Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα"

Transcript

1 ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides

2 1) Γράφω τους παρακάτω αριθμούς με ψηφία. Εννιακόσια είκοσι: Εκατό ογδόντα εφτά: Τετρακόσια πέντε: Πεντακόσια σαράντα τρία: Εξήντα δυο: Τριακόσια πενήντα οχτώ: 2) Γράφω τους παρακάτω αριθμούς με λέξεις. 78: 239: 856: 601: 88: 723: 3) Ανάλυσε τους παρακάτω αριθμούς σε εκατοντάδες, δεκάδες, μονάδες. 527 Έχει Εκατοντάδες Δεκάδες Μονάδες 527 Έχει Δεκάδες Μονάδες 105 Έχει Εκατοντάδες Δεκάδες Μονάδες 325 Έχει Δεκάδες Μονάδες 777 Έχει Εκατοντάδες Δεκάδες Μονάδες 900 Έχει Εκατοντάδες Μονάδες Δεκάδες 4) Βρίσκω τον αριθμό που προκύπτει από κάθε άθροισμα = = = = = 600+9= 5) Ποιος είναι ο προηγούμενος και ποιος ο επόμενος σε καθέναν από τους παρακάτω αριθμούς; ) Ξαναγράφω τους αριθμούς τον έναν κάτω από τον άλλον και κάνω κάθετα τις παρακάτω πράξεις στο πίσω μέρος της σελίδας. (Φροντίζω οι μονάδες να είναι κάτω από τι μονάδες, οι δεκάδες κάτω από τις δεκάδες και οι εκατοντάδες κάτω από τις εκατοντάδες): = = = = =

3 ΑΣΚΗΣΕΙΣ 1. Το γραφείο του Θανάση Ο Θανάσης με τη μητέρα του επισκέπτονται ένα κατάστημα επίπλων. Θέλουν να αγοράσουν έπιπλα για το γραφείο του Θανάση. Η μητέρα έχει στην τσάντα της 900. Φτάνουν τα χρήματα, για να αγοράσουν όλα τα έπιπλα που φαίνονται στην εικόνα;.. Αν αγοράσουν μόνο το γραφείο, την καρέκλα και το σκαμπό, πόσα χρήματα θα μείνουν στη μητέρα;.. Αν αγοράσουν όλα τα έπιπλα, πόσα χρήματα θα οφείλουν ακόμη στον καταστηματάρχη;.. Αν αγοράσουν όλα τα έπιπλα και ο καταστηματάρχης τους κάνει έκπτωση 100, πόσα χρήματα θα μείνουν στη μητέρα; 2. Γράφω με αριθμητικά ψηφία τους αριθμούς που δείχνουν οι άβακες. Ε Δ Μ Ε Δ Μ Ε Δ Μ

4 3. Σχηματίζω τους παρακάτω αριθμούς στους άβακες. Ε Δ Μ Ε Δ Μ Ε Δ Μ Πόσες εκατοντάδες, δεκάδες και μονάδες έχουν οι αριθμοί: 487 Έχει. Ε. Δ. Μ 530 Έχει. Ε. Δ. Μ 604 Έχει. Ε. Δ. Μ 800 Έχει. Ε. Δ. Μ 5. Βρίσκω το άθροισμα που προκύπτει από κάθε αριθμό. 515 =

5 356 =. 602 =. 780 =. 6. Βρίσκω τον αριθμό που προκύπτει από κάθε άθροισμα = = = =. 7. Ανεβαίνω ανά 100 από το 100 μέχρι το 1000: 100, 200, 8. Κατεβαίνω ανά 100 από το 1000 μέχρι το 100: 1000, 900, 9. Ποιος είναι ο προηγούμενος και ποιος ο επόμενος σε καθέναν από τους παρακάτω αριθμούς;

6 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΟΤΗΤΑ ΚΕΦ.2: ΠΡΟΣΘΕΣΕΙΣ ΔΙΨΗΦΙΩΝ ΚΑΙ ΤΡΙΨΗΦΙΩΝ ΑΡΙΘΜΩΝ 1. Η μητέρα αγόρασε καινούριες πιτζάμες στα παιδιά της, το Σπύρο και την Ευδοξία. Για τις πιτζάμες του Σπύρου πλήρωσε 35 και για τις πυτζάμες της Ευδοξίας 34. Πόσο πλήρωσε συνολικά; ΛΥΣΗ Τα παιδιά σκέφτονται ότι, για να βρουν πόσα πλήρωσε η μητέρα, πρέπει να ενώσουν τα 35, που έκαναν οι πιτζάμες του Σπύρου, με τα 34 που έκαναν οι πιτζάμες της Ευδοξίας. Πρέπει, δηλαδή, να κάνουν πρόσθεση. 1 ος ΤΡΟΠΟΣ 2 ος ΤΡΟΠΟΣ = ; Δ Μ = προσθετέοι = Κάνω τις προσθέσεις: 6 9 άθροισμα α) με τον 1 ο τρόπο β) με τον 2 ο τρόπο Δ Μ Δ Μ = ; = ; Ο Βαγγέλης και η Μαρία έφτιαξαν ένα παζλ. Ο Βαγγέλης τοποθέτησε 47 κομμάτια και η Μαρία 36. Πόσα κομμάτια έχει συνολικά το παζλ που έφτιαξαν τα παιδιά; ΛΥΣΗ Θα ενώσουμε τα 47 κομμάτια που τοποθέτησε ο Βαγγέλης και τα 36 που τοποθέτησε η Μαρία. Θα κάνουμε, δηλαδή, πρόσθεση. Δ Μ Δ Μ Δ Μ κρατούμενο Προσθέτουμε τις μονάδες των δύο προσθετέων, δηλαδή το 7 και το 6, και βρίσκουμε 13. Από το 13 γράφουμε το 3, κάτω από τις μονάδες και κρατούμε τη 1 δεκάδα που τη λέμε κρατούμενο. Προσθέτουμε τις δεκάδες 4+3=7. Στο 7 προσθέτουμε και το κρατούμενο (τη 1 δεκάδα): 7+1=8. Γράφουμε το 8 κάτω από τις δεκάδες.

7 4. Προσθέτω με το νου: α) = β) = = = = = 5. Κάνω τις προσθέσεις: Προσθέτω με το νου: α) = β) = = = = = = = ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΟΤΗΤΑ ΚΕΦ.3: ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΚΑΙ ΣΤΕΡΕΑ ΣΩΜΑΤΑ Γεωμετρικά στερεά είναι: ο κύβος, το στερεό ορθογώνιο, ο κύλινδρος, η πυραμίδα, ο κώνος και η σφαίρα. ο κύβος το στερεό ορθογώνιο ο κύλινδρος η πυραμίδα ο κώνος η σφαίρα

8 Τα γεωμετρικά στερεά: α) Πιάνουν ορισμένο χώρο (όγκο). β) Έχουν ορισμένο σχήμα. γ) Διατηρούν το μέγεθος και το σχήμα τους όταν αλλάζουν θέση. Τα βασικά επίπεδα γεωμετρικά σχήματα είναι: το τετράγωνο το τρίγωνο ο κύκλος το ορθογώνιο ΑΣΚΗΣΕΙΣ 1. Ενώνω με γραμμές τα όμοια σχήματα. Ύστερα χρωματίζω με πράσινο χρώμα τα τετράγωνα, με κίτρινο τα ορθογώνια, με καφέ τους ρόμβους, με πορτοκαλί τους κύκλους, με μπλε τα παραλληλόγραμμα.

9 2. Από πόσα γεωμετρικά σχήματα αποτελείται κάθε σχέδιο; Τετράγωνα:. Ορθογώνια:.. Κύκλοι:.. Τρίγωνα:. Τρίγωνα:. Ρόμβοι:. Χρωματίζω όπου: 1 πράσινο, 2 κίτρινο, 3 καφέ, 4 πορτοκαλί 3. Γράφω κάτω από κάθε πινακίδα της τροχαίας το γεωμετρικό σχήμα που της ταιριάζει

10 4. Δείχνω, ενώνοντας με γραμμές, τι σχήμα έχει: α) η μπάλα του ποδοσφαίρου β) η κιμωλία γ) το ζάρι δ) το κουτί των σπίρτων ε) το χωνάκι του παγωτού Μάθημα4ο : Πολλαπλασιασμός, Προπαίδεια (Ι) Ο πολλαπλασιασμός είναι μία σύντομη πρόσθεση ίδιων αριθμών. Π.χ =8 ή 4 Χ 2 =8 Στον πολλαπλασιασμό, αν αλλάξουμε τη σειρά των αριθμών, το αποτέλεσμα δεν αλλάζει. Π.χ. 5 Χ 3 =15 ή 3 Χ 5 =15 Θυμάμαι από τη Δευτέρα

11 1. Χρωματίζω στα κουτάκια τους αριθμούς της προπαίδειας του 5: Σκέφτομαι και συμπληρώνω την προπαίδεια του 2: 3 Χ 2 = 9 Χ 2 = 4 Χ 2 = 8 Χ 2 = 1 Χ 2 = 5 Χ 2 = 6 Χ 2 = 10 Χ 2 = 2 Χ 2 = 7 Χ 2 = 3. Χρωματίζω στα κουτάκια τους αριθμούς της προπαίδειας του 3: Σκέφτομαι και συμπληρώνω την προπαίδεια του 4: 3 Χ 4 = 5 Χ 4 = 8 Χ 4 = 1 Χ 4 = 2 Χ 4 = 6 Χ 4 = 9 Χ 4 = 7 Χ 4 = 4 Χ 4 = 10 Χ 4 = Μάθημα 4 ο : Πολλαπλασιασμός, Προπαίδεια (Ι) Λύνω με προσοχή τα προβλήματα: Κάθε τρίγωνο έχει 3 γωνίες. Πόσες γωνίες έχουν τα 7 τρίγωνα; Λύση: Απάντηση :

12 Η γυμνάστρια έβαλε τα αγόρια της Γ τάξης σε 5 τετράδες και τα κορίτσια σε 6 τριάδες. Πόσα είναι τα αγόρια και πόσα είναι τα κορίτσια; Λύση: Απάντηση: Πόσα είναι όλα μαζί; Όλα μαζί είναι ευρώ. Όλα μαζί είναι.. ευρώ. Όλα μαζί είναι λεπτά. Όλα μαζί είναι ευρώ. Μάθημα 4 ο : Πολλαπλασιασμός, Προπαίδεια (ΙΙ) 1. Χρωματίζω στα κουτάκια τους αριθμούς της προπαίδειας του 6: Όλα μαζί είναι.. ευρώ. 2. Χρωματίζω στα κουτάκια τους αριθμούς της προπαίδειας του 6:

13 Σε μια γλάστρα υπάρχουν 4 πετούνιες. Πόσες πετούνιες υπάρχουν σε 5 γλάστρες; Υπάρχουν πετούνιες. Δηλαδή Χ = Πόσες πετούνιες υπάρχουν σε 9 γλάστρες; Υπάρχουν. πετούνιες. Δηλαδή Χ = Μάθημα 5 ο : Πολλαπλασιασμός, Προπαίδεια (ΙΙ) 1. Ό μήνας Φεβρουάριος έχει 4 εβδομάδες. Πόσες ημέρες έχει ο Φεβρουάριος; Λύση : Απάντηση : 2. Η αίθουσα με τους υπολογιστές του σχολείου μας έχει 4 υπολογιστές σε κάθε μεγάλο τραπέζι. Αν τα τραπέζια είναι 8, πόσους υπολογιστές έχει συνολικά η αίθουσα; Λύση : Απάντηση :

14 3. Ο Πλάτωνας είναι 9 χρονών. Η μητέρα του έχει τριπλάσια ηλικία από αυτόν, ενώ ο πατέρας του τετραπλάσια. α) Πόσο χρονών είναι η μητέρα του και β) πόσο χρονών είναι ο πατέρας του; Λύση : Απάντηση : Μάθημα 6 ο : Πολλαπλασιασμός και διαίρεση 1. Σκέφτομαι και συμπληρώνω. Ύστερα χρωματίζω μπλε τους αριθμούς της προπαίδειας του 8 και κόκκινους τους αριθμούς της προπαίδειας του 9: 1 x 8 = 4 x 8 = 8 x 8 = 2 x 8 = 10 x 8 = 3 x 8 = 9 x 8 = 5 x 8 = 6 x 8 = 0 x 8 = 7 x 8 = 6 x 9 = 4 x 9 = 8 x 9 = 2 x 9 = 10 x 9 = 7 x 9 = 0 x 9 = 5 x 9 = 1 x 9 = 9 x 9 = 3 x 9 = Σε ένα κουτί είναι τοποθετημένα σοκολατάκια σε 5 σειρές. Σε κάθε σειρά υπάρχουν 8 σοκολατάκια. Πόσα σοκολατάκια υπάρχουν στο κουτί; Λύση : Απάντηση :

15 Μάθημα 6 ο : Πολλαπλασιασμός και διαίρεση 1. Συμπληρώνω τον Πυθαγόρειο πίνακα Χ Από πόσα τετραγωνάκια αποτελούνται οι φωτογραφίες της Γεωργίας; Η εικόνα του λυπημένου ελέφαντα αποτελείται από τετραγωνάκια Η εικόνα του τρελούτσικου ελέφαντα αποτελείται από τετραγωνάκια

16 1. Κάνω τις πράξεις: Μάθημα : Επανάληψη 1 ου κεφαλαίου (8. 9) + (2. 9) = = 90 (6. 6) + (4. 6) = (8. 8) + (4. 9) = (7. 8) + (3. 8) = (7. 9) + (3. 9) = (5. 9) + (4. 9) = (6. 9) + (3. 9) = 2. Υπολογίζω με πράξεις τις φατσούλες: Λύση - Πράξη : Απάντηση : Λύση - Πράξη : Απάντηση :

17 3. Κάνω κάθετα τις παρακάτω πράξεις Ο παππούς μου έχει 8 κότες και 9 κατσίκες Πόσα πόδια έχουν οι κότες; Λύση : Απάντηση : 4.2. Πόσα πόδια έχουν οι κατσίκες; Λύση : Απάντηση : 4.3. Πόσα πόδια έχουν τα ζώα όλα μαζί; Λύση : Απάντηση :

18 Μάθημα : Επανάληψη 1 ου κεφαλαίου 1. Σε κάθε πολλαπλασιασμό κάνω δυο διαιρέσεις:. : =. 5 Χ 8 = 6 Χ 7 =... : =.. : =.... : =.. : =.. : =. 3 Χ 9 = 4 Χ 9 =... : =.... : =.. : =. 2 Χ 6 = 7 Χ 8 =... : =.. : =.... : =.. : =.. : =. 4 Χ 8 = 3 Χ 7 =... : =.... : =. 3. Ένα καλάθι είναι γεμάτο με αχλάδια και μήλα. Τα αχλάδια είναι 5, ενώ τα μήλα είναι επταπλάσια από τα αχλάδια. Πόσα μήλα υπάρχουν στο καλάθι; Λύση Απάντηση : 4. Κάθε πρωί η Χιονάτη στρώνει τα κρεβάτια των 7 νάνων. Για να στρώσει το κάθε κρεβάτι χρειάζεται 6 λεπτά. Πόσα λεπτά χρειάζεται η Χιονάτη για να στρώσει όλα τα κρεβάτια; Λύση Απάντηση :

19 Επαναληπτικές ασκήσεις 1 ου κεφαλαίου 1. Ζωγράφισε όσα νομίσματα χρειάζονται για να αγοράσεις τα πράγματα που φαίνονται στις εικόνες. 80 λεπτά 35 λεπτά 8 ευρώ 145 ευρώ 2. Ο Σπύρος αγόρασε 6 κουτιά καραμέλες. Το καθένα κουτί είχε μέσα 8 καραμέλες. Πόσες καραμέλες είχαν όλα τα κουτιά; ΛΥΣΗ: ΑΠΑΝΤΗΣΗ: 3. Το καθένα πακέτο έχει 6 κραγιόνια. Πόσα κραγιόνια έχουν τα 9 πακέτα; ΛΥΣΗ: ΑΠΑΝΤΗΣΗ:

20 Κριτήριο Αξιολόγησης στην 1η ενότητα 1. Έχουμε 72 κάστανα και θέλουμε να τα βάλουμε σε 8 σακουλάκια. Πόσα κάστανα να θα βάλουμε σε κάθε σακουλάκι; Λύση: Απάντηση: 2. Μία νταλίκα έχει 6 ρόδες. Πόσες ρόδες έχουν 3 νταλίκες : Πόσες ρόδες έχουν 7 νταλίκες : Πόσες ρόδες έχουν 9 νταλίκες : 3. Να κάνετε τις προσθέσεις και αφαιρέσεις κάθετα. Προσοχή στα κρατούμενα (!) : α) Προσθέτω τους αριθμούς: = = = = β) Βάζω τους αριθμούς που βρήκα στον πίνακα και χωρίζω τα ψηφία τους σε μονάδες, δεκάδες, εκατοντάδες, χιλιάδες. ΑΡΙΘΜΟΣ ΧΙΛΙΑΔΕΣ ΕΑΤΟΝΤΑΔΕΣ ΔΕΚΑΔΕΣ ΜΟΝΑΔΕΣ 5. α) Ενώνω τις φράσεις που ταιριάζουν με την πράξη που κάνω. Όταν..

21 ξέρω το ένα, δε ξέρω τα πολλά ξέρω τα πολλά, δε ξέρω το ένα β) Γράφω τους αριθμούς. Ογδόντα έξι: Εκατόν πέντε: διακόσια τριάντα δύο: Οχτακόσια ογδόντα οχτώ:. 6. Γράφω το όνομα κάθε σχήματος. (γεωμετρικά σχήματα στερεά)

22 Γ ΤΑΞΗ : ΕΠΑΝΑΛΗΠΤΙΚΟ ΜΑΘΗΜΑ ΑΞΙΟΛΟΓΗΣΗΣ 1. Παρατηρώ τα σχήματα και τα στερεά (υλικά) σώματα και τα τοποθετώ στη σωστή κατηγορία: Α Β Γ Δ Ε ΣΤ Ζ Η Θ Λ Ι Μ Κ Ν ΤΕΤΡΑΓΩΝΟ :. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ :. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕΔΟ :.. ΚΥΒΟΣ :.. ΚΥΛΙΝΔΡΟΣ : ΡΟΜΒΟΣ : ΤΡΙΓΩΝΟ : ΚΥΒΟΣ :. ΚΥΚΛΟΣ :.. 2. Βάζω κάθετα τους αριθμούς και κάνω τις πράξεις: = = = =

23 3. Υπολογίζω και γράφω το αποτέλεσμα: 5 x 7 = 7 x 7 = 9 x 7 = 5 x 8 = 7 x 8 = 9 x 8 = 5 x 9 = : 5 = 45: 9 = 5 x 6 = 7 x 6 = 9 x 6 = 5 x 5 = 7 x 5 = 9 x 5 = 35 : 7 = 42 : 6 = 72 : 8 = 4. Χρησιμοποιώ το γνωστό γινόμενο για να υπολογίσω το προηγούμενο και το επόμενο αποτέλεσμα της προπαίδειας των αριθμών: 4 x 6 = x 7 = 5 x 8 =.. 5 x 6 = 30 5 x 7 = 35 5 x 8 = 40 6 x 6 = x 7 = 5 x 8 =.. 5. Υπολογίζω με πράξεις τις φατσούλες: α) Μεπρόσθεση: β) Με πολλαπλασιασμό :.. α) Με πρόσθεση :. β) Με πολλαπλασιασμό :

24 Οδύσσεια Τα απίθανα... τριτάκια!

25 Tετάρτη τάξη Ilias ili

26

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας;

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; 2. ºÙÈ Óˆ ÚÈıÌÔ Ì ÚÈ ÙÔ 100 Î È ÙÔ Û ÁÎÚ Óˆ ΜΑΘΑΙΝΩ ΠΩΣ ΝΑ ΛΥΝΩ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ Ú Êˆ Ó Ó ÚÈıÌfi Ì ËÊ Î È ÌÂ Ï ÍÂÈ 2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; ΛΥΣΗ Στη ράβδο του άβακα που δείχνει

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ.

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ. ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003, Λευκωσία Τηλ. 357-22378101 Φαξ: 357-22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ. Ημερομηνία:

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

ΠΙΝΑΚΕΣ ΠΟΣΟΤΗΤΩΝ ΚΑΙ ΠΡΟΫΠΟΛΟΓΙΣΜΩΝ 414.548,13 300.000,00 95.000,00 116.862,30 156.456,00 73.493,73 299.904,10 122.943,93 161.406,75 42.

ΠΙΝΑΚΕΣ ΠΟΣΟΤΗΤΩΝ ΚΑΙ ΠΡΟΫΠΟΛΟΓΙΣΜΩΝ 414.548,13 300.000,00 95.000,00 116.862,30 156.456,00 73.493,73 299.904,10 122.943,93 161.406,75 42. ΠΙΝΑΚΕΣ ΠΟΣΟΤΗΤΩΝ ΠΡΟΫΠΟΛΟΓΙΣΜΩΝ ) ΠΙΝΑΚΑΣ προμήθειας οξυγόνου και προϋπολογισθείσας δαπάνης α/α Νοσοκομεία. Π. Γ. Ν. Θ. ΑΧΕΠΑ 2. Γ.Ν.Θ. "Ιπποκράτειο" Είδη προς προμήθεια Προϋπολογισθείσα Δαπάνη με 44.548,3

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε!

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Συντελεστές: Γιάννης Π. Κρόκος - Μαθηματικός Βασίλης Τσιλιβής Μαθηματικός Φιλίππια Γαλιατσάτου - Δασκάλα Πολιτικός Μηχανικός «Η επίλυση των προβλημάτων & των

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ÓfiÙËÙ ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô Ì Ì È: ÀappleÂÓı ÌÈÛË ã T ÍË È Ó ÂappleÈÏ ÛÔ ÌÂ Ó appleúfi ÏËÌ, ÙÔ È Ô ÌÂ appleúôûâîùèî ÒÛÙÂ Ó Î Ù ÓÔ ÛÔ - ÌÂ ÙÈ appleïëúôêôú

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ραστηριότητα - Ανακάλυψη...

ραστηριότητα - Ανακάλυψη... 1 Θυμάμαι ό, τι έμαθα από τη Γ τάξη ραστηριότητα - Ανακάλυψη... Η Φανή, με την έναρξη της σχολικής χρονιάς, πήρε 30 και πήγε στο βιβλιοπωλείο να αγοράσει σχολικά είδη. Κοίταξε τον τιμοκατάλογο και αγόρασε

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ Τα Μαθηματικά παίζουν κυρίαρχο ρόλο σε όλους τους χώρους της σύγχρονης κοινωνίας. Όλα σχεδόν τα επιτεύγματα της τεχνολογίας και της ε- πιστήμης στηρίζονται στην ανάπτυξη των Μαθηματικών. Αλλά και τα προβλήματα

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς 0-0059MATHIMATIKAGDIMOTIKOU3_0 MAΘHTHΣ MAΘHM Γ 3/2/203 4:3 μμ Page 6 η ενότητα Εισαγωγή στους δεκαδικούς αριθμούς 33 34 35 36 37 38 Κεφάλαιο 33 : Πολλαπλασιασμός και διαίρεση με το 0, το 00 και το.000

Διαβάστε περισσότερα

Ποια αντικείμενα υπάρχουν στην αίθουσά μας; Τα καταγράφουμε εδώ:

Ποια αντικείμενα υπάρχουν στην αίθουσά μας; Τα καταγράφουμε εδώ: Το σχέδιο της αίθουσάς μας Τι σχήμα έχει η αίθουσά μας; Επιλέγουμε το σωστό σχήμα και γράφουμε το όνομά του στο κάτω μέρος. Ποια αντικείμενα υπάρχουν στην αίθουσά μας; Τα καταγράφουμε εδώ: Πώς είναι τοποθετημένα

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ. Πόσο κάνει; Πόσο κοστίζει;

ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ. Πόσο κάνει; Πόσο κοστίζει; ΕΝΟΤΗΤΑ 8 - Πόσο κάνει; A ΜΕΡΟΣ Α. ΔΙΑΛΟΓΟΣ Βασιλική: Πωλητής: Βασιλική: Πωλητής: Σοφία: Περιπτεράς: Σοφία: Περιπτεράς: Σοφία: Περιπτεράς: Πωλητής: Πωλητής: ΚΕΙΜΕΝΑ - ΛΕΞΙΛΟΓΙΟ - ΑΣΚΗΣΕΙΣ Πόσο κάνει; Πόσο

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 A-PDF Merger DEMO : Purchase from www.a-pdf.com to remove the watermark ΥΠΟΥΡΓΙΟ ΠΑΙΔΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΥΘΥΝΣΗ ΑΝΩΤΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΚΠΑΙΔΥΣΗΣ ΥΠΗΡΣΙΑ ΞΤΑΣΩΝ ΠΑΓΚΥΠΡΙΣ ΞΤΑΣΙΣ 007 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 57-2278101 Φαξ: 57-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 201 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία:

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ (4) Ημερομηνία και ώρα εξέτασης: Δευτέρα, 25/5/2015

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Άρθρο 4 ΜΕΤΟΧΙΚΟ ΚΕΦΑΛΑΙΟ

Άρθρο 4 ΜΕΤΟΧΙΚΟ ΚΕΦΑΛΑΙΟ Σε συνέχεια προηγούμενων εισηγήσεών του, το Διοικητικό Συμβούλιο της Εταιρείας με την επωνυμία Ξενοδοχειακαί Τουριστικαί Οικοδομικαί και Λατομικαί Επιχειρήσεις Ο ΚΕΚΡΟΨ Α.Ε. προτείνει την τροποποίηση του

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

APA EI MA 1. B ÛÈÎ ÛËÌ ıâˆú. Πολλές φορές είναι απαραίτητο να συγκρίνουµε δύο µεγέθη και να µελετήσουµε

APA EI MA 1. B ÛÈÎ ÛËÌ ıâˆú. Πολλές φορές είναι απαραίτητο να συγκρίνουµε δύο µεγέθη και να µελετήσουµε 30 Λόγος δύο µεγεθών B ÛÈÎ ÛËÌ ıâˆú Πολλές φορές είναι απαραίτητο να συγκρίνουµε δύο µεγέθη και να µελετήσουµε τη σχέση τους. Tο αποτέλεσµα της σύγκρισης των δύο µεγεθών που εκφράζεται ως κλάσµα ονοµάζεται

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 1 4. 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Πρόβληµα : Ονοµάζουµε την κατάσταση που δηµιουργείται όταν αντι- µετωπίζουµε εµπόδια και δυσκολίες στην προσπάθεια µας να φτάσουµε σε έναν συγκεκριµένο στόχο.. Επίλυση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Λιακόπουλος Ιωάννης1 και Λυπηρίδης Χαράλαμπος2 1liakopoulosjohn@gmail.com, 2xarislip@hotmail.com Επιβλέπων Καθηγητής: Λάζαρος Τζήμκας tzimkaslazaros@gmail.com

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

Τιμολόγιο Μελέτης. Έργο: ΑΝΑΒΑΘΜΙΣΗ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ ΥΠΟΕΡΓΟ 2: ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ Θέση: Τ.Κ.

Τιμολόγιο Μελέτης. Έργο: ΑΝΑΒΑΘΜΙΣΗ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ ΥΠΟΕΡΓΟ 2: ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ Θέση: Τ.Κ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΚΑΡΔΙΤΣΑΣ ΔΗΜΟΣ ΛΙΜΝΗΣ ΠΛΑΣΤΗΡΑ Έργο: ΑΝΑΒΑΘΜΙΣΗ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ ΥΠΟΕΡΓΟ 2: ΠΡΟΜΗΘΕΙΑ ΕΞΟΠΛΙΣΜΟΥ ΠΟΛΙΤΙΣΤΙΚΟΥ ΚΕΝΤΡΟΥ ΚΕΡΑΣΙΑΣ Θέση: Τ.Κ. ΚΕΡΑΣΙΑΣ Τιμολόγιο Μελέτης

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις

Γεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΙΑΘΕΜΑΤΙΚΟ ΕΝΙΑΙΟ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 1. Σκοπός της διδασκαλίας του µαθήµατος Ο σκοπός της διδασκαλίας των Μαθηµατικών εντάσσεται στους γενικότερους σκοπούς της Εκπαίδευσης και αφορά

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ Εαρινό εξάμηνο 2011 23.02.11 Χ. Χαραλάμπους ΑΠΘ Υπολογισμός (ακρίβεια έως 5 δεκαδικά) Yale Babylonian collection, 1800 π.χ. 24 51 10 1+ + + = 1.41421296 2 3 60 60 60 Τετραγωνική ρίζα του 2 Ποια είναι η

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

Από το επίπεδο στο χώρο (Στερεομετρία)

Από το επίπεδο στο χώρο (Στερεομετρία) Από το επίπεδο στο χώρο (Στερεομετρία) (Διεπιστημονική προσέγγιση αριθμητικού και οπτικού γραμματισμού) Εκπαιδευτικοί: Αθανασοπούλου Ζαφειρία (οπτικός γραμματισμός) Σαρακινίδου Σοφία (αριθμητικός γραμματισμός)

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 015 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4-ΩΡΟ ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ Ημερομηνία και

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα

Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα Οπτική αντίληψη Ακουστική αντίληψη Γνωστικός - εκτελεστικός τοµέας Γνωστικός - εκφραστικός τοµέας Μίµηση Οπτική µνήµη Λειτουργική

Διαβάστε περισσότερα

Η Γενική Συνέλευση αποφάσισε ομόφωνα / με πλειοψηφία.% :

Η Γενική Συνέλευση αποφάσισε ομόφωνα / με πλειοψηφία.% : ΘΕΜΑ : Αύξηση του μετοχικού κεφαλαίου της Εταιρείας έως του ποσού των τριάντα εκατομμυρίων, πεντακοσίων ογδόντα έξι χιλιάδων οκτακοσίων τριάντα επτά ευρώ και πενήντα λεπτών ( 30.586.837,50) με καταβολή

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

Η έννοια του εγγραμματισμού στα Μαθηματικά προσδιορίζεται από τρία συστατικά στοιχεία που αναπαρίστανται στο παρακάτω σχήμα:

Η έννοια του εγγραμματισμού στα Μαθηματικά προσδιορίζεται από τρία συστατικά στοιχεία που αναπαρίστανται στο παρακάτω σχήμα: Στο πλαίσιο του προγράμματος PISA, ο εγγραμματισμός στα Μαθηματικά ορίζεται ως η ικανότητα του ατόμου να προσδιορίζει και να κατανοεί τον ρόλο των Μαθηματικών στην καθημερινότητα, να αναπτύσσει τεκμηριωμένες

Διαβάστε περισσότερα

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Λεμονίδης Χ. (2007). Ο εκσυγχρονισμός των μαθηματικών περιεχομένων στα νέα βιβλία της Α και Γ τάξης του Δημοτικού Σχολείου. Γέφυρες, 31:24-31. Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ

Διαβάστε περισσότερα

ΒΑΣΕΙ ΤΩΝ ΒΙΒΛΙΩΝ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ

ΒΑΣΕΙ ΤΩΝ ΒΙΒΛΙΩΝ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ ΒΑΣΕΙ ΤΩΝ ΒΙΒΛΙΩΝ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ 1 ΦΩΤΟΓΡΑΦΙΑ ΠΕΡΙΓΡΑΦΗ ΤΑΞΗ ΤΙΜΗ 1250 Κουδούνι με μελωδία Α -ΣΤ 35 Τι σχήμα είναι; 342208 60 κομμάτια σε 5 σχήματα, 3 χρώματα, 2 πάχη και 2 μεγέθη. Σε πλαστική κασετίνα

Διαβάστε περισσότερα

Παιχνιδάκια με τη LOGO

Παιχνιδάκια με τη LOGO Όταν σβήνει ο υπολογιστής ξεχνάω τα πάντα. Κάτι πρέπει να γίνει Κάθε φορά που δημιουργώ ένα πρόγραμμα στη Logo αυτό αποθηκεύεται προσωρινά στη μνήμη του υπολογιστή. Αν θέλω να διατηρηθούν τα προγράμματά

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Τ ά ξ η Α Β Ι Β Λ Ι Α

Τ ά ξ η Α Β Ι Β Λ Ι Α Σχολικό Έτος 2011-2012 Τ ά ξ η Α Β Ι Β Λ Ι Α 1. Η Γλώσσα µου Μέρος α, β 2. Η Γλώσσα µου (Τετράδια εργασιών) // α, β 3. Ανθολόγιο 4. Μαθηµατικά // α, β 5. Μαθηµατικά (Τετράδια εργασιών) // α, β, γ, δ 6.

Διαβάστε περισσότερα

ΒΙΒΛΙΑ - ΤΕΤΡΑΔΙΑ. Παρακαλούμε τους γονείς των Νηπίων να προμηθευτούν τα παρακάτω είδη:

ΒΙΒΛΙΑ - ΤΕΤΡΑΔΙΑ. Παρακαλούμε τους γονείς των Νηπίων να προμηθευτούν τα παρακάτω είδη: ΝΗΠΙΑΓΩΓΕΙΟ ΒΙΒΛΙΑ - ΤΕΤΡΑΔΙΑ Παρακαλούμε τους γονείς των Νηπίων να προμηθευτούν τα παρακάτω είδη: 1. Ένα φάκελο πλαστικό με κουμπί για εργασίες Α4 με το ονοματεπώνυμο του μαθητή. 2. Ένα φάκελο πλαστικό

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΣΧΕ ΙΟ ΤΗΣ ΠΑΡ. 1 ΤΟΥ ΑΡΘΡΟΥ 5 ΤΟΥ ΚΑΤΑΣΤΑΤΙΚΟΥ ΤΗΣ ΕΤΑΙΡΙΑΣ «ALPHA TRUST-ΑΝ ΡΟΜΕ Α Α.Ε.Ε.Χ.» (όπως θα προταθεί προς έγκριση στην Τακτική Γενική Συνέλευση των µετόχων της Εταιρίας της 11 ης Απριλίου 2014)

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΤΩΝ ΜΑΘΗΤΩΝ ΤΗΣ Ε ΔΗΜΟΤΙΚΟΥ (Ε1) ΣΤΗΝ ΕΥΕΛΙΚΤΗ ΖΩΝΗ

ΕΡΓΑΣΙΑ ΤΩΝ ΜΑΘΗΤΩΝ ΤΗΣ Ε ΔΗΜΟΤΙΚΟΥ (Ε1) ΣΤΗΝ ΕΥΕΛΙΚΤΗ ΖΩΝΗ ΕΡΓΑΣΙΑ ΤΩΝ ΜΑΘΗΤΩΝ ΤΗΣ Ε ΔΗΜΟΤΙΚΟΥ (Ε1) ΣΤΗΝ ΕΥΕΛΙΚΤΗ ΖΩΝΗ ΤΑ ΕΘΙΜΑ ΤΟΥ ΓΑΜΟΥ Την ημέρα του γάμου μαζεύονται οι κοπέλες στο σπίτι της νύφης και την ντύνουν. Μετά η μάνα της, της πλένει τα πόδια για να

Διαβάστε περισσότερα

ΤΙΜΟΛΟΓΙΟ ΜΕΛΕΤΗΣ ΓΙΑ ΤΗΝ ΠΡΟΜΗΘΕΙΑ, ΜΕΤΑΦΟΡΑ ΚΑΙ ΠΑΡΑΔΟΣΗ ΤΩΝ ΠΑΡΑΚΑΤΩ ΤΗΣ ΔΕΥΑΠ ΥΛΙΚΩΝ, ΣΤΙΣ ΑΠΟΘΗΚΕΣ

ΤΙΜΟΛΟΓΙΟ ΜΕΛΕΤΗΣ ΓΙΑ ΤΗΝ ΠΡΟΜΗΘΕΙΑ, ΜΕΤΑΦΟΡΑ ΚΑΙ ΠΑΡΑΔΟΣΗ ΤΩΝ ΠΑΡΑΚΑΤΩ ΤΗΣ ΔΕΥΑΠ ΥΛΙΚΩΝ, ΣΤΙΣ ΑΠΟΘΗΚΕΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΔΗΜΟΣ ΠΑΡΟΥ Δ.Ε.Υ.Α.Π. ΠΡΟΜΗΘΕΙΑ ΥΛΙΚΩΝ ΥΔΡΕΥΣΗΣ ΑΠΟΧ/ΣΗΣ ΤΙΜΟΛΟΓΙΟ ΜΕΛΕΤΗΣ ΓΙΑ ΤΗΝ ΠΡΟΜΗΘΕΙΑ, ΜΕΤΑΦΟΡΑ ΚΑΙ ΠΑΡΑΔΟΣΗ ΤΩΝ ΠΑΡΑΚΑΤΩ ΤΗΣ ΔΕΥΑΠ ΥΛΙΚΩΝ, ΣΤΙΣ ΑΠΟΘΗΚΕΣ 1. ΕΞΑΡΤΗΜΑΤΑ ΟΡΕΙΧΑΛΚΟΥ

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ»

ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ» ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ» ΒΟΛΟΣ 2007 ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΣΥΓΓΡΑΦΙΚΗ ΕΠΙΜΕΛΕΙΑ: ΚΛΕΑΝΘΗ ΜΙΧΑΛΑΝΤΟΥ-ΛΙΟΠΥΡΗ ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ Ε

ΣΥΓΓΡΑΦΙΚΗ ΕΠΙΜΕΛΕΙΑ: ΚΛΕΑΝΘΗ ΜΙΧΑΛΑΝΤΟΥ-ΛΙΟΠΥΡΗ ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ Ε ΣΥΓΓΡΑΦΙΚΗ ΕΠΙΜΕΛΕΙΑ: ΚΛΕΑΝΘΗ ΜΙΧΑΛΑΝΤΟΥ-ΛΙΟΠΥΡΗ ΘΕΜΑΤΙΚΟΣ ΑΞΟΝΑΣ Ε ΜΑΘΗΣΙΑΚΟΙ ΣΤΟΧΟΙ: Προφορική αρίθμηση 1-20 Αρίθμηση και Κατασκευή συλλογών ορατών αντικειμένων 1-15 Αναγνώριση αριθμητικών συμβόλων 0-10

Διαβάστε περισσότερα

Σχέδιο παρουσίασης των διδασκαλιών ή των project

Σχέδιο παρουσίασης των διδασκαλιών ή των project Σχέδιο παρουσίασης των διδασκαλιών ή των project Σην παρουσίαση των διδασκαλιών ή των project μπορούμε να ακολουθήσουμε την φόρμα που παρουσιάζεται παρακάτω. Μια παρουσίαση σύντομη και μια λεπτομερής.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΔΗΜΟΤΙΚΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΔΗΜΟΤΙΚΟΥ ΜΑΘΗΜΑΤΙΚΑ ΔΗΜΟΤΙΚΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΙΣ Α, Β, Γ, Δ, Ε & ΣΤ ΤΑΞΕΙΣ ΔΗΜΟΤΙΚΟΥ ΓΙΑ ΚΩΦΟΥΣ ΜΑΘΗΤΕΣ ΒΙΒΛΙΟ ΔΑΣΚΑΛΟΥ Περιεχόμενα Α. ΠΑΙΔΑΓΩΓΙΚΟ ΠΛΑΙΣΙΟ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;

Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Τεχνολογία Α! Τάξης. Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ

Τεχνολογία Α! Τάξης. Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ Τεχνολογία Α! Τάξης Καθηγητής : ΗΡΑΚΛΗΣ ΝΤΟΥΣΗΣ Μελέτη Πριν από κάθε κατασκευή προηγούνται : 1. Μελέτη 2. Σχεδίαση *Τι σχήμα να τις δώσω; *Τι μέγεθος θα έχει (διαστάσεις); Σχεδίαση * Ποιοι είναι οι κανόνες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο Φυσική Β Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις κινήσεις των σωμάτων. Το επόμενο βήμα είναι να αναζητήσουμε

Διαβάστε περισσότερα

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ

6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ 6.2 ΛΟΓΟΣ ΥΟ ΑΡΙΘΜΩΝ ΑΝΑΛΟΓΙΑ ΘΕΩΡΙΑ. Λόγος οµοειδών µεγεθών : Ονοµάζουµε λόγο δύο οµοιειδών µεγεθών, που εκφράζονται µε την ίδια µονάδα µέτρησης, το πηλίκο των µέτρων τους. 2. Αναλογία: Η ισότητα δύο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 2.1 Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 1) Η τιμή του χ είναι,χ Ητιμή του χ είναι 5 Ηεντολή εμφανίζει ότι υπάρχει στα διπλά εισαγωγικά ως έχει.

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

TAΞH B. 2ο Tετράδιο ασκήσεων

TAΞH B. 2ο Tετράδιο ασκήσεων 2B TET ASKISEON_XPress_Hamster_temp.qxp 27/04/2011 9:48 π.μ. Page 1 2ο Tετράδιο ασκήσεων TAΞH B Με απόφαση της ελληνικής κυβέρνησης τα διδακτικά βιβλία του Δημοτικού, του Γυμνασίου και του Λυκείου τυπώνονται

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ 1 4.4 Η ΠΥΡΜΙ ΚΙ Τ ΣΤΟΙΧΕΙ ΤΗΣ ΘΕΩΡΙ 1. Πυραµίδα Ονοµάζεται ένα στερεό του οποίου µία έδρα είναι ένα οποιοδήποτε πολύγωνο και όλες οι άλλες έδρες του είναι τρίγωνα µε κοινή κορυφή. ύο πυραµίδες φαίνονται

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα