ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο"

Transcript

1 ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας σφαλμάτων στον προσδιορισμό της ακρίβειας των μετρήσεων. Θα χρησιμοποιήσουμε τις μετρήσεις μας για να χαρακτηρίσουμε τα υλικά των στερεών σωμάτων. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο Περιγραφή των οργάνων μέτρησης διαστάσεων Ο ΒΕΡΝΙΕΡΟΣ Είναι μια διάταξη με την οποία είναι δυνατόν να μετράμε ενδείξεις ενός οργάνου που αποτελούν κλάσματα των υποδιαιρέσεων της κύριας κλίμακας του οργάνου. Συνήθως η κύρια κλίμακα ενδείξεων ενός οργάνου έχει ανθρώπινες διαστάσεις υποδιαιρέσεων. Με την έκφραση αυτή εννοούμε ότι η απόσταση από υποδιαίρεση σε υποδιαίρεση είναι τέτοια, ώστε κατά την μέτρηση, αυτός που μετράει, να είναι σε θέση να προσδιορίσει με ασφάλεια, την ένδειξη της μέτρησης με το μάτι του. Με την χρήση του βερνιέρου η ακρίβεια αυτή της μέτρησης γίνεται πιο μεγάλη. 1

2 Στα περισσότερα όργανα μέτρησης, η κύρια κλίμακα του οργάνου είναι ακίνητη και ένας κινητός δείκτης δείχνει την ένδειξη. Στο σχήμα 1 ο δείκτης δείχνει ένδειξη ανάμεσα στο 1.3 και 1.4. Στο σχήμα 2 φαίνεται o βερνιέρος που έχει αντικαταστήσει τον δείκτη. Έτσι, αντί να κινείται ο δείκτης κινείται ο βερνιέρος. Η θέση 0 του βερνιέρου είναι αυτή που θα είχε ο δείκτης. Έτσι, για την ίδια μέτρηση το 0 του βερνιέρου βρίσκεται ανάμεσα στις ενδείξεις 1.3 και 1.4 της κύριας κλίμακας. Όμως με την χρήση αυτού του δεκαδικού βερνιέρου του σχήματος, μπορούμε να προσδιορίσουμε ένα ή δύο ακόμη δεκαδικά ψηφία. Σχήμα 1 Σχήμα 2 Ο συρόμενος βερνιέρος είναι έτσι κατασκευασμένος ώστε οι 20 υποδιαιρέσεις του να αντιστοιχούν σε 19 υποδιαιρέσεις της κύριας κλίμακας. 2

3 Ψάχνουμε να βρούμε ποια υποδιαίρεση του βερνιέρου συμπίπτει με υποδιαίρεση της κύριας κλίμακας. Στο σχήμα 2 η υποδιαίρεση που συμπίπτει είναι η 9 η υποδιαίρεση. Το μετρούμενο μήκος είναι: 1.3 cm + 9/20 mm=1.3 cm mm = 1.3 cm cm η τελική τιμή του μετρούμενου μεγέθους είναι cm. Ονομάζουμε σταθερά του βερνιέρου, δβ, την μικρότερη ακρίβεια στην ένδειξη που μπορούμε να βρούμε με την χρήση του βερνιέρου. Αν ο βερνιέρος έχει n υποδιαιρέσεις, τότε ισχύει ότι: δβ 1 = δκ. (1) n Στο παράδειγμα μας (σχήμα 2): 1 δβ = 1 mm = 0.05 mm (2) 20 Ο βερνιέρος με την μορφή που περιγράφηκε παραπάνω, αλλά και με μία άλλη μορφή που θα περιγράψουμε συνοπτικά όταν θα μιλήσουμε για το μικρόμετρο, είναι μία κατασκευή που προστίθεται σε όργανα μέτρησης μήκους (ή πάχους), στα οποία επιθυμούμε να έχουμε μεγάλης ακρίβειας μέτρηση. Με την χρήση βερνιέρου, η μέτρηση δίνεται από την σχέση: x = ( α + βδβ ) ± (3) όπου α είναι η μικρότερη ένδειξη του δείκτη (μηδέν του βερνιέρου), επάνω στην κύρια κλίμακα και β η γραμμή του βερνιέρου, που συμπίπτει με κάποια γραμμή της κύριας κλίμακας. Το Δ είναι το σφάλμα ανάγνωσης. Αυτό 3

4 προσδιορίζει την ασάφεια ως προς το ποια γραμμή του βερνιέρου συμπίπτει με γραμμή της κύριας κλίμακας. Η ασάφεια είναι συνήθως μία γραμμή, άρα το Δ είναι ίσο με το δβ και η παραπάνω σχέση γράφεται: x = ( α + βδβ ) ± δβ (4) ΤΟ ΔΙΑΣΤΗΜΟΜΕΤΡΟ Είναι όργανο που χρησιμοποιείται για την μέτρηση μικρών μηκών (ή παχών). Η μέγιστη τιμή μέτρησης με διαστημόμετρο εξαρτάται από τον τύπο του οργάνου και εκτείνεται συνήθως από τα 15 έως 25 cm. Στο σχήμα φαίνεται ο τρόπος μέτρησης με διαστημόμετρο. Εκτός από τις σιαγόνες Α και Β (σχήμα 3), το διαστημόμετρο διαθέτει και τις σιαγόνες Γ και Δ με τις οποίες μπορούμε να μετρήσουμε την εσωτερική διάμετρο ενός σωλήνα ή το πάχος μιας εντομής. Σχήμα 3 Μετάθεση μηδενός Όταν το διαστημόμετρο είναι κλειστό τότε θα πρέπει το 0 του βερνιέρου του διαστημομέτρου να συμπίπτει ακριβώς με το μηδέν της κλίμακας του οργάνου. Πολλές φορές όμως λόγω φθοράς ή κακής κατασκευής του οργάνου 4

5 αυτό δεν συμβαίνει. Για να μην κάνουμε σφάλμα (συστηματικό), κατά τις διάφορες μετρήσεις υπολογίζουμε την μετάθεση του μηδενός. Είναι φανερό ότι η μετάθεση του μηδενός είναι συστηματικό σφάλμα, εφ όσον το γνωρίζουμε μπορούμε να το εξαλείψουμε. Έτσι, όταν το μηδέν της κλίμακας του βερνιέρου βρίσκεται αριστερά από την θέση του μηδενός της κύριας κλίμακας του οργάνου τότε η μετάθεση του μηδενός προστίθεται στην τιμή που βρίσκουμε από την μέτρηση. Εάν βρίσκεται δεξιά αφαιρείται. ΤΟ ΜΙΚΡΟΜΕΤΡΟ Είναι όργανο που χρησιμοποιείται για μετρήσεις πάχους μικρών αντικειμένων με μεγάλη ακρίβεια. Τα χρησιμοποιούμενα στο εργαστήριο όργανα μετρούν μέχρι 25 mm. Το όργανο αυτό δεν χρησιμοποιεί βερνιέρο, αλλά μια παρόμοια κατασκευή (σχήμα 4), που κάνει την μέτρηση πιο ακριβή αλλά πλέον εύκολη. Σχήμα 4 Οι σιαγόνες των οργάνων ανάμεσα στις οποίες βάζουμε το προς μέτρηση σώμα, μετακινούνται με την περιστροφή ενός κυλινδρικού τύμπανου. Η περιστροφή αυτή γίνεται ακριβώς όπως γίνεται και η περιστροφή ενός παξιμαδιού σε μια βίδα. Το ρόλο του παξιμαδιού παίζει το εξωτερικό τύμπανο. 5

6 Το βήμα περιστροφής του τυμπάνου είναι 0.5 mm (μία περιστροφή απομακρύνει ή προσεγγίζει τις δύο σιαγόνες κατά 0.5 mm). Το τύμπανο είναι χαραγμένο γύρω-γύρω με 50 ισαπέχουσες χαραγές. Το ρόλο της βίδας παίζει το οριζόντιο στέλεχος του οργάνου που είναι βαθμολογημένο από 0-25 mm με υποδιαιρέσεις 0.5 mm. Η σταθερά του οργάνου είναι Η μέτρηση γίνεται ως εξής: Τοποθετούμε το προς μέτρηση αντικείμενο ανάμεσα στις ήδη ανοικτές σιαγόνες και περιστρέφουμε το τύμπανο, με τρόπο ώστε οι σιαγόνες να κλείνουν. Για την περιστροφή αυτή, χρησιμοποιούμε το άκρο του μικρόμετρου που είναι κατασκευασμένο ειδικά ώστε να σφίγγει το αντικείμενο πάντα με τον ίδιο τρόπο και έτσι να μην το παραμορφώνει τοπικά. Μετά διαβάζουμε την ένδειξη που αφήνει το τύμπανο να φαίνεται επάνω στην κύρια κλίμακα του οργάνου με ακρίβεια 0.5 mm. Έστω ότι αυτή είναι 7.5 mm. Μετά βλέπουμε ποια ένδειξη του τύμπανου συμπίπτει με την οριζόντια γραμμή της κύριας κλίμακας και βρίσκουμε έστω 45. Η ένδειξη του οργάνου είναι: 7.5 mm mm=7.95 mm. Και στην περίπτωση του μικρομέτρου θα πρέπει να υπολογίζουμε την μετάθεση του μηδενός και το σφάλμα ανάγνωσης. Η μέτρηση εκφράζεται: (7.95 ± 0.01) mm (5) 6

7 Εκτέλεση του πειράματος Θα μελετήσουμε 3 στερεά σώματα: έναν κύλινδρο, ένα δακτύλιο και μία σφαίρα. Μετρήσεις με Διαστημόμετρο: 1. Να βρεθεί η σταθερά του βερνιέρου και το σφάλμα μετάθεσης του μηδενός. σταθερά του βερνιέρου = σφάλμα μετάθεσης του μηδενός = 2. Εκτιμήστε το σφάλμα ανάγνωσης. σφάλμα ανάγνωσης = 3. Μετρήστε το ύψος του κυλίνδρου h Κ, εκτιμήστε το σφάλμα δh Κ και εκφράστε την μέτρησή σας με την μορφή της σχέσης (4). h Κ = (...) ± δh = Κ 4. Καταχωρήστε την μέτρησή σας για το ύψος του κυλίνδρου στον πίνακα Ι. 5. Μετρήστε την εσωτερική και την εξωτερική διάμετρο του δακτυλίου, εκτιμήστε τα σφάλματα και εκφράστε την μέτρησή σας με την μορφή της σχέσης (4). δ εσ εσ = (...) ± δδ = δ εξ εξ = (...) ± δδ = 7

8 6. Καταχωρήστε τις μετρήσεις σας για τις διαμέτρους του δακτυλίου στον πίνακα ΙΙ. Μετρήσεις με Μικρόμετρο: 1. Ξεβιδώστε το τύμπανο αναγνωρίζοντας τα διάφορα τμήματα του μικρομέτρου. 2. Βρείτε την σταθερά του τύμπανου και την μετάθεση του μηδενός. σταθερά του τύμπανου = μετάθεση του μηδενός = 3. Εκτιμήστε το σφάλμα ανάγνωσης. σφάλμα ανάγνωσης= 4. Μετρήστε το πάχος του κυλίνδρου, εκτιμήστε το σφάλμα ανάγνωσης και εκφράστε την μέτρησή σας με την μορφή της σχέσης (5). d Κ = (...) ± δd = Κ 5. Καταχωρήστε την μέτρησή σας για το πάχος του κυλίνδρου στο πίνακα Ι. 6. Μετρήστε το πάχος του δακτυλίου, εκτιμήστε το σφάλμα ανάγνωσης και εκφράστε την μέτρησή σας με την μορφή της σχέσης (5). d = (...) ± δd = 8

9 7. Καταχωρήστε την μέτρησή σας για το πάχος του δακτυλίου στον πίνακα ΙΙ. 8. Επαναλάβετε τα βήματα 6 και 7 για την διάμετρο της σφαίρας. δ Σ = (...) ± δδ = Σ Καταχωρήστε τώρα τις μετρήσεις σας στον πίνακα ΙΙΙ. Σφάλματα προσδιορισμού Χαρακτηρισμός υλικών ΚΥΛΙΝΔΡΟΣ 1. Ζυγίστε τον κύλινδρο 5 φορές στον ηλεκτρονικό ζυγό. Καταχωρήστε τις μετρήσεις σας στον παρακάτω πίνακα. 2. Βρείτε την μάζα και το σφάλμα της με την μέθοδο της μέσης τιμής των μετρήσεων της μάζας του κυλίνδρου. Χρησιμοποιείστε κατάλληλα τις στήλες του παρακάτω πίνακα. Α/Α m ( ) m Κ = δ m Κ = 9

10 3. Καταχωρήστε την τελική τιμή της μάζας του κυλίνδρου (με το σφάλμα της) στον πίνακα Ι. 4. Υπολογίστε τον όγκο του κυλίνδρου. V Κ = 5. Υπολογίστε το σφάλμα του όγκου του κυλίνδρου, από τα σφάλματα στις μετρήσεις των διαστάσεων του. δv Κ = 6. Βρείτε την πυκνότητα του υλικού του κυλίνδρου. ρ Κ = 7. Βρείτε το σφάλμα στην πυκνότητα του κυλίνδρου από το σφάλμα στον όγκο του και το σφάλμα στην πυκνότητα του. δρ Κ = 8. Χρησιμοποιώντας πίνακα με τιμές αναφοράς για τις πυκνότητες στερεών σωμάτων, χαρακτηρίστε το υλικό του κυλίνδρου. 9. Προσδιορίστε την ακρίβεια χαρακτηρισμού του υλικού του κυλίνδρου υπολογίζοντας το ποσοστό απόκλισης μεταξύ της πυκνότητας που προσδιορίσατε πειραματικά και της τιμής αναφοράς. 10

11 % ποσοστό απόκλισης= 10. Συμπληρώστε τον πίνακα Ι με τις απαντήσεις των βημάτων 8 και 9. ΔΑΚΤΥΛΙΟΣ 1. Ζυγίστε τον δακτύλιο στον ηλεκτρονικό ζυγό. m = 2. Εκτιμήστε το σφάλμα προσδιορισμού της μάζας του δακτυλίου. δ m = 3. Δώστε την τελική τιμή της μάζας του δακτυλίου (με το σφάλμα της). m =... ± Υπολογίστε τον όγκο του δακτυλίου. V = 5. Υπολογίστε το σφάλμα του όγκου του δακτυλίου, από τα σφάλματα στις μετρήσεις των διαστάσεων του. δv = 11

12 6. Βρείτε την πυκνότητα του υλικού του δακτυλίου. ρ = 7. Βρείτε το σφάλμα στην πυκνότητα του δακτυλίου από το σφάλμα στον όγκο του και το σφάλμα στην πυκνότητα του. δρ = 8. Χρησιμοποιώντας πίνακα με τιμές αναφοράς για τις πυκνότητες στερεών σωμάτων, χαρακτηρίστε το υλικό του δακτυλίου. 9. Προσδιορίστε την ακρίβεια χαρακτηρισμού του υλικού του δακτυλίου υπολογίζοντας το ποσοστό απόκλισης μεταξύ της πυκνότητας που προσδιορίσατε πειραματικά και της τιμής αναφοράς. % ποσοστό απόκλισης= 10. Συμπληρώστε τον πίνακα ΙΙ με τις απαντήσεις των βημάτων 8 και 9. 12

13 ΣΦΑΙΡΑ Επαναλάβετε για την σφαίρα την πειραματική διαδικασία που ακολουθήσατε για τον δακτύλιο. Συμπληρώστε μετά τον πίνακα ΙΙΙ με τα αποτελέσματά σας. m Σ = δ m Σ = m Σ =... ±... V Σ = δv Σ = ρ Σ = δρ Σ = % ποσοστό απόκλισης= 13

14 ΠΙΝΑΚΑΣ Ι: ΚΥΛΙΝΔΡΟΣ ΥΨΟΣ ΠΑΧΟΣ ΟΓΚΟΣ ΜΑΖΑ ΠΥΚΝΟΤΗΤΑ h κ ( ) d κ ( ) V κ ( ) m κ ( ) ρ κ ( )... ± ± ± ± ±... ΥΛΙΚΟ ΚΥΛΙΝΔΡΟΥ: ΑΚΡΙΒΕΙΑ ΧΑΡΑΚΤΗΡΙΣΜΟΥ ΥΛΙΚΟΥ: ΠΙΝΑΚΑΣ ΙΙ: ΔΑΚΤΥΛΙΟΣ ΕΞ.ΔΙΑΜΕΤΡΟΣ ΕΣ.ΔΙΑΜΕΤΡΟΣ ΠΑΧΟΣ ΟΓΚΟΣ ΜΑΖΑ ΠΥΚΝΟΤΗΤΑ εξ δ ( ) εσ δ ( ) d ( ) V ( ) m ( ) ρ ( )... ± ± ± ± ± ±... ΥΛΙΚΟ ΔΑΚΤΥΛΙΟΥ: ΑΚΡΙΒΕΙΑ ΧΑΡΑΚΤΗΡΙΣΜΟΥ ΥΛΙΚΟΥ: ΠΙΝΑΚΑΣ ΙΙΙ: ΣΦΑΙΡΑ ΔΙΑΜΕΤΡΟΣ ΟΓΚΟΣ ΜΑΖΑ ΠΥΚΝΟΤΗΤΑ δ Σ ( ) V Σ ( ) m Σ ( ) ρ Σ ( )... ± ± ± ±... ΥΛΙΚΟ ΣΦΑΙΡΑΣ: ΑΚΡΙΒΕΙΑ ΧΑΡΑΚΤΗΡΙΣΜΟΥ ΥΛΙΚΟΥ: 14

15 15

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος

Πυκνότητα στερεών σωμάτων κυλινδρικού σχήματος Χρήση διαστημόμετρου για εύρεση πυκνότητας στερεών σωμάτων γεωμετρικού σχήματος Προκειμένου να υπολογιστεί η πυκνότητα σε στερεά σώματα γεωμετρικού σχήματος πραγματοποιούνται μετρήσεις α) της μάζας τους

Διαβάστε περισσότερα

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών

Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών Μ7 Μέτρηση μηκών και ακτίνων καμπυλότητας σφαιρικών επιφανειών 1. Σκοπός Τα διαστημόμετρα, τα μικρόμετρα και τα σφαιρόμετρα είναι όργανα που χρησιμοποιούνται για την μέτρηση της διάστασης του μήκους, του

Διαβάστε περισσότερα

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων

Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Όργανα μέτρησης διαστάσεων-μάζας. Υπολογισμός πυκνότητας μεταλλικών σωμάτων Συγγραφείς:. Τμήμα, Σχολή Εφαρμοσμένων Επιστημών, ΤΕΙ Κρήτης Περίληψη Στην παρούσα εργαστηριακή άσκηση μετρήσαμε τη διάμετρο

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΧΡΟΝΟΥ ΜΑΖΑΣ ΔΥΝΑΜΗΣ Α. ΣΤΟΧΟΙ Η συνειδητή χρήση των κανόνων ασφαλείας στο εργαστήριο. Η εξοικείωση στη χρήση του υποδεκάμετρου και του διαστημόμετρου

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΗ 1: ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΒΑΣΙΚΩΝ ΜΕΓΕΘΩΝ ΤΗΣ ΜΗΧΑΝΙΚΗΣ (A) ΜΕΤΡΗΣΗ ΠΥΚΝΟΤΗΤΑΣ ΣΤΕΡΕΟΥ (B) ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (Γ) ΜΕΤΡΗΣΗ ΜΕΓΕΘΩΝ ΣΕ ΠΕΡΙΣΤΡΟΦΗ 1 Σκοπός Στην άσκηση αυτή

Διαβάστε περισσότερα

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος)

Σχήμα 1 Διαστημόμετρο (Μ Κύρια κλίμακα, Ν Βερνιέρος) Άσκηση Μ1 Θεωρητικό μέρος Μήκος και μάζα (βάρος) Όργανα μέτρησης μήκους Διαστημόμετρο Με το διαστημόμετρο μετράμε μήκη μέχρι και μερικά μέτρα, σε χαμηλές απαιτήσεις ως προς την ακρίβεια. Το κύριο μέρος

Διαβάστε περισσότερα

Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού

Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού Άσκηση 2 Υπολογισμός πυκνότητας ομογενούς στερεού Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός της πυκνότητας του υλικού ενός ομογενούς σώματος. Είναι μια έμμεση μέτρηση και θα γίνει με

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα ΠΕΙΡΑΜΑ I Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου να: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου

Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου Μ7 Μετρήσεις γεωµετρικών µεγεθών µε χρήση διαστη- µόµετρου, µικρόµετρου και σφαιρόµετρου A. Προσδιορισµός της πυκνότητας στερεού σώµατος B. Εύρεση της εστιακής απόστασης συγκλίνοντα φακού. Σκοπός Σκοπός

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

gr/ Μιχαήλ Μιχαήλ, Φυσικός

gr/ Μιχαήλ Μιχαήλ, Φυσικός 1. ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Όργανα µέτρησης µήκους Όταν πρόκειται να µετρήσουµε ένα µήκος, πρέπει να επιλέξουµε εκείνο το όργανο µέτρησης το οποίο είναι κατάλληλο για να µετρήσει το µήκος αυτό και να δώσει την απαιτούµενη

Διαβάστε περισσότερα

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών

Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ

ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα

ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα - &. ΠΕΙΡΑΜΑ 0 Απλές Μετρήσεις και Σφάλµατα Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε βασικά όργανα του εργαστηρίου (διαστηµόµετρο, µικρόµετρο, χρονόµετρο) προκειµένου: Να µετρήσουµε την πυκνότητα

Διαβάστε περισσότερα

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία

Σχήμα 2.1α. Πτυσσόμενη και περιελισσόμενη μετρητική ταινία 2. ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΑΡΑΞΗΣ 2.1 Μετρητικές ταινίες Οι μετρητικές ταινίες, πτυσσόμενες (αρθρωτές) ή περιελισσόμενες σε θήκη, είναι κατασκευασμένες από χάλυβα ή άλλο ελαφρύ κράμα και έχουν χαραγμένες υποδιαιρέσεις

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων

ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων ΠΑΡΑΡΤΗΜΑ Β Ακρίβεια Επαναληψιμότητα μετρήσεων 1. Θα λέμε ότι Ν μετρήσεις ενός μεγέθους παρουσιάζουν μεγάλη ακρίβεια (accuracy), αν η μέση τιμή των μετρήσεων είναι κοντά στην αληθινή τιμή του μεγέθους.

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΣΥΝΟΠΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΠΡΟΤΑΣΗΣ ΣΤΟΙΧΕΙΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΑΓΓΕΛΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ ΕΙΔΙΚΟΤΗΤΑ ΠΕ1204 1. ΠΕΡΙΓΡΑΦΗ 1.1 ΤΙΤΛΟΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Μέτρηση μήκους,

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση)

ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) ΠΑΡΑΡΤΗΜΑ Α Μέσο σφάλμα μεγέθους (που υπολογίζεται από σύνθετη συνάρτηση) Όταν το πρωτοείδα, κι εγώ δεν το συμπάθησα. Είναι, όμως, λάθος μας, καθώς πρόκειται για κάτι πολύ απλό και σίγουρο ως μέθοδος υπολογισμού

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ

ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ ΑΣΚΗΣΗ 7 ΤΡΙΧΟΕΙ ΙΚΟ ΦΑΙΝΟΜΕΝΟ- ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΤΑΣΗΣ Οι ρίζες των δέντρων αποτελούνται απο τρία είδη ιστών ένα εκ των οποίων, (ο επιφανειακός ιστός) περιλαµβάνει ειδικά τροποποιηµένα

Διαβάστε περισσότερα

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος

1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος 7η ΗΜΕΡΙΔΑ ΠΕΙΡΑΜΑΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΒΙΟΛΟΓΙΑΣ ΟΜΑΔΑ... ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ/ΤΡΙΩΝ: 1. 2. 3. 1 η Δραστηριότητα Υπολογισμός της πυκνότητας στερεού σώματος Ο Σκοπός της άσκησης Ο σκοπός

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Εργαστηριακές Ασκήσεις Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ

ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ ΑΣΚΗΣΗ 3 ΒΑΣΙΚΕΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΜΕΤΡΗΣΕΙΣ Η κλίµακα των διαστάσεων της ύλης από τα στοιχειώδη σωµάτια έως τα όρια του Σύµπαντος. Το παραπάνω σχήµα προέρχεται απο το βιβλίο του E. Hecht Physics Brooks 3.1

Διαβάστε περισσότερα

Τοπικός Μαθητικός Διαγωνισμός EUSO

Τοπικός Μαθητικός Διαγωνισμός EUSO Τοπικός Μαθητικός Διαγωνισμός EUSO 2014-2015 ΟΜΑΔΑ : 1] 2] 3] Γενικό Λύκειο Άργους Ορεστικού. 6 - Δεκ. - 1014 Φυσική Θέμα: Μέτρηση επιτάχυνσης. 1] Θεωρητική εισαγωγή Κίνηση είναι η αλλαγή της θέσης ενός

Διαβάστε περισσότερα

4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ

4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ 4ο Μάθημα ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ Μετρούμε με το μέτρο και με άλλα όργανα «ÔÏÏ ÊÔÚ Ï ˆ fiùè fiù Ó ÌappleÔÚÂ Ó ÌÂÙÚ ÛÂÈ ÂΠÓÔ ÁÈ ÙÔ ÔappleÔ Ô ÌÈÏ Î È Ó ÙÔ ÂÎÊÚ ÛÂÈ Ì ÚÈıÌÔ, Í ÚÂÈ Î ÙÈ ÁÈ' Ùfi. ŸÙ Ó fiìˆ ÂÓ ÌappleÔÚÂ

Διαβάστε περισσότερα

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:

Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται

Διαβάστε περισσότερα

Τι μάθαμε μέχρι τώρα:

Τι μάθαμε μέχρι τώρα: Τι μάθαμε μέχρι τώρα: Η μέτρηση μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Κάθε μέτρηση έχει ΑΒΕΒΑΙΟΤΗΤΑ. Παρουσιάζοντας τη μέτρηση σύμφωνα με τη θεωρία σφαλμάτων γράφω δυο αριθμούς: x ± δx ή x ± Σσχ ή x ± %Σσχ όπου

Διαβάστε περισσότερα

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα.

Για τη δραστηριότητα χρησιμοποιούνται τέσσερεις χάρακες του 1 m. Στο σχήμα φαίνεται το πρώτο δέκατο κάθε χάρακα. Σημαντικά ψηφία Η ταχύτητα διάδοσης του φωτός είναι 2.99792458 x 10 8 m/s. Η τιμή αυτή είναι δοσμένη σε 9 σημαντικά ψηφία. Τα 9 σημαντικά ψηφία είναι 299792458. Η τιμή αυτή μπορεί να δοθεί και με 5 σημαντικά

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς.

Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού εκκρεμούς. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 2 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του φυσικού

Διαβάστε περισσότερα

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου

Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Άσκηση 1 Μέτρηση του συντελεστή γραμμικής διαστολής του υλικού μιας μεταλλικής ράβδου Σύνοψη Αυτή είναι μια από τις πρώτες ασκήσεις που κάνεις στο εργαστήριο Φυσικής Ι, γι αυτό καλό είναι να μάθεις ότι

Διαβάστε περισσότερα

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής

Άσκηση 9. Προσδιορισμός του συντελεστή εσωτερικής 1.Σκοπός Άσκηση 9 Προσδιορισμός του συντελεστή εσωτερικής τριβής υγρών Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός του συντελεστή εσωτερικής τριβής (ιξώδες) ενός υγρού. Βασικές θεωρητικές γνώσεις.1

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ

Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΤΟΧΟΙ Εργαστηριακή άσκηση 1: ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ, ΧΡΟΝΟΥ, ΜΑΖΑΣ ΚΑΙ ΥΝΑΜΗΣ Τροποποίηση του εργαστηριακού οδηγού (Βαγγέλης ηµητριάδης, 4 ο ΓΕΛ Ζωγράφου) Στόχοι αυτής της εργαστηριακής άσκησης

Διαβάστε περισσότερα

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ

ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΡΟΠΕΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Ροπή Δύναμης Θα έχετε παρατηρήσει πως κλείνετε ευκολότερα μια πόρτα, αν την σπρώξετε σε μια θέση που βρίσκεται σχετικά μακρύτερα από τον άξονα περιστροφής της (τους μεντεσέδες

Διαβάστε περισσότερα

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4

ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ. Εισαγωγή Έννοια του σφάλματος...3. Συστηματικά και τυχαία σφάλματα...4 ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Εισαγωγή... 2 Έννοια του σφάλματος...3 Συστηματικά και τυχαία σφάλματα...4 Εκτίμηση του σφάλματος κατά την ανάγνωση κλίμακας...8 Πολλαπλές μετρήσεις... 10 Περί του αριθμού των σημαντικών

Διαβάστε περισσότερα

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016 ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 8//06 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΣΤΕΡΕΟ ΚΑΙ Doppler ΘΕΜΑ Α Α Μικρότερη συχνότητα ακούει ένας παρατηρητής σε σχέση με την πραγματική συχνότητα

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:

25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ: ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗ 25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Το πρόβλημα Ένας φίλος σας βρήκε ένα μικρό, πολύ όμορφο τεμάχιο διαφανούς στερεού και ζητά τη γνώμη

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009-2015 Σελίδα 1 από 13 Μηχανική Στερεού Σώματος 1. Στο πιο κάτω σχήμα φαίνονται δύο όμοιες πλατφόρμες οι οποίες μπορούν να περιστρέφονται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό.

Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Προετοιμασία των ομάδων για τον τοπικό διαγωνισμό. Φυσική 1. Επεξεργασία πειραματικών δεδομένων: α) Καταγραφή δεδομένων σε πίνακα μετρήσεων, β) Επιλογή συστήματος αξόνων με τις κατάλληλες κλίμακες και

Διαβάστε περισσότερα

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης

Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης Άσκηση 8 Προσδιορισμός της πυκνότητας με τη μέθοδο της άνωσης 1.Σκοπός Σκοπός της άσκησης είναι ο πειραματικός προσδιορισμός της πυκνότητας στερεών και υγρών με τη μέθοδο της άνωσης. Βασικές Θεωρητικές

Διαβάστε περισσότερα

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος

ΦΕ1. Περιεχόμενα. Η φυσική. Υπόθεση και φυσικό μέγεθος Περιεχόμενα ΦΕ1 ΤΑ ΦΥΣΙΚΑ ΜΕΓΕΘΗ ΚΑΙ Η ΜΕΤΡΗΣΗ ΤΟΥΣ ΤΟ ΜΗΚΟΣ 2015-16 6 ο ΓΥΜΝΑΣΙΟ ΑΘΗΝΑΣ Τα φυσικά μεγέθη Η Μέτρηση των φυσικών μεγεθών Μια μονάδα μέτρησης για όλους Το φυσικό μέγεθος Μήκος Όργανα μέτρησης

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων.

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Όνομα : Κάραλης Νικόλας Α/Μ: 09104042 Εργαστηριακή Άσκηση 35 Ροπή αδράνειας στερεών σωμάτων. Συνεργάτες: Καλαμαρά Αντιγόνη

Διαβάστε περισσότερα

Θέματα Παγκύπριων Εξετάσεων

Θέματα Παγκύπριων Εξετάσεων Θέματα Παγκύπριων Εξετάσεων 2009 2014 Σελίδα 1 από 24 Ταλαντώσεις 1. Το σύστημα ελατήριο-σώμα εκτελεί απλή αρμονική ταλάντωση μεταξύ των σημείων Α και Β. (α) Ο χρόνος που χρειάζεται το σώμα για να κινηθεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει

Διαβάστε περισσότερα

ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ

ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ ΥΠΕΠΘ ΣΥΜΒΑΣΗ 19/2005 ΣΕΙΡΑ ΓΕΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΟΡΓΑΝΩΝ ΧΥΤΟΣΙΔΗΡΑ ΒΑΣΗ ΤΥΠΟΥ Β (ΓΕ.010.0) Η βάση είναι χυτοσιδηρά και διαστάσεων 20 cm περίπου x 12 cm περίπου x 1 cm περίπου, και εδράζεται σε τέσσερα

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων

ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων ΑΣΚΗΣΗ 2 Θεωρία Σφαλμάτων Σκοπός Σκοπός είναι να κατανοηθεί η έννοια των σφαλμάτων, η σπουδαιότητά τους και η αναγκαιότητα υπολογισμού τους. Δίνονται επίσης οι βασικοί μαθηματικοί τύποι που επιτρέπουν

Διαβάστε περισσότερα

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ

2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα

Διαβάστε περισσότερα

Σφάλματα Είδη σφαλμάτων

Σφάλματα Είδη σφαλμάτων Σφάλματα Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα μετράμε την

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ. Μελέτη ευθύγραμμων κινήσεων

ΓΕΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ. Μελέτη ευθύγραμμων κινήσεων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Εργαστηριακή αναφορά Μελέτη ευθύγραμμων κινήσεων του Ανδριόπουλου Ανδρέα ΑΕΜ: 19232 ΠΕΡΙΛΗΨΗ ΑΣΚΗΣΗΣ: Η εργαστηριακή άσκηση

Διαβάστε περισσότερα

Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης

Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της Α. Το Μαγνητικό πεδίο σαν διάνυσμα Σο μαγνητικό πεδίο περιγράφεται με το μέγεθος που αποκαλούμε ένταση μαγνητικού

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ

ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ ΑΣΚΗΣΗ 8 ΜΕΤΡΗΣΗ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΙΞΩ ΟΥΣ Η αντίσταση που δέχεται ένα σώµα όταν κινείται µέσα σ ένα ρευστό εξαρτάται απο το σχήµα του σώµατος. Παρατηρούµε οτι η µικρότερη αντίσταση εµφανίζεται στο ατρακτοειδές

Διαβάστε περισσότερα

Β22. Μέτρηση Ροπής Αδράνειας

Β22. Μέτρηση Ροπής Αδράνειας Β22. Μέτρηση Ροπής Αδράνειας Α. Σκοπός της άσκησης Στο εργαστήριο αυτό θα μελετήσουμε την περιστροφική κίνηση που εκτελεί ένα υλικό σημείο ή ένα στερεό σώμα, σταθερού μεγέθους και σχήματος, υπό την παρουσία

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ ΓΥΜΝΑΣΙΟΥ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. A Γυμνασίου 29 Μαρτίου 2014 Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:... Σχολείο:... Τάξη/Τμήμα:. Εξεταστικό Κέντρο:. Πειραματικό Μέρος Θέμα 1 ο H μέτρηση του μήκους γίνεται, συνήθως, με μετροταινία

Διαβάστε περισσότερα

Πειραματική διαδικασία:

Πειραματική διαδικασία: 2 ο Γυμνάσιο Κερατσινίου Εργαστήριο Φυσικής Υπεύθυνος: Μηναΐδης Ι. ΟΝΟΜΑΤΕΠΩΝΥΜΟ :.. Β 1 η Εργαστηριακή άσκηση ΤΜΗΜΑ : ΘΕΩΡΙΑ Μάζα (m) είναι η ποσότητα της ύλης που έχει ένα σώμα. Όγκος (V) είναι ο χώρος

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΦΑΙΝΟΜΕΝΩΝ ΠΟΛΩΣΗΣ POA01 ΦΥΛΛΑΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΕΩΣ

ΣΥΣΚΕΥΗ ΦΑΙΝΟΜΕΝΩΝ ΠΟΛΩΣΗΣ POA01 ΦΥΛΛΑΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΕΩΣ ΣΥΣΚΕΥΗ ΦΑΙΝΟΜΕΝΩΝ ΠΟΛΩΣΗΣ POA01 ΦΥΛΛΑΔΙΟ ΟΔΗΓΙΩΝ ΧΡΗΣΕΩΣ 1 ΣΚΟΠΟΣ Η παρατήρηση του φαινομένου της πόλωσης και η μέτρηση της γωνίας στροφής του πολωμένου φωτός διαλυμάτων οπτικά ενεργών ουσιών π.χ. σάκχαρα.

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Μετρήσεις Αβεβαιότητες Μετρήσεων

Μετρήσεις Αβεβαιότητες Μετρήσεων Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης

Διαβάστε περισσότερα

σταθερής) προς την αντίστοιχη επιτάχυνση που έδωσε στο σώμα: m =

σταθερής) προς την αντίστοιχη επιτάχυνση που έδωσε στο σώμα: m = ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΟΥ ΣΥΝΤΕΛΕΣΤΗ ΑΝΑΛΟΓΙΑΣ ΣΤΗ ΣΧΕΣΗ F=f(α) ΜΕ ΤΗ ΧΡΗΣΗ ΗΛΕΚΤΡΙΚΟΥ ΧΡΟΝΟΜΕΤΡΗΤΗ, ( για τη μελέτη των γραφικών παραστάσεων χρησιμοποιήσαμε το λογισμικό LoggerProGr). Γ. Κουρούκλης ΣΤΟΧΟΙ Στόχοι

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ ΣΤΟΧΟΙ: Να διαπιστώσουμε πειραματικά το φαινόμενο της ηλεκτρομαγνητικής επαγωγής και τους τρόπους παραγωγής ρεύματος από επαγωγή. Να μελετήσουμε ποιοτικά τους παράγοντες από τους

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν:

ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν: 15 η Ευρωπαϊκή Ολυμπιάδα Επιστημών EUSO 2017 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΩΝ ΦΥΣΙΚΗΣ ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν: (1) (2) (3) Σέρρες 10/12/2016 Σύνολο μορίων:..... 0 ΜΕΤΡΗΣΗ ΕΙΔΙΚΗΣ

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε

Διαβάστε περισσότερα

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ

ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΦΥΛΛΑ ΕΡΓΑΣΙΩΝ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ y = A + Bx Α = 0.0871 Β = 1.9398 y 1 = 0,087 + 1,94 0,7 = 1,44 (x 1, y 1 ) = (0,7, 1,44) y = 0,087

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης:

Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης: ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (ΑΣΠΑΙΤΕ) - ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ Υπεύθυνος καθηγητής: Ζκέρης Βασίλειος ΕΚΘΕΣΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ 4: ΜΕΤΡΗΣΕΙΣ ΜΕ ΠΕΠΙΕΣΜΕΝΟ

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014

ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: ΠΡΑΚΤΙΚΗ Μάθημα: ΦΥΣΙΚΗ (2ωρο) Τάξη: Α Αρ. Μαθητών: 156 Κλάδος: ΟΛΟΙ Ημερομηνία: 03/06/14

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 853 -- ΤΗΛ. 0-75, 3687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ. Γ ΛΥΚΕΙΟΥ Α. Σε μια απλή αρμονική ταλάντωση, κατά τη διάρκεια μιας περιόδου η κινητική ενέργεια Κ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΙΜΟΥ ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ EUSO 015 ΦΥΣΙΚΗ 6 -Δεκεμβρίου - 014 Στογιάννος Χριστόφορος Φυσικός 1 6 Αυγούστου 014 Μετά από ένα μακρύ δεκαετές ταξίδι κυνηγώντας το στόχο

Διαβάστε περισσότερα

Δοκιμή Αντίστασης σε Θρυμματισμό (Los Angeles)

Δοκιμή Αντίστασης σε Θρυμματισμό (Los Angeles) Δοκιμή Αντίστασης σε Θρυμματισμό (Los Angeles) 1. Εισαγωγή Γενική Περιγραφή Δοκιμής Η δοκιμή της αντοχής των αδρανών σε τριβή και κρούση ή αλλιώς «δοκιμή Los Angeles (LA)» υπάγεται στους ελέγχους σκληρότητας

Διαβάστε περισσότερα

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο.

Το παρακάτω διάγραμμα παριστάνει την απομάκρυνση y ενός σημείου Μ (x Μ =1,2 m) του μέσου σε συνάρτηση με το χρόνο. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ)

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ) ΚΕΦΑΛΑΙΟ : Κατηγορία Α ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ) 1. Ποια στάση και ποιο άξονα θα επιλέγατε για να δώσετε στο σώμα σας τη μικρότερη ροπή αδρανείας; Τη μεγαλύτερη;. Οι κύλινδροι του σχήματος

Διαβάστε περισσότερα

Α u. u cm. = ω 1 + α cm. cm cm

Α u. u cm. = ω 1 + α cm. cm cm ΕΚΦΕ Ν.ΚΙΛΚΙΣ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ

Διαβάστε περισσότερα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα

ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΤΗΣ ΑΝΤΟΧΗΣ ΤΩΝ ΥΛΙΚΩΝ ΣΕ ΤΡΙΒΗ

ΕΛΕΓΧΟΣ ΤΗΣ ΑΝΤΟΧΗΣ ΤΩΝ ΥΛΙΚΩΝ ΣΕ ΤΡΙΒΗ ΕΛΕΓΧΟΣ ΤΗΣ ΑΝΤΟΧΗΣ ΤΩΝ ΥΛΙΚΩΝ ΣΕ ΤΡΙΒΗ 65 ΤΡΙΒΗ ΕΙΣΑΓΩΓΗ Αντοχή σε τριβή ονομάζεται το μέτρο ικανότητας για αντίσταση που προβάλλουν τα υλικά όταν καταπονούνται σε τριβή. Υλικά :-Επιστρώσεις δαπέδων -

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι.

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι. ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΜΕΛΕΤΗ ΤΑΛΑΝΤΩΣΗΣ ΕΛΑΤΗΡΙΟΥ [Π. Μουρούζης, Γ. Παληός, Κ. Παπαμιχάλης, Γ. Τουντουλίδης, Ε. Τσιτοπούλου, Ι. Χριστακόπουλος] Για τον καθηγητή Στόχοι: Με τη βοήθεια των γραφικών παραστάσεων

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ ΣΕ ΜΙΑ ΕΚΡΗΞΗ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ ΣΕ ΜΙΑ ΕΚΡΗΞΗ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ ΣΕ ΜΙΑ ΕΚΡΗΞΗ Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η χρήση του αλφαδιού για οριζοντίωση του τραπεζιού.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Συγγραμμικές δυνάμεις 1 ος -2 ος νόμος του Νεύτωνα 1. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες; α. Μια δύναμη μπορεί να προκαλέσει αλλαγή στην κινητική

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ

Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ ΟΜΑΔΑ ΟΝΟΜΑΤΕΠΩΝΥΜΑ ΜΑΘΗΤΩΝ 1)... 2)... 3)... ΗΜΕΡΟΜΗΝΙΑ : Υπολογισμός της εστιακής απόστασης f λεπτού συμμετρικού συγκλίνοντος φακού απο τη γραμμική μεγέθυνση Μ Με το πείραµα αυτό θα προσδιορίσουµε: Σκοπός

Διαβάστε περισσότερα

Γενικό Εργαστήριο Φυσικής

Γενικό Εργαστήριο Φυσικής http://users.auth.gr/agelaker Γενικό Εργαστήριο Φυσικής Γενικό Εργαστήριο Φυσικής Σφάλματα Μελέτη φυσικού φαινομένου Ποσοτική σχέση παραμέτρων Πείραμα Επαλήθευση Καθιέρωση ποσοτικής σχέσης Εύρεση τιμής

Διαβάστε περισσότερα

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα ο: (Ιούνιος 009 Ηµερήσιο) Ο δίσκος του σχήµατος κυλίεται χωρίς

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ:

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΗΧΗΤΙΚΑ ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ ΣΕ ΚΛΕΙΣΤΟ ΣΤΗ ΜΙΑ ΑΚΡΗ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας

Πανεπιστήμιο Θεσσαλίας Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Εργαστηριακές Ασκήσεις Εργαστήριο 4 Ορθότητα, Ακρίβεια και Θόρυβος (Accuracy, Precision and Noise) Φ. Πλέσσας

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΚΕΝΤΡΟΥ ΠΙΕΣΗΣ ΣΕ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΚΕΝΤΡΟΥ ΠΙΕΣΗΣ ΣΕ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΜΟΣ ΚΕΝΤΡΟΥ ΠΙΕΣΗΣ ΣΕ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Αντικείμενο αυτής της άσκησης είναι ο προσδιορισμός

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α (Στο θέμα Α να χαρακτηρίσετε τις προτάσεις ως σωστές με το γράμμα Σ ή ως λανθασμένες με το γράμμα Λ, χωρίς αιτιολόγηση.) A1. Δύο σώματα Κ και Λ εκτοξεύονται οριζόντια

Διαβάστε περισσότερα

Η αβεβαιότητα στη μέτρηση.

Η αβεβαιότητα στη μέτρηση. Η αβεβαιότητα στη μέτρηση. 1. Εισαγωγή. Κάθε μέτρηση, όσο προσεκτικά και αν έχει γίνει, περικλείει κάποια αβεβαιότητα. Η ανάλυση των σφαλμάτων είναι η μελέτη και ο υπολογισμός αυτής της αβεβαιότητας στη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 1. Στερεό σώμα περιστρέφεται γύρω από σταθερό άξονα, υπό την επίδραση σταθερής ροπής. Ο ρυθμός παραγωγής έργου: α) ισούται με τη μεταβολή της ενέργειας του σώματος.

Διαβάστε περισσότερα