Šolski center Novo mesto Srednja elektro šola in tehniška gimnazija VAJE IZ STATISTIKE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Šolski center Novo mesto Srednja elektro šola in tehniška gimnazija VAJE IZ STATISTIKE"

Transcript

1 Šolski center Novo mesto Srednja elektro šola in tehniška gimnazija VAJE IZ STATISTIKE 1. Voznik je za 9 prevoženih poti od Novega mesta do Ljublja beležil porabo časa. Njegovi rezultati v minutah so 8, 42, 5, 44, 40, 40, 41, 40, 7. a) Potke uredite v ranžirno vrsto in jim določite range. b) Za potke izračunajte aritmetično sredino, mediano in modus. c) Za potke izračunajte variacijski razmik in stanrdni odklon. d) Za potke izračunajte kvartile, minimalno in maksimalno vrednost ter medčetrtinski razmik. Narišite škatlo z brki. 2. Na določeni relaciji so beležili zamude vlaka. V 12 vožnjah so zabeležili naslednje zamude v minutah 5, 2, 0,, 8, 9,,, 5, 4, 10, 2. a) Potke uredite v ranžirno vrsto in jim določite range. b) Izračunajte aritmetično sredino, mediano in modus zamud vlaka na tej relaciji. c) Za potke izračunajte variacijski razmik in stanrdni odklon. d) Za potke izračunajte kvartile, minimalno in maksimalno vrednost ter medčetrtinski razmik. Narišite škatlo z brki.. Na tehniški gimnaziji so v 1. letnikih izmerili težo 50 dijakov. Rezultati merjenja v kg so: 47,6 48,0 57,2 56,6 51,4 58, 59, 5,8 51,9 57, 52,5 58,4 6,2 55, 56, 56,7 56,9 57, 67,0 69, 55,0 54, 50,7 54,2 61,5 65, 58,2 59,4 49, 62, 64,2 58,4 58,5 54,1 62, 59,4 59,5 60,2 61,2 54, 57,8 62,1 60,2 58,1 65,6 65,2 59,2 60,6 68,7 68,4 a) Potke grupirajte v 6 enako širokih razredov. b) Za vsak razred izračunajte fi, F i, Fi, x i,s, x i,z, d i, x i. c) Potke predstavite s histogramom, s frekvenčnim poligonom in s frekvenčnim kolačem. d) Izračunajte aritmetično sredino in stanrdni odklon za težo 50 dijakov v 1. letniku tehniške gimnazije. e) Ali so potki porazdeljeni približno normalno? f) Če so potki porazdeljeni približno normalno, izračunaj interval, na katerem se nahaja približno 2 potkov. 4. Na železniški postaji so za zadnjih 40 dni beležili dvno število potnikov, ki so na tej postaji vstopali na vlak. Zbrani rezultati so: a) Potke grupirajte v 6 enako širokih razredov. b) Za vsak razred izračunajte f i, F i, F i, x i,s, x i,z, d i, x i. c) Potke predstavite s histogramom, s frekvenčnim poligonom in s frekvenčnim kolačem. d) Izračunajte aritmetično sredino in stanrdni odklon za dvno število potnikov na tej postaji v zadnjih 40 dh. e) Ali so potki porazdeljeni približno normalno?

2 f) Če so potki porazdeljeni približno normalno, izračunaj interval, na katerem se nahaja približno 2 potkov. 5. Na avtobusu je 50 potnikov. Vsakega so vprašali po dopolnjenih letih starosti. Rezultati so zbrani v tabeli (v letih): Razred Starost f i a) Za vsak razred izračunajte fi, F i, Fi, x i,s, x i,z, d i, x i. b) Potke predstavite s histogramom, s frekvenčnim poligonom in s frekvenčnim kolačem. c) Izračunajte aritmetično sredino in stanrdni odklon za starost potnikov na avtobusu. d) Ali so potki porazdeljeni približno normalno? e) Če so potki porazdeljeni približno normalno, izračunaj interval, na katerem se nahaja približno 2 potkov. 6. V tovarni avtomobilov so za 40 testnih avtomobilov določega tipa merili porabo goriva na 100 km. Rezultati so zbrani v tabeli: Razred Poraba goriva f i pod pod pod pod pod a) Za vsak razred izračunajte fi, F i, Fi, x i,s, x i,z, d i, x i. b) Potke predstavite s histogramom, s frekvenčnim poligonom in s frekvenčnim kolačem. c) Izračunajte aritmetično sredino in stanrdni odklon za porabo goriva. d) Ali so potki porazdeljeni približno normalno? e) Če so potki porazdeljeni približno normalno, izračunaj interval, na katerem se nahaja približno 2 potkov. 7. Opazovali so količino tekoči v m na delovno uro, ki jo je črpalka prečrpa v 6 urah. Rezultati so zbrani v tabeli: Razred m f i pod pod pod pod a) Za vsak razred izračunajte f i, F i, F i, x i,s, x i,z, d i, x i. b) Potke predstavite s histogramom, s frekvenčnim poligonom in s frekvenčnim kolačem. 2

3 c) Izračunajte aritmetično sredino in stanrdni odklon za količino prečrpa tekoči na delovno uro. d) Ali so potki porazdeljeni približno normalno? e) Če so potki porazdeljeni približno normalno, izračunaj interval, na katerem se nahaja približno 2 potkov. 8. V ambulanti so s pregleli 0 bolnikov. Želeli so narediti analizo bolnikov po spolu, zato so za vsakega zapisali spol: a) Potke grupirajte. b) Za vsak razred izračunajte f i in f i %. c) Potke predstavite s frekvenčnim kolačem, s strukturnim stolpcem in s stolpičnim diagramom dijakov so vprašali za mnje o zadovoljstvu s šolsko malico. Dijaki so lahko svoje mnje poli z opisom zelo zadovoljen, zadovoljen, zadovoljen, zelo zadovoljen. Potki so zbrani v tabeli: Razred Mnje f i 1. Zelo zadovoljen Nezadovoljen 0. Zadovoljen Zelo zadovoljen 10 a) Za vsak razred izračunajte f i in f i %. b) Potke predstavite s frekvenčnim kolačem, s strukturnim stolpcem in s stolpičnim diagramom. 10. Pri športni vzgoji je 15 dijakov in 10 dijakinj skakalo v ljavo z mesta. Rezultati dijakov v metrih so 2,1, 1,8, 2,2, 2,, 1,7, 2,5, 2,6, 2,2, 2,4, 2,, 2,1, 2,0, 2,, 2,5, 2,2, rezultati dijakinj v metrih pa 1,6, 1,8, 2,0, 1,7, 1,5, 1,9, 1,7, 1,8, 1,9, 1,8. Rezultate dijakov in dijakinj predstavi s škatlama z brki in jih primerjaj med seboj. Nalogo reši najprej brez, nato pa z uporabo računalniškega programa. 11. Dijaki gimnazije so s statistično preiskavo zbrali potke o višinah žepnin, ki jih dobijo od staršev. Zanimalo jih je, ali se viši žepnin dijakov razlikujejo med seboj po letnikih. V vsakem letniku so naključno izbrali po 14 dijakov in viši žepnin v evrih zapisali v tabeli:

4 1. letnik 2. letnik. letnik 4. letnik Viši žepnin po letnikih predstavi s škatlami z brki. Kaj lahko sklepaš? Nalogo reši najprej brez, nato pa z uporabo računalniškega programa. 12. Voznik je za 8 voženj beležil število prevoženih kilometrov in porabo goriva. Rezultati so prikazani v tabeli: št. kilometrov poraba goriva (l) Nalogo reši najprej brez uporabe računalniškega programa. a) Potke predstavi v razsevm diagramu. Ustrezno poimenuj obe osi. b) Kakšno povezanost med številom kilometrov in porabo goriva kaže razsevni diagram? Izračunaj enačbo krivulje, ki se po tvojem mnju potkom najbolje prilega. c) Napovej, približno koliko goriva bo v povprečju porabil voznik za 58 km. Nalogo reši tudi z uporabo ustrezga računalniškega programa in primerjaj rezultate z rezultati točk a), b) in c). 1. Na slučajno izbrani delovni n so v osmih manjših večstanovanjskih objektih popisali število stanovalcev in količino odpadkov v kg, ki so jih odvrgli v smeti. Zbrani potki so v tabeli: št. stanovalcev odpadki (kg) Nalogo reši najprej brez uporabe računalniškega programa. a) Potke predstavi v razsevm diagramu. Ustrezno poimenuj obe osi. b) Kakšno povezanost med številom prebivalcev in količino odpadkov kaže razsevni diagram? Izračunaj enačbo krivulje, ki se po tvojem mnju potkom najbolje prilega. c) Napovej, približno koliko kg odpadkov bodo v povprečju odvrgli v smeti v večstanovanjski hiši, v kateri je 25 stanovalcev. Nalogo reši tudi z uporabo ustrezga računalniškega programa in primerjaj rezultate z rezultati točk a), b) in c). 4

5 14. V manjšem kraju so v letih investirali v varstvo okolja naslednje količi denarja v EUR: razred (k) leto količina denarja X k a) Potke prikaži z linijskim grafikonom. b) Potke vsi v Excel in določite enačbo krivulje, ki se potkom najbolje prilega. c) Napovej, približno koliko denarja bodo investirali leta Odrasle moške in ženske so vprašali, ali imajo vozniški izpit ali. Potki so zbrani v spodnji tabeli. Oblikuj kontingenčno tabelo. Izračunaj strukturo potkov po imetju vozniškega izpita za vsakega od spolov ter jo prikaži grafično. Nalogo reši tudi s programom Excel (vrtilna tabela). Spol Vozniški izpit Rešitve 1. a) Ranžirna vrsta: Čas Rang b) µ = 9.67 minut, Me = 40 minut, Mo = 40 minut c) V R = 9 minut, σ = 2.54 minut d) Min = 5, Q 1 = 7.5, Q 2 = 40, Q = 41.5, Max = 44, Q = 4 5

6 2. a) Ranžirna vrsta: Zamu Rang b) µ = 4.5 minut, Me =.5 minut, Mo = minute c) V R = 10 minut, σ = 2.9 minut d) Min = 0, Q 1 = 2.5, Q 2 =.5, Q = 6.5, Max = 10, Q = 4. a) Grupirani potki (ena od možnih rešitev): b) Izračun: Razred Teža f i pod pod pod pod pod pod

7 Razred Teža f i fi F i Fi x i,s x i,z d i x i f i x i f i x 2 i pod 50 0, pod ,10 0, pod ,28 8 0, pod ,2 22 0, pod ,16 8 0, pod , , Σ / / / / / d) µ = 58, 64 kg, σ = 5, 0 kg e) Da. f) [µ σ, µ + σ] = [5.61, 6.67]. Približno 2 stehtanih dijakov ima težo med 5.61 kg in 6.67 kg. 4. a) Grupirani potki (ena od možnih rešitev): b) Izračun: Razred Št. potnikov f i Razred Št. potnikov f i fi F i Fi x i,s x i,z d i x i f i x i f i x 2 i Σ / / / / / d) µ = potnikov, σ 2 = 89.9 potnikov 2, σ = 9.45 potnikov e) Ne. 5. a) Frekvenčna porazdelitev: Razred Starost f i fi F i Fi x i,s x i,z d i x i f i x i f i x 2 i Σ / / / / / c) µ = 1 let, σ = 6.24 let d) Da. e) [24.76, 7.24]. Približno 2 6. a) Frekvenčna porazdelitev: potnikov na avtobusu je starih med let in 7.24 let. 7

8 R. Gorivo (l) f i fi F i Fi x i,s x i,z d i x i f i x i f i x 2 i pod pod pod pod pod Σ / / / / / c) µ = 7.44 litrov, σ = litrov d) Da. e) [7.24, 7.67] litrov 7. a) Frekvenčna porazdelitev: R. Tekočina (m ) f i fi F i Fi x i,s x i,z d i x i f i x i f i x 2 i pod pod pod pod Σ / / / / c) µ = m, σ = 0.87 m d) Da. e) [20., ] m 8. a) Frekvenčna porazdelitev: 9. a) Frekvenčna porazdelitev: Razred Spol f i fi f i % 1. Moški Ženska Σ Razred Mnje f i fi f i % 1. Zelo zadovoljen Nezadovoljen Zadovoljen Zelo zadovoljen Σ Potki, urejeni za risanje škatle z brki v Excelu: Dijaki Dijakinje Q1 2,1 1,65 min 1,7 1,5 Q2 2,2 1,8 max 2,6 2 Q 2,4 1,85 8

9 2,5 2 Daljina (m) 1,5 1 0,5 0 Dijaki Dijakinje 11. Potki, urejeni za risanje škatle z brki v Excelu: 1. letnik 2. letnik. letnik 4. letnik Q1,5 2, min Q2 4,5 9 62,5 69 max Q , Žepnina (EUR) letnik 2. letnik. letnik 4. letnik 12. a) Razsevni diagram z regresijsko premico: b) Krivulja premica. Njeno enačbo določimo tako, izračunamo enačbo premice skozi dve izbrani točki. Mogočih je več različnih rešitev. Rešitev z Excel: Enačba regresijske premice: y = x. Vrisana je v zgornji razsevni diagram. Napoved za 58 km: y = = litrov 9

10 1. Rešitev z Excel: Enačba regresijske premice: y = 25, , 285x. Napoved za 25 stanovalcev: 2.29 kg 14. a) Grafikon Investirani denar (EUR) y = 490x Leto b) Enačba liarga tren y = 490x (x je zaporedna številka leta) c) y = = EUR. 15. Grafikon 100% 90% 80% 70% 60% 50% 40% 0% 20% 10% 0% 10

11 Navodila za računanje kvartilov in risanje škatle z brki v Excel-u Excel v čarovniku za grafiko ponuja možnosti izdelave škatle z brki, zato jo izdelamo sami s kombinacijo grafikonov. V Excel-u 97/2000/200: Izračun kvartilov: funkcija Quartile pod Statistiko. Za Array izberemo stolpec s potki, za Quart pa eno od vrednosti 0-4, kjer pomeni 0 najmanjšo vrednost med potki (Min), 1 prvi kvartil, 2 drugi kvartil (mediana), tretji kvartil in 4 največjo vrednost (Max). Opomba: Excel izračuna kvartile koliko drugače, kot jih določimo na pamet - upošteva liarno aproksimacijo. S funkcijo Quartile izračunamo po vrsti ali jih določimo na pamet. Uredimo jih v tabelo. Za nalogo 10. je tabela potkov: Dijaki Dijakinje Q1 2,1 1,65 min 1,7 1,5 Q2 2,2 1,8 max 2,6 2 Q 2,4 1,85 Opomba: Vrstni red kvartilov ter najmanjše in največje vrednosti mora biti, kot je v zgornjem primeru. Označimo stolpce s potki, vključno z naslovi stolpcev, nato v čarovniku za grafiko izberemo črtni grafikon z oznakami (ponavadi četrti grafikon). Označimo Niz v vrsticah, Naprej, domo naslov osi y, izberemo možnost brez legende in končamo. Če imamo v tabeli le en stolpec potkov (kot npr. pri nalogi 1), izberemo stolpec brez naslova in pri oseh izključimo možnost Os kategorije (x). Izbrišemo črte, ki povezujejo točke med seboj tako, izberemo vsako črto posebej, klikmo na desno miškino tipko in izberemo Oblikuj nize potkov. Pri Vzorcih pri Črtah obkljukamo Brez. Med Predstavitelji izberemo za spodnjega, srednjega in zgornjega predstavitelja dolgo črtico, izberemo njeno dolžino (npr. 8pt) in barvo (za mediano drugo barvo kot za ostala dva). Za predstavitelja Q1 in Q obkljukamo Brez. Nato pod Možnostmi obkljukamo Interval črte in Narašč.-pajoče palice. Izberemo širino škatle tako, spreminjamo širino vrzeli. Končamo. Izberemo eno škatel in izberemo barvo. Izberemo še povezavo škatle in največje ali najmanjše vrednosti ter izberemo njeno debelino. Izberemo še Oblikovanje risal površi in določimo barvo. Izberemo še Oblikovanje področja grafikona in določimo barvo ter možnost z ali brez obrobe. Določimo še velikost pisave naslovov osi. Opomba: Pri mediani moremo narisati tanke črte v širini stolpca. Podobno izdelamo škatlo z brki tudi v Excel

1. OSNOVNI POJMI STATISTIKA. Definicija 1: Statistika je veda, ki se ukvarja s proučevanjem množičnih pojavov v določenem prostoru in času.

1. OSNOVNI POJMI STATISTIKA. Definicija 1: Statistika je veda, ki se ukvarja s proučevanjem množičnih pojavov v določenem prostoru in času. 1. OSNOVNI POJMI STATISTIKA Simona PUSTAVRH, ŠC Novo mesto Definicija 1: Statistika je veda, ki se ukvarja s proučevanjem množičnih pojavov v določenem prostoru in času. Množičen pojav: ocenjevanje dijakov

Διαβάστε περισσότερα

1. OSNOVNI POJMI STATISTIKA. Definicija 2: Statistika je veda, ki se ukvarja s proučevanjem množičnih pojavov v določenem prostoru in času.

1. OSNOVNI POJMI STATISTIKA. Definicija 2: Statistika je veda, ki se ukvarja s proučevanjem množičnih pojavov v določenem prostoru in času. 1 OSNOVNI POJMI STATISTIKA Definicija 1: Statistika je veda, ki se ukvarja s proučevanjem množičnih pojavov v določenem prostoru in času Množičen pojav: ocenjevanje dijakov merjenje višin dijakov branje knjig

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Osnove statistike. Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru. 1.

Osnove statistike. Drago Bokal Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru. 1. Oddelek za matematiko in računalništvo Fakulteta za naravoslovje in matematiko Univerza v Mariboru 1. marec 2010 Obvestila. http://um.fnm.uni-mb.si/ Prosojnice se lahko spremenijo v tednu po predavanjih.

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Mojca Rožič, Nikolaj Lipič, Fani Ostrež Voh

Mojca Rožič, Nikolaj Lipič, Fani Ostrež Voh Srednja poklicna in strokovna šola Bežigrad - Ljubljana Ptujska ulica 6, 1000 Ljubljana Tel.: 01/80 53 00 Fax: 01/80 53 33 Mojca Rožič, Nikolaj Lipič, Fani Ostrež Voh - INTERNO GRADIVO - - 4. LETNIK: SREDNJE

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI

PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI. KAKO NAREDIMO FREKVENČNO PORAZDELITEV Recimo, da so am a razpolago podatki (pr. število prijateljev, s katerimi

Διαβάστε περισσότερα

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo

Statistična analiza. doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo Univerza v Ljubljani- Fakulteta za farmacijo Statistična analiza opisnih spremenljivk doc. dr. Mitja Kos, mag. arm. Katedra za socialno armacijo Univerza v Ljubljani- Fakulteta za armacijo Statistični znaki Proučevane spremenljivke: statistični znaki

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

SEMINARSKA NALOGA Funkciji sin(x) in cos(x)

SEMINARSKA NALOGA Funkciji sin(x) in cos(x) FAKULTETA ZA MATEMATIKO IN FIZIKO Praktična Matematika-VSŠ(BO) Komuniciranje v matematiki SEMINARSKA NALOGA Funkciji sin(x) in cos(x) Avtorica: Špela Marinčič Ljubljana, maj 2011 KAZALO: 1.Uvod...1 2.

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

OSNOVE STATISTIKE. FKKT-kemijski tehnologi 1.letnik Miran Černe

OSNOVE STATISTIKE. FKKT-kemijski tehnologi 1.letnik Miran Černe OSNOVE STATISTIKE FKKT-kemijski tehnologi 1.letnik 2010 Miran Černe Statistika je način, kako iz množice podatkov izluščiti ustrezne informacije. Izraz izhaja iz latinskih besed STATUS = stanje STATO =

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Cilji vaje. Osnovni pojmi. Načini grafičnega prikaza podatkov: Načini numeričnega prikaza podatkov: 2. vaja: OPISNA STATISTIKA OB UPORABI MS EXCEL

Cilji vaje. Osnovni pojmi. Načini grafičnega prikaza podatkov: Načini numeričnega prikaza podatkov: 2. vaja: OPISNA STATISTIKA OB UPORABI MS EXCEL . vaja: OPISA STATISTIKA OB UPORABI MS EXCEL asist. ejc Horvat, mag. farm. Cilji vaje ačini grafičnega prikaza podatkov: prikaz s stolpci, krogi, trakovi,.. histogram, stolpčni diagram, kvantilni diagram

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

Zbirka vaj iz STATISTIKE. Blejec Andrej

Zbirka vaj iz STATISTIKE. Blejec Andrej Zbirka vaj iz STATISTIKE Blejec Andrej Ljubljana, 1997 Za vzpodbudo Zbirka vaj je namenjena študentom Statistike na oddelku za Biologijo BF. Naloge pokrivajo snov, ki jo obravnavamo kot osnove statističnih

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23.

REˇSITVE. Naloga a. b. c. d Skupaj. FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost 2. kolokvij 23. Ime in priimek: Vpisna št: FAKULTETA ZA MATEMATIKO IN FIZIKO Oddelek za matematiko Verjetnost. kolokvij 3. januar 08 Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja. Nalog je 6,

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006

1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006 1. izpit iz Diskretnih struktur UNI Ljubljana, 17. januar 2006 1. Dana je množica predpostavk p q r s, r t, s q, s p r, s t in zaključek t r. Odloči, ali je sklep pravilen ali napačen. pravilen, zapiši

Διαβάστε περισσότερα

Afina in projektivna geometrija

Afina in projektivna geometrija fina in projektivna geometrija tožnice () kiciraj stožnico v evklidski ravnini R, ki je določena z enačbo 6 3 8 + 6 =. Rešitev: tožnica v evklidski ravnini je krivulja, ki jo določa enačba a + b + c +

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 2. Vektorji

Vaje iz MATEMATIKE 2. Vektorji Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

INŽENIRSKA MATEMATIKA I

INŽENIRSKA MATEMATIKA I INŽENIRSKA MATEMATIKA I REŠENE NALOGE za izredne študente VSŠ Tehnično upravljanje nepremičnin Marjeta Škapin Rugelj Fakulteta za gradbeništvo in geodezijo Kazalo Števila in preslikave 5 Vektorji 6 Analitična

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut

Državni izpitni center. Višja raven MATEMATIKA. Izpitna pola 1. Torek, 25. avgust 2009 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M094011* Višja raven MATEMATIKA Izpitna pola 1 JESENSKI IZPITNI ROK Torek, 5. avgust 009 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila

FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22. junij Navodila FAKULTETA ZA STROJNIŠTVO Matematika 4 Pisni izpit 22 junij 212 Ime in priimek: Vpisna št: Navodila Pazljivo preberite besedilo naloge, preden se lotite reševanja Veljale bodo samo rešitve na papirju, kjer

Διαβάστε περισσότερα

Damijana Kastelec in Katarina Košmelj STATISTIČNA ANALIZA PODATKOV S PROGRAMOMA EXCEL 2003 IN R

Damijana Kastelec in Katarina Košmelj STATISTIČNA ANALIZA PODATKOV S PROGRAMOMA EXCEL 2003 IN R Damijana Kastelec in Katarina Košmelj STATISTIČNA ANALIZA PODATKOV S PROGRAMOMA EXCEL 2003 IN R Oktober 2009 Recenzenta: prof. dr. Janez Stare in prof. dr. Andrej Blejec Lektorica: Jasmina Antonijević

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Osnove sklepne statistike

Osnove sklepne statistike Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA

Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA Domače naloge za 2. kolokvij iz ANALIZE 2b VEKTORSKA ANALIZA. Naj bo vektorsko polje R : R 3 R 3 dano s predpisom R(x, y, z) = (2x 2 + z 2, xy + 2yz, z). Izračunaj pretok polja R skozi površino torusa

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK

MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK abc MATEMATIKA 1 UNIVERZITETNI ŠTUDIJSKI PROGRAM BIOKEMIJA 1. LETNIK ŠTEVILA PRIBLIŽNO RAČUNANJE PRIBLIŽNO RAČUNANJE Ta fosil dinozavra je star 7 milijonov in šest let, pravi paznik v muzeju.??? Ko sem

Διαβάστε περισσότερα

Tabele termodinamskih lastnosti vode in vodne pare

Tabele termodinamskih lastnosti vode in vodne pare Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net

Διαβάστε περισσότερα

1. UREJENE OBLIKE KVADRATNE FUNKCIJE

1. UREJENE OBLIKE KVADRATNE FUNKCIJE 1. UREJENE OBLIKE KVADRATNE FUNKCIJE A) Splošna oblika Definicija 1 : Naj bodo a, b in c realna števila in a 0. Realno funkcijo: f : x ax + bx + c imenujemo kvadratna funkcija spremenljivke x v splošni

Διαβάστε περισσότερα

DISKRIMINANTNA ANALIZA

DISKRIMINANTNA ANALIZA DISKRIMINANTNA ANALIZA Z diskriminantno analizo poiščemo tako linearno kombinacijo merjenih spremenljivk, da bo maksimalno ločila vnaprej določene skupine in da bo napaka pri uvrščanju enot v skupine najmanjša.

Διαβάστε περισσότερα

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja

Διαβάστε περισσότερα

6. Kako razstavimo razliko kvadratov a2 - b2? Ali se vsota kvadratov a2 + b2 da razstaviti v množici realnih števil?

6. Kako razstavimo razliko kvadratov a2 - b2? Ali se vsota kvadratov a2 + b2 da razstaviti v množici realnih števil? USTNA VPRAŠANJA IZ MATEMATIKE šolsko leto 2005/2006 I. NARAVNA IN CELA ŠTEVILA 1. Naštejte lastnosti operacij v množici naravnih števil. Primer: Izračunajte na dva načina vrednosti izrazov 2. Opišite vrstni

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα