ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
|
|
- Πανκρατιος Πανταζής
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 -
2 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις. Εµείς θα πρέπει να απαντήσουµε σε ένα θέµα θεωρίας και σε δύο ασκήσεις. Δηλαδή θα πρέπει να απαντήσουµε συνολικά σε τρία θέµατα. Τα τρία αυτά θέµατα είναι βαθµολογικά ισοδύναµα και το καθένα βαθµολογείται µε 0/3=6,66 µονάδες µε άριστα το 0. Κάθε ένα από τα παραπάνω θέµατα µπορεί να περιλαµβάνει περισσότερες από µια ερωτήσεις.. Παράδειγµα θεµάτων εξετάσεων Μαίου-Ιουνίου. Τα παρακάτω θέµατα δίνονται ως παράδειγµα, ώστε οι µαθητές να γνωρίζουν τη δοµή των θεµάτων των εξετάσεων. Θα πρέπει να δώσετε έµφαση στη δοµή των θεµάτων και όχι στο περιεχόµενο. ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΣΤ ΜΘΗΜΤΙΚ ΤΞΗ Θ Ε Ω Ρ Ι (Θα απαντήσετε σε ένα θέµα) ΓΡΠΤΕΣ ΠΡΟΓΩΓΙΚΕΣ ΕΞΕΤΣΕΙΣ ΣΤ ΜΘΗΜΤΙΚ ΤΞΗ ΘΕΜ 1 ο α) Τι ονοµάζεται Ευκλείδεια διαίρεση; β) Να εξετάσετε αν η ισότητα 30 = , µπορεί να προκύψει από µια Ευκλείδεια διαίρεση. ν ναι, ποιος είναι ο διαιρετέος, ποιος ο διαιρέτης ποιο το πηλίκο και ποιο το υπόλοιπο της διαίρεσης αυτής; ΘΕΜ Ο α) Πότε δύο γωνίες λέγονται παραπληρωµατικές, και πότε συµπληρωµατικές; ώστε από ένα αριθµητικό παράδειγµα σε κάθε περίπτωση. β) Στο διπλανό σχήµα έχουµε σχεδιάσει µια γωνία xoy. Να σχεδιάσετε την παραπληρωµατική της και τη συµπληρωµατική της γωνία. γ) Να εξετάσετε αν υπάρχει γωνία η οποία να είναι ίση µε τη συµπληρωµατική της. Σ Κ Η Σ Ε Ι Σ (Θα λύσετε ασκήσεις) ΣΚΗΣΗ 1 η ν = +3 (5 3-8)-4 και =3 +30: 5-9 και Γ= - α) Να υπολογίσετε τις τιµές των, και Γ β) Να λύσετε την εξίσωση x+=γ ΣΚΗΣΗ η Να αντιστοιχίσετε κάθε στοιχείο της στήλης µε ένα στοιχείο της στήλης. α β γ Σ τ ή λ η τ ο 4 0 % τ ο υ 5 0 τ ο 0 % τ ο υ τ o 1 0 % τ ο υ Σ τ ή λ η i 7 5 i i 3 6 i i i Σελίδα από 11 -
3 δ ε τ o % τ ο υ 4 0 τ ο 7 % τ ο υ i v 7 v 7 0 v i 8 0 v i i ΣΚΗΣΗ 3 η Στο διπλανό σχήµα είναι ε 1 //ε, φ=70 κα ι ω=140, να υπολογίσετε τις γωνίες του τριγώνου Γ. Γ ε 1 φ Ε ω ε Καλή επιτυχία! Τέλος Διαγωνίσµατος ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να επιλέξετε την σωστή απάντηση: Η παράσταση α+α+α είναι ίση µε: : α3 : 3α Γ: α : 0 Η παράσταση α α α είναι ίση µε: : α3 : 3α Γ: 1 : α Για να πολλαπλασιάσουµε έναν αριθµό µε το 0,01 µεταφέρουµε την υποδιαστολή του: : προς τα δεξιά θέσεις : προς τα αριστερά 1 θέση Γ: προς τα δεξιά 1 θέση : προς τα αριστερά θέσεις Για να πολλαπλασιάσουµε έναν αριθµό µε το 100 µεταφέρουµε την υποδιαστολή του: : προς τα δεξιά θέσεις : προς τα αριστερά 1 θέση Γ: προς τα δεξιά 1 θέση : προς τα αριστερά θέσεις ΘΕΜ. α) ν α ένας αριθµός πως ονοµάζεται το γινόµενο ααα.α (ν παράγοντες); β) Να αντιστοιχήσετε κάθε στοιχείο της α στήλης του παρακάτω πίνακα µε ένα στοιχείο της β στήλης του συµπληρώνοντας τον ο πίνακα. ΣΤΗΛΗ ΣΤΗΛΗ 1. α α: κύβος του α. α 3 β: τετράγωνο του α 3. α 4 γ: τέταρτη δύναµη του α Σελίδα 3 από 11 -
4 γ) Να συµπληρώσετε τις δυνάµεις του 10: 10 1 = 10 3 = 10 = 10 4 = 10 6 = 10 8 = ΘΕΜ 3. α) Να συµπληρώσετε τις ισότητες; α(β+γ)=.. αβ-αγ= αβ+αγ=.. α(β-γ)= Ποια ιδιότητα αποτελούν αυτές οι 4 ισότητες; ΘΕΜ 4. α) Στην ισότητα α:β=γ ιαιρετέος είναι ο αριθµός. ιαιρέτης είναι ο αριθµός Πηλίκο είναι ο αριθµός β) Στην διαίρεση ποιος αριθµός δεν πρέπει να είναι 0; Ο διαιρετέος, Ο διαιρέτης, ή Το πηλίκο ; γ) Ποια διαίρεση ονοµάζεται ευκλείδεια; ΘΕΜ 5. α) Ποιοι αριθµοί ονοµάζονται πρώτοι; Ποιος είναι ο µοναδικός άρτιος που είναι πρώτος; β) Να γράψετε τα κριτήρια διαιρετότητας; γ) Είναι σωστό ή λάθος; Κάθε πολλαπλάσιο ενός φυσικού αριθµού διαιρεί αυτό τον αριθµό Ένας φυσικός αριθµός που διαιρεί δυο άλλους αριθµούς θα διαιρεί και το άθροισµα τους και τη διαφορά τους και το γινόµενο τους. Όλοι οι φυσικοί αριθµοί αναλύονται σε γινόµενο πρώτων αριθµών. ΘΕΜ 6. α) Στο κλάσµα β α ποιος είναι ο αριθµητής του και ποιος ο παρανοµαστής του; β) Πότε δυο κλάσµατα ονοµάζονται οµώνυµα; γ) Πότε δυο κλάσµατα ονοµάζονται ισοδύναµα; δ) υο οµώνυµα κλάσµατα είναι ισοδύναµα; υο ισοδύναµα κλάσµατα είναι οµώνυµα; ΘΕΜ 7. α) Πότε ένα κλάσµα είναι µικρότερο του 1; β) ν για του φυσικούς αριθµούς α,β ισχύει α<β, να διατάξετε από το µικρότερο προς το µεγαλύτερο α β a τα κλάσµατα,, β α a γ) ν για του φυσικούς αριθµούς α,β ισχύει α<β, να διατάξετε από το µικρότερο προς το µεγαλύτερο 1 1 τα κλάσµατα,. α β ΘΕΜ 8. α) Ποια πράξη παριστάνει το κλάσµα β α ; β) Να συµπληρώσετε τις παρακάτω ισότητες: - Σελίδα 4 από 11 -
5 a 1 =... 0 =... a a λ α =... =... a α α γ γ) Στην ισότητα κλασµάτων: = κάνοντας χιαστί ποια από τις παρακάτω ισότητες προκύπτει; β δ : αδ=βγ : αγ=βδ Γ: αβ=γδ ΘΕΜ 9. α) Πως βρίσκουµε τα ν λ ενός αριθµού α; β) Ποιο κλάσµα παριστάνει το σύµβολο α%; γ) Πως θα υπολογίσουµε το λ% του α; ΘΕΜ 10. α) Ποιοι αριθµοί λέγονται αντίστροφοι; β) Έχουν όλοι οι αριθµοί αντίστροφο; γ) Να συµπληρώσετε τις παρακάτω προτάσεις: Ο αντίστροφος του κλάσµατος ν λ είναι :. Ο αντίστροφος του α είναι : Ο αντίστροφος του α 1 είναι : ΘΕΜ 10. α) Ποιο τρίγωνο λέγεται ισοσκελές; β) Ποιες γωνίες του ισοσκελούς τριγώνου είναι ίσες; γ) Ποιο τρίγωνο λέγεται ισόπλευρο; δ) Τι γνωρίζετε για τις γωνίες του ισόπλευρου τριγώνου; ΘΕΜ 11. α) Στην πρώτη στήλη του παρακάτω πίνακα δίνονται κάποιες γωνίες και στη δεύτερη τα χαρακτηριστικά τους. Να αντιστοιχήσετε κάθε στοιχείο της α στήλης του µε ένα στοιχείο της β στήλης του συµπληρώνοντας τον ο πίνακα. ΣΤΗΛΗ ΣΤΗΛΗ. Ορθή γωνία α. Οι πλευρές της είναι αντικείµενες ηµιευθείες. Ευθεία γωνία β. Οι πλευρές της συµπίπτουν Γ. Πλήρης γωνία γ. Οι πλευρές της είναι κάθετες. µβλεία γωνία δ. Γωνία µικρότερη της ορθής Ε. Οξεία γωνία ε. Γωνία µεγαλύτερη της ορθής Γ Ε β) Να αντιστοιχήσετε κάθε γωνία της α στήλης του παρακάτω πίνακα µε το µέτρο της που βρίσκεται στην β στήλη συµπληρώνοντας τον ο πίνακα. ΣΤΗΛΗ ΣΤΗΛΗ. Ορθή γωνία α. 0 ο. Ευθεία γωνία β. 10 ο Γ. Πλήρης γωνία γ. 360 ο. Μηδενική γωνία δ. 90 ο ε. 180 ο - Σελίδα 5 από 11 -
6 Γ γ) Τι ονοµάζουµε διχοτόµο µιας γωνίας; ΘΕΜ 1. α) Ποιες γωνίες λέγονται εφεξής; Να σχεδιάσετε δυο εφεξής γωνίες. β) Ποιες γωνίες λέγονται παραπληρωµατικές; Να σχεδιάσετε δυο εφεξής και παραπληρωµατικές γωνίες. γ) Ποιες γωνίες λέγονται συµπληρωµατικές; Να σχεδιάσετε δυο εφεξής και συµπληρωµατικές γωνίες. ΘΕΜ 13. α) Ποιες γωνίες λέγονται κατακορυφήν; β) Να δικαιολογήσετε ότι δυο κατακορυφήν γωνίες είναι ίσες. ΘΕΜ 14. α) Στο παρακάτω σχήµα να γράψετε: Τα ζευγάρια των εντός εναλλάξ γωνιών. Τα ζευγάρια των εντός και επί τα αυτά γωνιών. ε Τα ζευγάρια των εντός εκτός και επί τα αυτά γωνιών. µ λ ν κ ε γ β) Όταν δυο παράλληλες ευθείες τέµνονται από µια τρίτη τότε ποιες από τις από τις παρακάτω προτάσεις είναι σωστές; Π1: Οι εντός εναλλάξ γωνίες είναι παραπληρωµατικές. Π: Οι εντός και επί τα αυτά γωνίες είναι παραπληρωµατικές. Π3: Οι εντός εναλλάξ γωνίες είναι ίσες. Π4: Οι εντός εκτός και επί τα αυτά γωνίες είναι ίσες. Π5: Οι εντός εκτός και επί τα αυτά γωνίες είναι παραπληρωµατικές. ΘΕΜ 15. α) Συµπληρώστε τις προτάσεις: Π1: Το άθροισµα των γωνιών ενός τριγώνου είναι ίσο µε Π: Ορθογώνιο λέγεται το τρίγωνο που έχει.. Π3: µβλυγώνιο λέγεται το τρίγωνο που έχει. Π4: Οξυγώνιο λέγεται το τρίγωνο που έχει. β) Μπορεί ένα τρίγωνο να έχει δυο ορθές γωνίες ή δυο αµβλείες γωνίες; ικαιολογήστε την απάντηση σας. γ) Να δικαιολογήσετε ότι το άθροισµα των γωνιών ενός τριγώνου είναι 180ο. ΕΡΩΤΗΣΕΙΣ Ερώτηση 1: Τι ονοµάζουµε αντικείµενες ηµιευθείες; Να κάνετε αντικείµενες ηµιευθείες. Ερώτηση : Τι ονοµάζουµε µέσο ενός ευθύγραµµου τµήµατος; Ερώτηση 3: Τι ονοµάζουµε διάµεσο ενός τριγώνου; β δ α ε 1 - Σελίδα 6 από 11 -
7 Ερώτηση 4: Ποιες ευθείες λέγονται παράλληλες; Ερώτηση 5: πό 1 σηµείο που βρίσκεται εκτός ευθείας (ε) πόσες παράλληλες ευθείες µπορούµε να κάνουµε προς την ευθεία ε; Ερώτηση 6: ν (ε), (ε ) είναι ευθείες κάθετες σε µία ευθεία (δ) τότε ποια θα είναι η σχετική τους θέση; Ερώτηση 7: Τι ονοµάζουµε απόσταση ενός σηµείου από µια ευθεία; Ερώτηση 8: Τι ονοµάζουµε ύψος ενός τριγώνου; Πόσα ύψη έχει ένα τρίγωνο; Πώς λέγεται το σηµείο που τέµνονται; Να κάνετε τα ύψη στα παρακάτω τρίγωνα. Ερώτηση 9: Τι ονοµάζουµε κύκλο µε κέντρο Ο και ακτίνα ρ; Ερώτηση 10: Τι ονοµάζουµε κυκλικό δίσκο µε κέντρο Ο και ακτίνα ρ; Ερώτηση 11: Τι ονοµάζουµε χορδή ενός κύκλου και τι διάµετρο; Κ Ο Λ Γ Ερώτηση 1: Τι ονοµάζουµε τόξο ενός κύκλου; Ερώτηση 13: ίνεται ένας κύκλος µε κέντρο Ο και ακτίνα ρ και µια ευθεία (ε). Ποια µπορεί να είναι η θέση της ευθείας ως προς τον κύκλο; Πως λέγεται αυτή η ευθεία και πότε έχει αυτή τη θέση; Ερώτηση 14: Τι ονοµάζουµε µεσοκάθετο ενός ευθύγραµµου τµήµατος και τι ιδιότητες έχει; - Σελίδα 7 από 11 -
8 ΣΚΗΣΕΙΣ 1. Να κάνεις τις πράξεις στις παρακάτω αριθµητικές παραστάσεις: 1) :4 3 = ) 3 - (8-3) + 17 = 3) 4 (8-6) = 4) 16: = 5) 3 - ( 3-4) + 15 = 6) 9 (7-5) = 7) :4 = 8) 3 - (8-3) + 19 = 9) 4 (5-3) = = α) Να βρεθεί η τιµή της παράστασης ( ) ( ) β) Να βρεθεί η τιµή της παράστασης = :( 3.5), µε στρογγυλοποίηση στο ψηφίο του δεκάτου. (Τιµή της παράστασης λέµε το αποτέλεσµα που βρίσκουµε όταν εκτελέσουµε όλες τις πράξεις) 3 Να υπολογιστούν οι τιµές των παραστάσεων 3 3 α) 18 : και β) 5x + ( x) + 6 όταν x = 0, α) Να βρεθεί η τιµή της παράστασης = ( 4 18: ) ( 1 : 4 ) +.3 ( 5 3) 3 β) Να βρείτε τον αντίστροφο του αριθµού. 5 Να γίνουν οι πράξεις ,1+ 5. β) α). ( ) Σελίδα 8 από 11 - γ). 5. ( + 1) 14 : 7 0 δ). [( 4,3+ 1, 16,5 ).0,1+ ( ).1,8] Τα 5 ενός έργου γίνονται σε 8 ηµέρες. Να βρείτε: 7 i.. i σε πόσες ηµέρες γίνονται τα 10 του έργου iii i.. σε πόσες ηµέρες γίνεται όλο το έργο. 8 Να γίνουν απλά τα σύνθετα κλάσµατα: ι ii Ο Γιώργος είχε 45 ΕΥΡΩ. Έδωσε για να αγοράσει ένα CD τα 5 πάρει ένα δώρο στην αδερφή του. Πόσα χρήµατα του έµειναν; και το ,5 10 Να υπολογίσετε την τιµή των παραστάσεων: 13,5 +,5 0 = 0, : 14, + = 11 Να υπολογίσετε την τιµή των παραστάσεων: =,. =, + =, των υπολοίπων για να. 1, =.
9 5 3 = : : 9 = 3.( 5) 64 :( 11 3) Γ = ( 3 + ) ( 3 + ) = : : 11 4 Ε = Ζ = ( 18.10) :10.( 3 1) ( ) ( ) 85 3 Η = ( ) + ( ) 5 Θ = ( 0,1 + 0,7 ).10 + (,8 1,) 1. ν είναια = 3β, α + γ : β ( ) 5 1) γ ( α+ β) ) 3) α+ β+ 3γ α+ β+ γ = : ) ( ) 13. ν είναι α = 0, 1) και β και γ = 1,5 = 7 35 α 6β+ α. β 8. α+ β β. 8 ( ) α ) ( α+ β) α. ( 3 β) 3), να υπολογίσετε τις τιµές των παραστάσεων: να υπολογίσετε τις τιµές των παραστάσεων: 14. Να συµπληρώσετε το τετράγωνο, ώστε ο τριψήφιος αριθµός που θα προκύψει να διαιρείται ταυτόχρονα µε το 5 και 8 το Να συµπληρώσετε τα τετράγωνα, ώστε ο τετραψήφιος αριθµός που θα προκύψει να διαιρείται ταυτόχρονα µε το 5 και 4 το Να συµπληρώσετε το τετράγωνο, ώστε ο τριψήφιος αριθµός που θα προκύψει να διαιρείται µε το Στη συνέχεια να αναλύσετε τον αριθµό σε γινόµενο πρώτων παραγόντων. 17. Να βρείτε το Ε.Κ.Π.και το Μ.Κ.. των αριθµών 1 και Να βρείτε το Ε.Κ.Π. και το Μ.Κ.. των αριθµών 10 και ν. Κ. Π( 6, ) = 18 Ε α, να βρεθεί ο φυσικόςα. 0. Σ ένα σχολείο, όταν βάζουµε τους µαθητές σε πεντάδες ή εξάδες δεν περισσεύει κανένας. Ο αριθµός των µαθητών είναι µεταξύ του 101 και του131. Πόσα καθίσµατα και πόσα θρανία χρειάζεται το σχολείο για να καθίσουν όλοι οι µαθητές; 1. Πόσες ηµέρες είναι τα 7 4 της εβδοµάδας; 15. Πόσα λεπτά είναι τα της µοίρας; Πόσα έτη είναι τα 75 του αιώνα; Μία τάξη έχει 84 µαθητές. πό αυτούς τα 7 4 είναι αγόρια. Πόσα είναι τα αγόρια και πόσα τα κορίτσια; - Σελίδα 9 από 11 -
10 5. Τα 7 6 ενός αριθµού είναι ο αριθµός 36. Να βρείτε ποιος αριθµός είναι τα 3 του αριθµού. 6. Να γράψετε τους αριθµούς ως κλάσµατα. 7,9,1, α. 7. Να γράψετε τον αριθµό 1 ως κλάσµα µε παρονοµαστή το, 11, ν. 8. Να γράψετε τον αριθµόα ως κλάσµα µε παρονοµαστή 1,, 5, λ 9. Να λύσετε τις εξισώσεις. x 6 1 x 5 = 0 = 1 003, 003 5, 3 κ 6 1 = = 7 1, α, Να απλοποιήσετε τα κλάσµατα. x+003 = 1 004, 13 5 = β , 30, 04, 1 51, α 10 = 1, 31. Με την βοήθεια των µεταβλητών και των πράξεων µεταξύ των αριθµών να γράψετε τις ισότητες ή τις παραστάσεις που προκύπτουν από τις παρακάτω προτάσεις Σ έναν αριθµό προσθέτουµε το και στο άθροισµα πολλαπλασιάζουµε το 3. Μειώνουµε έναν αριθµό κατά 8 και βρίσκουµε το µισό του αριθµού.. Πολλαπλασιάζουµε δύο αριθµούς που διαφέρουν κατά µονάδες.. Το τριπλάσιο ενός αριθµού είναι ίσο µε το άθροισµα του αριθµού αυτού µε το Να γράψετε µε προτάσεις το νόηµα των παρακάτω ισοτήτων ή παραστάσεων ή ανισοτήτων. 5α 3χ - 5. ψ + 3 = 11.. (χ )χ. 33. α). υο γωνίες είναι συµπληρωµατικές µεταξύ τους και η µία είναι τριπλάσια της άλλης. Να βρείτε τις δυο γωνίες ω και φ β. Να βρείτε δύο παραπληρωµατικές γωνίες ω και φ, όταν η φ είναι διπλάσια της ω 33. Ένα κατάστηµα κάνει 15% έκπτωση σε όλα τα ειδή του. ν ένα παντελόνι στοιχίζει 80 µια µπλούζα 0 και µια φούστα 50, να βρείτε ποσό θα στοιχίσει καθένα από αυτά µετά την έκπτωση. 34. Ένα σακάκι που είχε 15 πουλήθηκε στις εκπτώσεις 95 α) Να βρείτε το ποσοστό της έκπτωσης. β) ν ένα πουκάµισο πουλήθηκε µε το ίδιο ποσοστό έκπτωσης προς 68,4,πόσο είχε πριν από την έκπτωση; 35. α)πότε δυο γωνίες λέγονται εφεξής; β)στα παρακάτω σχήµατα είναι οι γωνίες εφεξής; ΝΙ ή ΟΧΙ και γιατί 36. α) Να αναφέρεται τα είδη των γωνιών που γνωρίζεται µε βάση το µέτρο που έχουν - Σελίδα 10 από 11 -
11 οι γωνίες αυτές. β) Να συµπληρώσετε τα κενά που υπάρχουν στις παρακάτω προτάσεις : 1. υο γωνίες που έχουν την ίδια κορυφή, µια κοινή πλευρά και δεν έχουν κανένα άλλο κοινο σηµείο ονοµάζονται. υο γωνίες που έχουν την ίδια κορυφή και οι πλευρές τους είναι αντικείµενες ηµιευθείες ονοµάζονται γ ) Να χαρακτηρίσετε τις παρακάτω προτάσεις ( Σωστό ~ Λάθος ) 1. Παραπληρωµατικές ονοµάζονται δυο γωνίες που έχουν άθροισµα 90 ;. υο κατακορυφήν γωνίες είναι πάντα συµπληρωµατικές ; 37.α) Ποια σχέση συνδέει δύο ποσά χ, ψ που είναι ανάλογα και τι ονοµάζουµε συν τελεστή αναλογίας; β) Ποια σχέση συνδέει δύο ποσά χ, ψ που είναι αντιστρόφως ανάλογα και ποια τιµή δεν µπορούν να πάρουν τα ποσά αυτά; γ) Που βρίσκονται τα σηµεία, πού αντιστοιχούν στα ζεύγη τιµών (χ,ψ) δύο αναλόγων ποσών και που τα σηµεία, που αντιστοιχούν στα ζεύγη τιµών(χ, ψ) δύο αντιστρόφως αναλόγων ποσών; Έστω τα ποσά χ, ψ τα οποία είναι ανάλογα µε συντελεστή αναλογίας 100 α) Να γράψετε τη σχέση που συνδέει τα ποσά χ και ψ και να συµπληρώσετε τον πίνακα: χ 0 ψ 9 β) ν το χ είναι ο µισθός ενός υπαλλήλου ο οποίος αυξήθηκε κατά 30% και έγινε 1300 ευρώ, να βρεθεί ο µισθός του υπαλλήλου πριν την αύξηση. 39. Να υπολογίσετε τις γωνίες φ και ω του παρακάτω σχήµατος (Οδ διχοτόµος) ψ ψ φ ω Ο 30 χ δ - Σελίδα 11 από 11 -
12
13
14
ΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α
ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 η ΕΚΑ Α
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α. Πότε δύο γωνίες λέγονται εφεξής; Ποιο σχήµα ονοµάζουµε κύκλο µε κέντρο Ο και ακτίνα ρ ; Στον παρακάτω πίνακα να αντιστοιχίσετε κάθε αριθµό της πρώτης στήλης µε ένα γράµµα της
Διαβάστε περισσότερα3, ( 4), ( 3),( 2), 2017
ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΣυνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α
1 ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 4 η ΕΚ 1. ίνονται οι παραστάσεις = 5 2 4 2 + και Β = 4 (2 5) + 24: Να υπολογιστούν οι τιµές των και Β Να αναλυθούν οι αριθµοί και Β σε γινόµενα πρώτων παραγόντων γ) Να απλοποιηθεί το
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Α ΘΕΩΡΙΑ ΘΕΜΑ 1 ο : Α. Τι ονομάζουμε απόλυτη τιμή ενός ρητού αριθμού α και πως συμβολίζεται; Β. Πότε δύο αριθμοί λέγονται αντίθετοι; Γ. Να χαρακτηρίσετε
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου
Μαθηματικά Α Γυμνασίου Επαναληπτικές ασκήσεις Στέλιος Μιχαήλογλου Ασκήσεις. Δίνεται η παράσταση 7 : α) Να αποδείξετε ότι Α=8. β) Ο αριθμός Α είναι πρώτος ή σύνθετος; γ) Να αναλύσετε τον αριθμό Α σε γινόμενο
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
Δ/ΝΣΗ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΧΧΧΧΧΧΧΧΧΧ ΓΥΜΝΑΣΙΟ ΧΧΧΧΧΧΧΧΧΧ Α ΤΑΞΗ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2016-2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ
Προαγωγικές εξετάσεις στα Μαθηματικά της Α Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 214-215 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑ 1 ο Α. ΘΕΩΡΙΑ Α. Να γράψετε με πιο σύντομο τρόπο τις επόμενες
Διαβάστε περισσότεραΜαθηματικά A Γυμνασίου
Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις
Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2
ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι
Διαβάστε περισσότεραΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.
01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΣωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Διαβάστε περισσότεραΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :
ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΣειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ
Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ & ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΩΝ ΓΥΜΝΑΣΙΩΝ ΡΕΘΥΜΝΟΥ & ΗΡΑΚΛΕΙΟΥ ΑΡΜΟΔΙΟΤΗΤΑΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΣΥΜΒΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΟΥ Λ.
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ & ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΤΩΝ ΓΥΜΝΑΣΙΩΝ ΡΕΘΥΜΝΟΥ & ΗΡΑΚΛΕΙΟΥ ΑΡΜΟΔΙΟΤΗΤΑΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΣΥΜΒΟΥΛΟΥ ΚΩΝΣΤΑΝΤΙΝΟΥ Λ. ΚΩΝΣΤΑΝΤΟΠΟΥΛΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-14 3 η Φάση Η συλλογή αυτή των θεμάτων
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραMAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης. Κωνσταντίνος Ηλιόπουλος A ΓΥΜΝΑΣΙΟΥ
A ΓΥΜΝΑΣΙΟΥ Κωνσταντίνος Ηλιόπουλος κριτήρια αξιολόγησης MAΘΗΜΑΤΙΚΑ Διαγωνίσματα σε κάθε μάθημα και επαναληπτικά σε κάθε κεφάλαιο Διαγωνίσματα σε όλη την ύλη για τις τελικές εξετάσεις Αναλυτικές απαντήσεις
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο
ΥΣΕΙΣ ΙΩΝΙΣΜΤΣ ΕΩΜΕΤΡΙΣ ΥΚΕΙΥ 1 / 11 / 09 ΘΕΜ 1 ο ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. ύο τόξα ενός κύκλου είναι ίσα, όταν οι αντίστοιχες χορδές τους είναι ίσες.
Διαβάστε περισσότεραΓεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις
Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α
1 2 Α. Πότε ένας φυσικός αριθμός λέγεται πρώτος και πότε σύνθετος; Β. Πότε ένας φυσικός αριθμός διαιρείται με το 2; Γ. Πότε ένας φυσικός αριθμός διαιρείται με το 3; Α. Να αναφέρετε ποια είναι τα είδη των
Διαβάστε περισσότεραΣειρά: Τράπεζα Θεμάτων Γυμνασίου
Σειρά: Τράπεζα Θεμάτων Γυμνασίου Θέματα Προαγωγικών και Απολυτηρίων εξετάσεων Γυμνασίων του Νομού Δωδεκανήσου Σχολικό Έτος: 01-013 Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου
Διαβάστε περισσότεραΑριθμητής = Παρονομαστής
Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ To κλάσμα κ εκφράζει τα κ μέρη από τα ν ίσα μέρη στα οποία έχει χωριστεί μία ποσότητα ν Αριθμητής = Παρονομαστής Το ν α = 0 = α κ ν = κ ν ονομάζεται κλασματική μονάδα 8 = α α = Άρα
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραίου σεις Θεωρίας Ερωτήσ Επιµέλεια
ΜΑΘΗΜΑΤΙΚΑ Α Γυµνασί ίου Ερωτήσ σεις ς Επιµέλεια Θ Ε Μ Ε Λ Η Σ Ε Υ Ρ Ι Π Ι Η Σ 1 ο Κεφάλαιο Φυσικοί Αριθµοί 1.1 Φυσικοί αριθµοί ιάταξη φυσικών Στρογγυλοποίηση 1. Ποιοι φυσικοί αριθµοί ονοµάζονται άρτιοι
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότεραΜαθηματικα A Γυμνασιου
Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ
Διαβάστε περισσότεραΑ ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. πότε ίσο με το 1. Δώστε από ένα παράδειγμα
49 0 ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2011-2012 Α ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : 22 ΜΑΪΟΥ 2012 ΘΕΩΡΙΑ 1 η : Να γράψετε πότε ένα κλάσμα είναι μικρότερο,
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΓεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α
1 2 α. Πως προσθέτουμε δύο ομόσημους ρητούς αριθμούς ; β. Πως προσθέτουμε δύο ετερόσημους ρητούς αριθμούς ; α. Πότε δύο γωνίες ονομάζονται εφεξής ; β. Πότε δύο γωνίες ονομάζονται κατακορυφήν ; Να βρείτε
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..
Διαβάστε περισσότεραΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ με Απαντήσεις
ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ με Απαντήσεις (το υλικό ανανεώνεται συνεχώς) ΓΥΜΝΑΣΙΟ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΣΧΟΛΙΚΟ ΕΤΟΣ:2010-2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ I. ΘΕΩΡΙΑ
Διαβάστε περισσότεραΚεφάλαιο 1 ο : Οι Φυσικοί αριθμοί
ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α! ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016
εν είναι δυνατή η προβολή αυτής της εικόνας αυτή τη στιγµή. ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:...
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραΚεφάλαιο 1 ο : Οι Φυσικοί αριθμοί
ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;
Διαβάστε περισσότεραΑ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
ΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΥΜΝΣΙΟΥ ΜΙ ΠΡΟΤΟΙΜΣΙ Ι ΤΙΣ ΞΤΣΙΣ - Σελίδα από 6 - . Η ΔΟΜΗ ΤΩΝ ΘΜΤΩΝ ΤΩΝ ΞΤΣΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις. µείς θα πρέπει
Διαβάστε περισσότερα3.5 3.6. Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης
.5.6 σκήσεις σχολικού βιβλίου σελίδας 48 ρωτήσεις κατανόησης. Έστω ευθεία ε και σηµείο εκτός αυτής. ν ε και ε (, σηµεία της ε) τότε i) Σ Λ ii) Σ Λ iii) = Σ Λ ιτιολογήστε την απάντηση σας i) ιότι από ένα
Διαβάστε περισσότεραΜαθημαηικά Α Γσμμαζίοσ
Μαθημαηικά Α Γσμμαζίοσ Μεθοδική Επαμάληυη Σηέλιος Μιταήλογλοσ www.askisopolis.gr 2017-18 Η επαμάληυη βήμα βήμα με ερφηήζεις και απαμηήζεις ζε κάθε παράγραθο καθώς και ηις βαζικές αζκήζεις. ΚΕΦΑΛΑΙΟ 1ο
Διαβάστε περισσότεραΜαθημαηικά Α Γσμμαζίοσ
Μαθημαηικά Α Γσμμαζίοσ Μεθοδική Επαμάληυη Σηέλιος Μιταήλογλοσ www.askisopolis.gr 2017-18 Η επαμάληυη βήμα βήμα με ερφηήζεις και απαμηήζεις ζε κάθε παράγραθο καθώς και ηις βαζικές αζκήζεις. ΚΕΦΑΛΑΙΟ 1ο
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου
ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ
ΡΠΤΕΣ ΠΡΟΩΙΚΕΣ ΕΞΕΤΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΪΟΥ - ΙΟΥΝΙΟΥ ΜΘΗΜΤΙΚ ΣΤ () ΘΕΩΡΙ ΘΕΜ 1: (α) Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως «Σωστή» ή «Λάθος» : 1. Η ευθεία με εξίσωση y = 3x περνάει από την αρχή
Διαβάστε περισσότεραΓενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
Διαβάστε περισσότερα3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ
3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.
Διαβάστε περισσότεραΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο
ΕΚΕΜΒΡΙΟΣ 2011 ΘΕΜΑ 1 ο (α) Να αποδειχθεί ότι στον ίδιο ή σε ίσους κύκλους, ίσα αποστήµατα αντιστοιχούν σε ίσες χορδές. (β) Να αποδειχθεί ότι κάθε σηµείο της µεσοκαθέτου ενός ευθύγραµµου τµήµατος ισαπέχει
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ. Μια πόλη του Μεξικού με κατοίκους πρέπει να εκκενωθεί προληπτικά, γιατί απειλείται
ΓΥΜΝΑΣΙΟ ΤΑΞΗ Α ΓΥΜΝΑΣΙΟ ΤΑΞΗ Α 1 Α. Να δώσετε τον ορισμό της Ευκλείδειας Διαίρεσης και της Τέλειας Διαίρεσης δύο Φυσικών Αριθμών. Β. Πότε ένας φυσικός αριθμός διαιρείται: α: με το 5; β: με το 3; γ: με
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ. Μαθηματικών Α Γυμνασίου. Μαριλένα Νικολαΐδου-Μουσουλίδου
ΕΠΑΝΑΛΗΨΗ Μαθηματικών Α Γυμνασίου ΑΡΙΘΜΟΙ Σύνολο είναι μια καλώς ορισμένη συλλογή διαφορετικών μεταξύ τους αντικειμένων. Τα αντικείμενα που αποτελούν ένα σύνολο λέγονται στοιχεία ή μέλη του συνόλου. Για
Διαβάστε περισσότεραΕρωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
Διαβάστε περισσότερα3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ
1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες
Διαβάστε περισσότερα1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A
1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Σχ.έτος:
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ : ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Σχ.έτος: 2018-2019 Α ΜΕΡΟΣ : ΑΡΙΘΜΗΤΙΚΗ - ΑΛΓΕΒΡΑ 1. Δίνονται οι παραστάσεις 2 2 2 A = 3 4 + 2 10 (2 10 ) :5 και Β = 2 6 + : 3 2 5 1 1 3 2 α) Να κάνεις τις
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα
Διαβάστε περισσότεραΣε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.
ΙΩΝΙΣΜ ΕΩΜΕΤΡΙΣ ΥΚΕΙΟΥ 3/0/0 ΕΝΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΘΕΜ ο ) Να αποδείξετε ότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα. Θεωρία, σελίδα 46 σχολικού βιβλίου Θεώρηµα III
Διαβάστε περισσότεραΑσκήσεις 1) Να βρεθεί το εμβαδόν του σχήματος, όταν ΑΒ=250 cm, ΓΔ=48 dm και ΒΓ=1,6 m
1 1 004-005 Θεωρία Θέμα 1 ο : α) Με ποια σειρά κάνουμε τις πράξεις σε μια αριθμητική παράσταση που έχει παρενθέσεις; β) Να βάλετε σε κατάλληλη θέση παρενθέσεις ώστε να ισχύει η ισότητα +18.4 +1 = 100 Θέμα
Διαβάστε περισσότεραΑΣΚHΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ A ΓΥΜΝΑΣΙΟΥ ΦΥΛΑΧΤΟΣ Π. ΣΜΑΪΛΗ Β. ΜΑYΡΙΓΙΑΝΝΗΣ Α.
ΑΣΚHΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ A ΓΥΜΝΑΣΙΟΥ ΦΥΛΑΧΤΟΣ Π. ΣΜΑΪΛΗ Β. ΜΑYΡΙΓΙΑΝΝΗΣ Α. 1) Να υπολογίσετε την τιμή των παραστάσεων : Α=18:3 + 4.3 +3.( 3 4) + 5 :16 7:3 Β=0,8 + 3, + 4,3 5,1.3 +0,1 Α + Α.Β,1.Α.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Διαβάστε περισσότερα4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ
1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός
Διαβάστε περισσότεραΦίλη μαθήτρια, φίλε μαθητή
Φίλη μαθήτρια, φίλε μαθητή Το βιβλίο αυτό έχει διπλό σκοπό: Να σε βοηθήσει στη γρήγορη, άρτια και αποτελεσματική προετοιμασία του καθημερινού σχολικού μαθήματος. Να σου δώσει όλα τα απαραίτητα εφόδια,
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
Διαβάστε περισσότεραΓυμνάσιο Μαθηματικά Τάξη A 1
Μαθηματικά Τάξη A 1 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στα Μαθηματικά Τάξη Α 2 a. Τι λέγεται Ευκλείδεια διαίρεση; b. Οι ισότητες 160 = 48 3 + 16 και 355 = 22 15 + 25 προκύπτουν από Ευκλείδεια διαίρεση;
Διαβάστε περισσότεραΣωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες.
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1) Οι οξείες
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012
ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:... ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012 ΘΕΜΑ
Διαβάστε περισσότερα