# 1 sin# 2 Προσθέτοντας τις δύο παραπάνω σχέσεις παίρνουμε: v 2 1 = v 1! 2 + v! + 2 v 1! v! 2 (cos" 1 cos" 2 # sin" 1 sin" 2 ) cos(! 1 +! 2 ) = cos! 1 cos! 2 " sin! 1 sin! 2 Άρα καταλήγουμε με την σχέση: (3) v 2 1 = v 1! 2 + v! + 2 v 1! v! 2 cos(" 1 + " 2 ) # v 2 1! v 1 " 2! v " = 2 v 1 " v " 2 cos(# 1 + # 2 ) Το αριστερό μέλος όμως είναι η (3) και επομένως 2 v 1! v! 2 cos(" 1 + " 2 ) = 0 # cos(" 1 + " 2 ) = 0 # " 1 + " 2 = 90 0 Σε 2-D τα σώματα είναι 90 ο μακριά. Για 1-D η θ 1 δεν ορίζεται

7 ΦΥΣ Διαλ.19 7 Παράδειγμα Ελαστική κρούση που περιέχει μάζες και ελατήρια. v 1 v 2 m 1 m 2 Tη χρονική στιγμή t', η μάζα m 1 έχει ταχύτητα v' 1 και το ελατήριο συσπειρώνεται. Ποια είναι η ταχύτητα v' 2 τη στιγμή t'? Ø Από διατήρηση της ορμής:!!!! m 1 v 1 + m 2 v 2 = m 1 v 1! + m 2 v! 2 Mόνο η v' 2 είναι άγνωστη Ø Από διατήρηση της ενέργειας: 1 2 m 1v m 2v = 1 2 m v 12! m v! Αυτή η σχέση δίνει την συσπείρωση του ελατηρίου την χρονική στιγμή t' kx 2

8 ΦΥΣ Διαλ.19 8 Παράδειγμα - Πλαστική κρούση 1-D m v Πριν M M+m Μετά Από διατήρηση της ορμής: m v! + 0 = (m + M) v!!! v! " =! m v M + m!! v Αν οι μάζες ήταν ίδιες τότε Μ=m και η παραπάνω σχέση δίνει: v! = 2 Παρατηρούμε ότι η κινητική ενέργεια πριν και μετά την κρούση είναι: K i = 1 2 mv2 K = 1 2 (2m) v! 2 = m v2 4 = K i 2 "!K = K " K i = "m v2 4 Ένα μέρος της ενέργειας έχει χαθεί σε μορφή θερμότητας.

9 ΦΥΣ Διαλ.19 9 Παράδειγμα Πλαστική κρούση 2-D m v 30 ο 45 ο u=? 2m θ=? v m Πριν την κρούση p x = mvcos mvcos45 0 p y =!mvsin mvsin45 0 Σύμφωνα με τη διατήρηση της ορμής: p x =! p x p y =! p y (1) (2) Ποια είναι η τελική ταχύτητα u και η γωνία θ? Η ορμή p είναι ένα διάνυσμα. Επομένως όπως έχουμε δει αυτό σημαίνει διατήρηση ως προς κάθε κατεύθυνση (αν ήμασταν στο χώρο 3-d) Μετά την κρούση! p x = 2m" cos#! p y = 2m" sin# Δηλαδή 2 εξισώσεις με 2 αγνώστους (υ και θ) Διαιρώντας την (1) με την (2) έχουμε: 1 2! 1 2 = tan" # " = 7.5 Aπό την εξίσωση: p x = p" x! mv( + ) = 2m# cos 7.5! # = 0.79v

10 ΦΥΣ Διαλ Προβλήματα ορμής/ώθησης με μεταβαλλόμενη μάζα Τρένο κινείται με σταθερή ταχύτητα, v=1m/sec, κάτω από ένα σιλό το οποίο αποθέτει σιτάρι με ρυθμό 1kgr/sec. Τι δύναμη χρειάζεται για να συνεχίσει να κινείται το τρένο? Λύση Ποιο είναι το σύστημά μας? Το τρένο και το σιτάρι στο τρένο dm =1kgr /sec ρυθμός αύξησης του σιταριού dt v Σιτάρι που πέφτει: p x = 0 αλλά υπάρχει p y. Χτυπά στο τρένο, οπότε p y= 0, ενώ αναπτύσσει p x To τρένο πρέπει να προσφέρει τη δύναμη για την αλλαγή αυτή της ορμής Το τρένο έχει σαν «εργαλεία» την κάθετη δύναμη και την τριβή Το σιτάρι ασκεί στο τρένο ίση και αντίθετη δύναμη και το τρένο επιβραδύνεται Η μηχανή είναι αυτή που πρέπει να δώσει την ώθηση που χρειάζεται

11 ΦΥΣ Διαλ Τρένο (συνέχεια) Θεωρείστε ένα μικρό χρονικό διάστημα Δt M = M i + dm dt!t p x i = M i v p x αφού θέλουμε v τρένου =σταθ. I x =!p x = F x!t = p x " = M i + dm # $ dt!t % & ' v " p x i F x = dm dt v =1 m sec!1kgr sec =1N = v dm dt!t # Αλλαγή της μάζας του τρένου Αυτή είναι η δύναμη που πρέπει να αναπτυχθεί από την μηχανή του τρένου ώστε το τρένο να εξακολουθεί να κινείται με σταθερή ταχύτητα

12 ΦΥΣ Διαλ ο Παράδειγμα - Πύραυλοι, αεροπλάνα κλπ q Κίνηση πυραύλων Κλασσικό πρόβλημα Πύραυλος με αρχική μάζα M Π Εκτοξεύει μάζα με ταχύτητα V εκτ (σχετικά με τον πύραυλο). Ποια είναι η ταχύτητα όταν η μάζα του είναι m Λύση Για ένα απομονωμένο σύστημα (πύραυλος-εξάτμιση) ξέρουμε ότι dp dt = 0! p = "#$%. Ας υποθέσουμε ότι η μάζα του πυραύλου αλλάζει από Μ+dm σε Μ και η ταχύτητά του από v σε v+dv dm dm Μ Μ i =M+dm v v-v εκτ Μ v+dv

13 Πύραυλος ΦΥΣ Διαλ Εφαρμόζοντας διατήρηση της ορμής έχουμε: p i = p! ( M + "m)v = M v + "v ( ) + "m( v # v $%& ) ( )! Mv + v"m = Mv + M "v + v"m # v $%& "m! M "v = v #$% "m Έστω τώρα ότι Δt 0 τότε Δm dm και ΔΜ dm ενώ dm = -dm. Δt 0 dm! Mdv = "v #$% dm! dv = "v #$% M v M dm! " dv = #v $%& v i "! v # v i = #v $%& ln M M i M ( )! v = v i " v #$% ln M " ln M i M M ( ) Mi %! v = v i + v "#$ ln M ( i ' * Απειρίζεται καθώς το M & ) 0 Αν η αρχική µάζα του πυραύλου είναι M = 10 x m è v = 2.3v εκτ Αν η µάζα είναι Μ = 100 x m è v = 4.6v εκτ Το κέρδος σε ταχύτητα πολύ μικρό μεγαλώνοντας την μάζα του πυραύλου

Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις

Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις Κεφάλαιο 8 Ορμή, ώθηση, κρούσεις Στόχοι 8 ου Κεφαλαίου Ορμή και ώθηση. Διατήρηση της ορμής. Μη ελαστικές κρούσεις. Ελαστικές κρούσεις. Κέντρο μάζας. Η μεταβολή της ορμής ενός σωματίου κατά τη διάρκεια

Διαβάστε περισσότερα

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg " L & $ !

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg  L & $ ! Παράδειγµα Ενέργειες Το ακόλουθο πρόβληµα µπορεί να λυθεί είτε µε χρήση των νόµων του Newton ( F=mα ) ή Διατήρηση ενέργειας. Ένα µικρό τµήµα σχοινιού κρέµεται προς τα κάτω µέσα από µια τρύπα σε λείο τραπέζι.

Διαβάστε περισσότερα

Έργο Ενέργεια Παραδείγµατα

Έργο Ενέργεια Παραδείγµατα ΦΥΣ 131 - Διαλ.17 1 Έργο Ενέργεια Παραδείγµατα Mn Επανάληψη Έργο δύναμης W = Έργο συνισταμένης δυνάμεων W = E "#$ Βαρυτική δυναμική ενέργεια U g " 1 2 F d r Ελαστική δυναμική ενέργεια U " = 1 2 kx 2 ΦΥΣ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1 Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 07 Ορμή Κρούσεις ΦΥΣ102 1 Ορμή και Δύναμη Η ορμή p είναι διάνυσμα που ορίζεται από

Διαβάστε περισσότερα

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1 Έργο Ενέργεια ΦΥΣ 131 - Διαλ.15 1 ΦΥΣ 131 - Διαλ.15 2 Έργο, Κινητική Ενέργεια και Δυναμική Ενέργεια q Βέλος εκτοξεύεται από ένα τόξο: Ø Η δύναμη μεταβάλλεται καθώς το τόξο επανέρχεται στην αρχική του θέση

Διαβάστε περισσότερα

Κεφάλαιο Μ9. Ορµή και κρούση

Κεφάλαιο Μ9. Ορµή και κρούση Κεφάλαιο Μ9 Ορµή και κρούση Μοντέλα ανάλυσης µε βάση την ορµή Η δύναµη και η επιτάχυνση συνδέονται µέσω του δεύτερου νόµου του Νεύτωνα. Όταν η δύναµη και η επιτάχυνση µεταβάλλονται ως προς τον χρόνο, η

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις. Θέµα Α. (α) υ 2 = 0

Ενδεικτικές Λύσεις. Θέµα Α. (α) υ 2 = 0 ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Σε κάθε κρούση ανάµεσα σε δύο σώµατα µικρών διαστάσεων : (ϐ) η µεταβολή της ορµής του ενός είναι αντίθετη της µεταβολής της ορµής

Διαβάστε περισσότερα

Κίνηση σε δύο διαστάσεις

Κίνηση σε δύο διαστάσεις ΦΥΣ 131 - Διαλ.07 1 Κίνηση σε δύο διαστάσεις Διαδρομή του σώματος Τελική θέση Αρχική θέση Η κίνηση που κάνει το αυτοκίνητο καθώς στρίβει περιορίζεται σε ένα οριζόντιο επίπεδο - Η αλλαγή στο διάνυσμα θέσης

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΕΛΑΤΗΡΙΟ ΚΑΙ ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ

ΕΛΑΤΗΡΙΟ ΚΑΙ ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΕΛΑΤΗΡΙΟ ΚΑΙ ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ Δύο ελαστικές σφαίρες Σ1 και Σ ίδιας µάζας είναι συνδεδεµένες µεταξύ τους µε ιδανικό ελατήριο σταθεράς k το οποίο βρίσκεται στο φυσικό του µήκος lo. Οι σφαίρες αρχικά ηρεµούν

Διαβάστε περισσότερα

Κέντρο Μάζας - Παράδειγμα

Κέντρο Μάζας - Παράδειγμα Κέντρο Μάζας - Παράδειγμα ΦΥΣ 131 - Διαλ.1 1 Ο Ρωμαίο (m R =77kg) διασκεδάζει την Ιουλιέτα (m I =55kg) παίζοντας την κιθάρα του καθισμένος στην πρύμνη της βάρκας τους (μήκους.7 m) που είναι ακίνητη στα

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ

ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Σε κάθε κρούση ισχύει α. η αρχή διατήρησης της μηχανικής ενέργειας. β. η αρχή διατήρησης της ορμής. γ. η αρχή διατήρησης του ηλεκτρικού φορτίου. δ. όλες οι παραπάνω αρχές.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη

Διαβάστε περισσότερα

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης

2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική

Διαβάστε περισσότερα

ΘΕΜΑ Α ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1

ΘΕΜΑ Α ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1 1 ΕΡΩΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Α 1. Να επιλέξετε τη σωστή απάντηση. Μια κρούση δύο σφαιρών λέγεται ελαστική, όταν: α. Η κινητική ενέργεια κάθε σφαίρας διατηρείται σταθερή. β. Η ορμή κάθε σφαίρας διατηρείται σταθερή.

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ

ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ ΕΡΓΑΣΙΑ 3 ΟΡΜΗ-ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ Παρατηρήσεις-Υποδείξεις Μετωπική λέγεται η κρούση κατά την οποία τα διανύσματα των ταχυτήτων πριν την κρούση των σωμάτων που συγκρούονται βρίσκονται στην ίδια ευθεία.

Διαβάστε περισσότερα

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα). Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6 1. Ένα αυγό µάζας 0.250kgr πέφτει από ένα ύψος 2.0 στο έδαφος. (α) Υπολογίστε την ώθηση που εξασκεί η δύναµη της βαρύτητας στο αυγό κατά τη διάρκεια της πτώσης του στο έδαφος. (β)

Διαβάστε περισσότερα

Κίνηση σε μία διάσταση

Κίνηση σε μία διάσταση Κίνηση σε μία διάσταση ΦΥΣ 131 - Διαλ.5 1 q Ανακεφαλαιώνοντας θέσης τροχιάς μετατόπισης Δx = x f - x i, χρονικού διαστήματος Δ = f i, μέση ταχύτητα v = x x στιγμιαία ταχύτητα x v = lim " = d x d παράγωγος

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

Mηχανή Atwood µε κινούµενη τροχαλία

Mηχανή Atwood µε κινούµενη τροχαλία ΦΥΣ 131 - Διαλ.11 1 Mηχανή Atwood µε κινούµενη τροχαλία Θεωρείστε τη µηχανή Atwood του σχήµατος. (α) Να γραφούν οι τρεις εξισώσεις Fmα. Θεωρείστε θετική τη φορά προς τα πάνω. (β) Να βρεθεί η επιτάχυνση

Διαβάστε περισσότερα

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1 Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v

Διαβάστε περισσότερα

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.

Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου. Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη

Διαβάστε περισσότερα

Παράδειγµα διατήρησης στροφορµής

Παράδειγµα διατήρησης στροφορµής Παράδειγµα διατήρησης στροφορµής ΦΥΣ 3 - Διαλ.6 Κολόνα πέφτει σε γίγαντα. Δίνονται η µάζα του γίγαντα Μ, της κολόνας m, το µήκος της κολόνας l, η ταχύτητα της κολόνας v. H κίνηση γίνεται σε λεία επιφάνεια.

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Διατήρηση Ορμής Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός htt://hyiccore.wordre.co/ Βασικές Έννοιες Μέχρι τώρα έχουμε ασχοληθεί με την μελέτη ενός σώματος και μόνο. Πλέον

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 6 1. Ένα αυγό µάζας 0.250kg πέφτει από ένα ύψος 2.0 m στο έδαφος. (α) Υπολογίστε την ώθηση που εξασκεί η δύναµη της βαρύτητας στο αυγό κατά τη διάρκεια της πτώσης του στο έδαφος. (β)

Διαβάστε περισσότερα

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ.. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Σώμα μάζας = g κινείται σε λείο οριζόντιο επίπεδο με ταχύτητα υ μέτρου υ = 5 /s συγκρούεται

Διαβάστε περισσότερα

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.

1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1. 1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα

Διαβάστε περισσότερα

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου

ΦΥΣ Διάλ Άλγεβρα. 1 a. Άσκηση για το σπίτι: Διαβάστε το παράρτημα Β του βιβλίου ΦΥΣ 131 - Διάλ. 4 1 Άλγεβρα a 1 a a ( ± y) a a ± y log a a 10 log a ± logb log( ab ± 1 ) log( a n ) n log( a) ln a a e ln a ± ln b ln( ab ± 1 ) ln( a n ) nln( a) Άσκηση για το σπίτι: Διαβάστε το παράρτημα

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x

Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= 1 s ). Αν η ταχύτητα στη θέση x Εισαγωγή στις Φυσικές Επιστήμες (4 7 09) Μηχανική ΘΕΜΑ Α. Η επιτάχυνση ενός σωματιδίου ως συνάρτηση της θέσης x δίνεται από τη σχέση ax ( ) = bx, όπου b σταθερά ( b= s ). Αν η ταχύτητα στη θέση x 0 = 0

Διαβάστε περισσότερα

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Νοεµβρίου-2008

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Νοεµβρίου-2008 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 3 η Πρόοδος: 5-Νοεµβρίου-008 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Η εξέταση αποτελείται από µέρη. Το

Διαβάστε περισσότερα

Ορμή. Απλούστερη περίπτωση: σύστημα δυο σωματίων, μάζας m 1 και m 2 σε αποστάσεις x 1 και x 2, αντίστοιχα, από την αρχή ενός συστήματος συντεταγμένων

Ορμή. Απλούστερη περίπτωση: σύστημα δυο σωματίων, μάζας m 1 και m 2 σε αποστάσεις x 1 και x 2, αντίστοιχα, από την αρχή ενός συστήματος συντεταγμένων Y Ορμή ΚΕΝΤΡΟ ΜΑΖΑΣ Όταν ένα σώμα περιστρέφεται ή ταλαντεύεται κατά την κίνησή του, υπάρχει ένα σημείο του σώματος που λέγεται Κέντρο Μάζας, το οποίο κινείται με τον ίδιο τρόπο με τον οποίο θα κινιόταν

Διαβάστε περισσότερα

Λυμένες ασκήσεις. Έργο σταθερής δύναμης

Λυμένες ασκήσεις. Έργο σταθερής δύναμης Λυμένες ασκήσεις Έργο σταθερής δύναμης 1. Στο σώμα που απεικονίζεται δίπλα τα μέτρα των δυνάμεων είναι F = 20 N, F 1 = 20 N, T = 5 N, B = 40 N. Το σώμα μετατοπίζεται οριζόντια κατά S = 10 m. Να βρεθούν

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Προτεινόμενες Λύσεις Πρόβλημα-1 (15 μονάδες) Μια

Διαβάστε περισσότερα

Κίνηση με σταθερή επιτάχυνση, α(t) =σταθ.

Κίνηση με σταθερή επιτάχυνση, α(t) =σταθ. ΦΥΣ 111 - Διαλ.6 1 Κίνηση με σταθερή επιτάχυνση, α() =σταθ. Από την εξίσωση κίνησης = a( )d + Αντικαθιστώντας στην x = x + ( )d x = x + ( a + )d = x + ( a)d + d = a + (1) x = x + 1 a + () Λύνοντας ως προς

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη

Διαβάστε περισσότερα

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση

ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Κινηµατική ΦΥΣ 111 - Διαλ.04 2 Σύνοψη εννοιών Κινηµατική: Περιγραφή της κίνησης ενός σώµατος Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Στιγµιαία Κίνηση - Τροχιές ΦΥΣ 111 - Διαλ.04 3!

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Β Λυκείου. ~ Ορμή Διατήρηση ορμής ~

Διαγώνισμα Φυσικής Β Λυκείου. ~ Ορμή Διατήρηση ορμής ~ Διαγώνισμα Φυσικής Β Λυκείου ~ Ορμή Διατήρηση ορμής ~ Θέμα Α Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση. 1) Σε μία πλαστική κρούση δύο σωμάτων: i) Κάθε σώμα υφίσταται μόνιμη παραμόρφωση και

Διαβάστε περισσότερα

ΦΥΣ Διαλ Δυναµική

ΦΥΣ Διαλ Δυναµική ΦΥΣ 131 - Διαλ.08 1 Δυναµική Ø F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Ø Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Ø Γιατί σώµατα κινούνται µε το τρόπο που κινούνται q Θεµελιώδεις νόµοι της µηχανικής:

Διαβάστε περισσότερα

Φυσική Γ Λυκείου. Ορμή. Ορμή συστήματος σωμάτων Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν. Θετικού προσανατολισμού

Φυσική Γ Λυκείου. Ορμή. Ορμή συστήματος σωμάτων Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν. Θετικού προσανατολισμού Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν Φυσική Γ Λυκείου Θετικού προσανατολισμού Ορμή Ορμή Ρ ενός σώματος ονομάζουμε το διανυσματικό μέγεθος που έχει μέτρο το γινόμενο της μάζας m του σώματος επί την ταχύτητά

Διαβάστε περισσότερα

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση Α.1. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

4.1. Κρούσεις. Κρούσεις. 4.1.Ταχύτητες κατά την ελαστική κρούση Η Ορμή είναι διάνυσμα. 4.3.Κρούση και Ενέργεια.

4.1. Κρούσεις. Κρούσεις. 4.1.Ταχύτητες κατά την ελαστική κρούση Η Ορμή είναι διάνυσμα. 4.3.Κρούση και Ενέργεια. 4.1.. 4.1.Ταχύτητες κατά την ελαστική κρούση. Σε λείο οριζόντιο επίπεδο κινείται ένα σώμα Α μάζας m 1 =0,2kg με ταχύτητα υ 1 =6m/s και συγκρούεται κεντρικά και ελαστικά με δεύτερο σώμα Β μάζας m 2 =0,4kg.

Διαβάστε περισσότερα

16. Να γίνει µετατροπή µονάδων και να συµπληρωθούν τα κενά των προτάσεων: α. οι τρεις ώρες είναι... λεπτά β. τα 400cm είναι...

16. Να γίνει µετατροπή µονάδων και να συµπληρωθούν τα κενά των προτάσεων: α. οι τρεις ώρες είναι... λεπτά β. τα 400cm είναι... 1. Ο νόµος του Hooke υποστηρίζει ότι οι ελαστικές παραµορφώσεις είναι.των...που τις προκαλούν. 2. Ο τρίτος νόµος του Νεύτωνα υποστηρίζει ότι οι δυνάµεις που αναφέρονται στο νόµο αυτό έχουν... µέτρα,......

Διαβάστε περισσότερα

Ασκήσεις (διάφορες, στροφορμής και δυναμικής συστήματος σωματιδίων)

Ασκήσεις (διάφορες, στροφορμής και δυναμικής συστήματος σωματιδίων) Προσπαθείστε να λύσετε τις: Ασκήσεις (διάφορες, στροφορμής και δυναμικής συστήματος σωματιδίων Διάφορες: l. inn: : 7.6, 7.76, 7.78 Serwy: Κεφ.. 9:, 55, 65, 8, 85 Στροφορμή: : : 7.5, 7.8, 7., 7.6 Δυν. Συστ.

Διαβάστε περισσότερα

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή

Α. ο σώμα αρχίζει να κινείται όταν η προωστική δύναμη γίνει ίση με τη δύναμη της τριβής. Έχουμε δηλαδή Εισαγωγή στις Φυσικές Επιστήμες (8-7-007) Μηχανική Ονοματεπώνυμο Τμήμα ΘΕΜΑ A. Υλικό σώμα μάζας βρίσκεται σε οριζόντιο επίπεδο με μέγιστο συντελεστή στατικής τριβής η και συντελεστή τριβής ολίσθησης μ.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 5) - ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. δ.. β. 3. δ. 4. γ. 5. α.λ, β.λ, γ.σ, δ.λ, ε.σ. ΘΕΜΑ B B. Σωστ απάντηση είναι η (γ). Τα παιδιά πριν

Διαβάστε περισσότερα

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

( ) ) V(x, y, z) Παραδείγματα. dt + z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! p. T = 1 2 m (!x2 +!y 2 +!z 2 ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Κεφάλαιο 8 Ορμή, Ώθηση και Κρούσεις

Κεφάλαιο 8 Ορμή, Ώθηση και Κρούσεις Κεφάλαιο 8 Ορμή, Ώθηση και Κρούσεις Η ορμή είναι από τα πλέον βασικά φυσικά μεγέθη. Επεκτείνει την κατανόηση των νόμων του Νεύτωνα. Και όπως η ενέργεια είναι μια ποσότητα που διατηρείται στο σύμπαν. d

Διαβάστε περισσότερα

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή

11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή 11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ

Διαβάστε περισσότερα

Ευθύγραμμη ομαλή κίνηση

Ευθύγραμμη ομαλή κίνηση Διάγραμμα s - Ευθύγραμμη Κίνηση (m) Μέση αριθμητική ταχύτητα (μονόμετρο) Μέση διανυσματική ταχύτητα Μέση επιτάχυνση 1 4 Διάγραμμα u - (sec) Απόσταση (x) ονομάζουμε την ευθεία που ενώνει την αρχική και

Διαβάστε περισσότερα

4η εργασία Ημερομηνία αποστολής: 1 Απριλίου 2007 (Τα θέματα κάθε άσκησης θεωρούνται ισοδύναμα)

4η εργασία Ημερομηνία αποστολής: 1 Απριλίου 2007 (Τα θέματα κάθε άσκησης θεωρούνται ισοδύναμα) 4η εργασία Ημερομηνία αποστολής: 1 Απριλίου 007 (Τα θέματα κάθε άσκησης θεωρούνται ισοδύναμα) Άσκηση 1 (10 μονάδες) A) Ένα βλήμα μάζας m που κινείται με ταχύτητα v διαπερνά τη σφαίρα ενός εκκρεμούς μάζας

Διαβάστε περισσότερα

1 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης

1 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης 1 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης Ο Ένα υλικό σημείο κινείται επάνω σε μια ευθεία έτσι ώστε η απομάκρυνση του να δίνεται

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΘΕΜΑ Α Α.1. δυο σφαίρες με διαφορετικές μάζες συγκρούονται κεντρικά και πλαστικά Αν αμέσως μετά την κρούση η κινητική ενέργεια του συστήματος μηδενίζεται τότε οι σφαίρες πριν την κρούση

Διαβάστε περισσότερα

Εξαναγκασµένες φθίνουσες ταλαντώσεις

Εξαναγκασµένες φθίνουσες ταλαντώσεις ΦΥΣ 131 - Διαλ.32 1 Εξαναγκασµένες φθίνουσες ταλαντώσεις q Στην περίπτωση αυτή µελετάµε την δεδοµένη οδηγό δύναµη: F d (t) = F cos! d t η οποία δρα επιπλέον των άλλων δυνάµεων:!kx! b x Ø H συχνότητα µπορεί

Διαβάστε περισσότερα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4 1. F 2 F 3 F 1 F 4 Στο σώμα του παραπάνω σχήματος βάρους Β = 20Ν ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς τα δεξιά κατά 2m να υπολογισθεί

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

Γ ΛΥΚΕΙΟΥ ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΟΡΜΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΩΜΑΤΟΣ ΚΑΙ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ Το αποτέλεσμα μιας σύγκρουσης δύο σωμάτων εξαρτάται από τις ορμές τους. Όταν δύο κριάρια συγκρούονται και

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ. the flipped class project. Διαφάνειες μαθήματος

ΚΡΟΥΣΕΙΣ. the flipped class project. Διαφάνειες μαθήματος ΚΡΟΥΣΕΙΣ Διαφάνειες μαθήματος Ορμή Κάθε κινούμενο σώμα έχει ορμή και κινητική ενέργεια Η ορμή είναι διανυσματικό μέγεθος Σχέση Κινητικής ενέργειας Ορμής : K K K Kg Σχέση Δύναμης- Ορμής : Η δύναμη (αίτιο)

Διαβάστε περισσότερα

ΣΥΝΟΨΗ 3 ου Μαθήματος

ΣΥΝΟΨΗ 3 ου Μαθήματος Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Α ΦΑΣΗ) ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 16 Δεκεμβρίου, 01 Απενεργοποιήστε τα κινητά σας τηλέφωνα!!! Παρακαλώ

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα Εισαγωγή στις Φυσικές Επιστήμες (9-7-5) Ονοματεπώνυμο Τμήμα Θέμα ο Ερώτημα Ένα σώμα μάζας kg τοποθετείται σε ένα κεκλιμένο επίπεδο και συνδέεται μέσω του νήματος αβαρούς τροχαλίας με ένα ελατήριο αμελητέας

Διαβάστε περισσότερα

0 Φυσική Β Λυκείου Διατήρηση της ορμής. Διατήρηση της ορμής. Κώστας Παρασύρης Φυσικός

0 Φυσική Β Λυκείου Διατήρηση της ορμής. Διατήρηση της ορμής. Κώστας Παρασύρης Φυσικός 0 Φυσική Β Λυκείου Διατήρηση της ορμής Διατήρηση της ορμής Φυσική Β Λυκείου Διατήρηση της ορμής Σύστημα σωμάτων Εσωτερικές, εξωτερικές δυνάμεις Ως σύστημα στη φυσική θεωρούμε ένα σύνο δύο ή περισσοτέρων

Διαβάστε περισσότερα

στοιχεία Βιο-μηχανική:

στοιχεία Βιο-μηχανική: : ορισμός Ως δύναμη ορίζεται η επίδραση, η οποία ασκούμενη σε ένα σώμα προκαλεί είτε μεταβολή στην κινητική του κατάσταση, είτε ταυτόχρονα και μεταβολή στην μορφή του. επιταχύνουν ή/και παραμορφώνουν σώματα.

Διαβάστε περισσότερα

Ανεξαρτησία κάθετων μεταξύ των κινήσεων

Ανεξαρτησία κάθετων μεταξύ των κινήσεων Ανεξαρτησία κάθετων μεταξύ των κινήσεων ΦΥΣ 111 - Διαλ.08 1 Εξαρτώνται οι τιμές των α x, v x και x από τις τιμές των α y, v y και y την ίδια ή κάποια άλλη χρονική στιγμή? Το ερώτημα που τίθεται είναι κατά

Διαβάστε περισσότερα

ΦΥΣ η Πρόοδος: 5-Νοεμβρίου-2006

ΦΥΣ η Πρόοδος: 5-Νοεμβρίου-2006 Σειρά Θέση ΦΥΣ. 131 η Πρόοδος: 5-Νοεμβρίου-006 Πριν αρχίσετε συμπληρώστε τα στοιχεία σας (ονοματεπώνυμο και αριθμό ταυτότητας). Ονοματεπώνυμο Αριθμός ταυτότητας Σας δίνονται 10 ισότιμα προβλήματα (0 βαθμοί

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m. Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 015-016 Ν. Βλαχάκης 1. Σώμα μάζας m και φορτίου q κινείται σε κατακόρυφο άξονα x, δεμένο σε ελατήριο σταθεράς k = mω του οποίου το άλλο άκρο είναι σταθερό. Το σύστημα

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012 ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος ΘΕΜΑ α) Υλικό σημείο μάζας κινείται στον άξονα Ο υπό την επίδραση του δυναμικού V=V() Αν για t=t βρίσκεται στη θέση = με ενέργεια Ε δείξτε ότι η κίνησή του δίνεται από

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 1 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 5) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Β) Εφόσον τώρα η βάρκα πρέπει να ταξιδεύσει προς το Βορρά η ταχύτητά της ως προς το νερό πρέπει να έχει κατεύθυνση Βορειοδυτική ώστε:

Β) Εφόσον τώρα η βάρκα πρέπει να ταξιδεύσει προς το Βορρά η ταχύτητά της ως προς το νερό πρέπει να έχει κατεύθυνση Βορειοδυτική ώστε: Θέµα A) Μια βάρκα περνώντας ένα ποτάµι κατευθύνεται προς Βορρά µε ταχύτητα K/h σε σχέση µε το νερό. Το νερό του ποταµού κυλάει προς ανατολάς µε ταχύτητα 5 K/h ως προς παρατηρητή που βρίσκεται ακίνητος

Διαβάστε περισσότερα

ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4)

ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4) ΘΕΜΑ Ένα αεροπλάνο πετάει οριζόντια σε ύψος h=km µε σταθερή ταχύτητα V=6km/h, ως προς ακίνητο παρατηρητή στο έδαφος. Ο πιλότος αφήνει µια βόµβα να πέσει ελεύθερα: (α) Γράψτε τις εξισώσεις κίνησης (δηλαδή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 2.2 ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΟΡΜΗΣ

ΜΑΘΗΜΑ 2.2 ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΟΡΜΗΣ Έννοια Φαινόμενα ΜΑΘΗΜΑ 2.2 ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ ΟΡΜΗΣ Όταν ένας άνθρωπος περπατά κατά μήκος μιας βάρκας αυτή κινείται σε αντίθετη κατεύθυνση με αυτόν. Όταν ένας ακίνητος παγοδρόμος σπρώξει έναν άλλο επίσης

Διαβάστε περισσότερα

( ) = T 1 ) (2) ) # T 3 ( ) + T 2 ) = T 3. Ισορροπία Παράδειγµα. ! F! = m! a = 0. ! F y. # F g = 0! T 3 ! T 2. sin( 53 0

( ) = T 1 ) (2) ) # T 3 ( ) + T 2 ) = T 3. Ισορροπία Παράδειγµα. ! F! = m! a = 0. ! F y. # F g = 0! T 3 ! T 2. sin( 53 0 Ισορροπία Παράδειγµα Δεν υπάρχει κίνηση στο σηµατοδότη οπότε βρίσκεται σε ισορροπία και η επιτάχυνση είναι µηδέν.! F! = m! a!! F!! F Ανάλυση του προβλήµατος 2 σώµατα (σηµατοδότης σηµείο ένωσης σχοινιών)

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

των δύο σφαιρών είναι. γ.

των δύο σφαιρών είναι. γ. ΘΕΜΑ B Σφαίρα µάζας κινούµενη µε ταχύτητα µέτρου υ συγκρούεται κεντρικά και ελαστικά µε ακίνητη σφαίρα ίσης µάζας Να βρείτε τις σχέσεις που δίνουν τις ταχύτητες των δύο σφαιρών, µετά την κρούση, µε εφαρµογή

Διαβάστε περισσότερα

Περι-Φυσικής. Θέµα Α. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική. Ονοµατεπώνυµο: Βαθµολογία % (α) µόνο από το µέτρο της δύναµης.

Περι-Φυσικής. Θέµα Α. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική. Ονοµατεπώνυµο: Βαθµολογία % (α) µόνο από το µέτρο της δύναµης. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική Ηµεροµηνία : 31 Μάρτη 2013 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα Α Στις ερωτήσεις Α.1 Α.4 επιλέξτε την σωστή απάντηση (4 5 = 20 µονάδες ) Α.1.

Διαβάστε περισσότερα

2 ο Μάθημα Κίνηση στο επίπεδο

2 ο Μάθημα Κίνηση στο επίπεδο ο Μάθημα Κίνηση στο επίπεδο Διανύσματα διάνυσμα θέσης διάνυσμα μετατόπισης σώματος διάνυσμα ταχύτητας διάνυσμα επιτάχυνσης κίνηση βλήματος ανάλυση κίνησής του σε οριζόντια και κατακόρυφη συνιστώσα ομαλή

Διαβάστε περισσότερα

ΠEΡΙΕΧΟΜΕΝΑ. Ενότητα 4: Φαινόμενο Doppler Θεωρία Μεθοδολογία Ερωτήσεις Πολλαπλής Επιλογής Πρόλογος... 5

ΠEΡΙΕΧΟΜΕΝΑ. Ενότητα 4: Φαινόμενο Doppler Θεωρία Μεθοδολογία Ερωτήσεις Πολλαπλής Επιλογής Πρόλογος... 5 ΠEΡΙΕΧΟΜΕΝΑ Πρόλογος......................................................... 5 Ενότητα : Κρούσεις Θεωρία Μεθοδολογία.............................................. 9 Ερωτήσεις Πολλαπλής Επιλογής.......................................

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 2016: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 2016: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 06: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 5) - ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. δ.. β. 3. δ. 4. γ. 5. α.λ, β.λ, γ.σ, δ.λ, ε.σ.

Διαβάστε περισσότερα

ΦΥΣ. 131 Τελική Εξέταση: 13-Δεκεμβρίου-2006

ΦΥΣ. 131 Τελική Εξέταση: 13-Δεκεμβρίου-2006 Σειρά Θέση ΦΥΣ. 3 Τελική Εξέταση: 3-Δεκεμβρίου-6 Πριν αρχίσετε συμπληρώστε τα στοιχεία σας (ονοματεπώνυμο και αριθμό ταυτότητας). Ονοματεπώνυμο Αριθμός ταυτότητας Σας δίνονται ισότιμα προβλήματα ( βαθμοί

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ 1. Στο σώμα του σχήματος έχει βάρος Β = 20Ν είναι ακίνητο και του ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται

Δυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται 1 Δυναµική F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Γιατί σώµατα κινούνται µε το τρόπο που κινούνται " Θεµελιώδεις νόµοι της µηχανικής: Οι τρεις νόµοι του

Διαβάστε περισσότερα

Κεφάλαιο M8. Διατήρηση της ενέργειας

Κεφάλαιο M8. Διατήρηση της ενέργειας Κεφάλαιο M8 Διατήρηση της ενέργειας Ενέργεια Επισκόπηση Κινητική ενέργεια Συνδέεται µε την κίνηση των στοιχείων ενός συστήµατος. Δυναµική ενέργεια Καθορίζεται από τη διάταξη του συστήµατος. Μελετήσαµε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

2) Ορμή και ρυθμός μεταβολής της στην κυκλική κίνηση. 3) Ένα σύστημα σωμάτων σε πτώση. 4) Ένα σύστημα επιταχύνεται. Γ) Ορμή και διατήρηση ορμής

2) Ορμή και ρυθμός μεταβολής της στην κυκλική κίνηση. 3) Ένα σύστημα σωμάτων σε πτώση. 4) Ένα σύστημα επιταχύνεται. Γ) Ορμή και διατήρηση ορμής Γ) Ορμή και διατήρηση ορμής 1) Στο ταβάνι, στον τοίχο ή στο πάτωμα; Βρισκόμαστε σε ένα δωμάτιο όπου ταβάνι τοίχος και δάπεδο έχουν φτιαχτεί από το ίδιο υλικό και κάνουμε το εξής πείραμα. Εκτοξεύουμε μπαλάκι

Διαβάστε περισσότερα

Για τη συνέχεια σήμερα...

Για τη συνέχεια σήμερα... ΦΥΣ 211 - Διαλ.10 1 Για τη συνέχεια σήμερα... q Συζήτηση ξανά των νόμων διατήρησης q Χρησιμοποιώντας τον φορμαλισμό Lagrange q Γραμμική ορμή και στροφορμή q Σύνδεση μεταξύ συμμετρίας, αναλλοίωτο της Lagrangan,

Διαβάστε περισσότερα

Ερωτήσεις στις κρούσεις

Ερωτήσεις στις κρούσεις Ερωτήσεις στις κρούσεις 1. Η έννοια της κρούσης έχει επεκταθεί και στο µικρόκοσµο όπου συµπεριλαµβάνει και φαινόµενα όπου τα συγκρουόµενα σωµατίδια δεν έρχονται σε επαφή.. Ονοµάζουµε κρούση κάθε φαινόµενο

Διαβάστε περισσότερα

2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική

2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική 2ο ιαγώνισµα Β Τάξης Ενιαίου Λυκείου Κυριακή 30 Νοέµβρη 2014 Φυσική Προσανατολισµού - Μηχανική Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000

Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 2000 Ζήτηµα ο Θέµατα Φυσικής Θετικής & Τεχν. Κατεύθυνσης Β Λυκείου 000 Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένας ανεµιστήρας

Διαβάστε περισσότερα