Αλγεβρικές Παραστάσεις-Μονώνυμα
|
|
- Μέγαιρα Αποστόλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ Β Αλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές στην προσπάθειά μας να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν μόνο αριθμούς τις οποίες ονομάζουμε αριθμητικές παραστάσεις Για παράδειγμα -. +(-)., +. Υπάρχουν όμως και προβλήματα στα οποία καταλήγουμε σε εκφράσεις οι οποίες εκτός από αριθμούς περιέχουν και μεταβλητές. Οι εκφράσεις αυτές ονομάζονται αλγεβρικές παραστάσεις, ΟΡΙΣΜΟΙ Ονομάζουμε αλγεβρική παράσταση μία έκφραση, που αποτελείται από αριθμούς και γράμματα, που συνδέονται μεταξύ τους με τα σύμβολα των πράξεων. Μια αλγεβρική παράσταση μπορεί να είναι: Ειδικότερα μια αλγεβρική παράσταση λέγεται ακέραια, όταν μεταξύ των μεταβλητών της σημειώνονται μόνο οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και οι εκθέτες των μεταβλητών της είναι φυσικοί αριθμοί Αριθμητική τιμή μιας αλγεβρικής παράστασης ονομάζουμε τον αριθμό που βρίσκουμε όταν αντικαταστήσουμε το κάθε γράμμα (μεταβλητή) με κάποιο αριθμό και κατόπιν εκτελέσουμε τις σημειωμένες πράξεις. π. χ η αριθμητική τιμή της αλγεβρικής παράστασης + για και ειναι + 0 Μονώνυμα Ονομάζουμε Μονώνυμο την αλγεβρική παράσταση στην οποία σημειώνεται μόνο η πράξη του πολλαπλασιασμού μεταξύ γραμμάτων και αριθμών. π.χ, z, z, z Σε ένα μονώνυμο ο αριθμητικός παράγοντας λέγεται συντελεστής του μονώνυμου, ενώ το υπόλοιπο γινόμενο των μεταβλητών λέγεται κύριο μέρος του μονώνυμου.
2 8 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ π. χ Στο μονώνυμο z o αριθμός είναι ο συντελεστής και το γινόμενο z το κύριο μέρος. Ο εκθέτης μιας μεταβλητής λέγεται βαθμός του μονωνύμου ως προς τη μεταβλητή αυτή, Το μονώνυμο είναι : ενώ βαθμός του μονωνύμου ως προς ου βαθμού ως προς όλες τις μεταβλητές του λέγεται το άθροισμα ου βαθμού ως προς των εκθετών των μεταβλητών του. 6 ου βαθμού ως προς,. Δύο ή περισσότερα μονώνυμα που έχουν το ίδιο κύριο μέρος λέγονται όμοια. π. χ όμοια είναι τα μονώνυμα,, 6, Τα όμοια μονώνυμα που έχουν τον ίδιο συντελεστή λέγονται ίσα, ενώ, αν έχουν αντίθετους συντελεστές, λέγονται αντίθετα, π.χ. τα μονώνυμα και -, είναι αντίθετα. Οι αριθμοί θεωρούνται ως μονώνυμα και τα ονομάζουμε σταθερά μονώνυμα. Ειδικότερα, ο αριθμός 0 λέγεται μηδενικό μονώνυμο και δεν έχει βαθμό, ενώ όλα τα άλλα σταθερά μονώνυμα είναι μηδενικού βαθμού. ( Π.χ. ο αριθμός 6, μπορεί να γραφεί 6 0 ή 6 0 κ.τ.λ. ). ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ. Ποιες από τις παρακάτω αλγεβρικές παραστάσεις είναι μονώνυμα ; α) - β) + γ) δ) ω ε) - αβ στ) αβγ ω ( ) ΑΠΑΝΤΗΣΗ Μονώνυμα είναι οι αλγεβρικές παραστάσεις των ερωτημάτων α, δ, ε και στ. Η β δεν είναι γιατί υπάρχει πρόσθεση, η γ δεν είναι γιατί υπάρχει διαίρεση. Η παράσταση ( ),, 86 είναι πραγματικός α- ριθμός και είναι συντελεστής του μονωνύμου.. Ποια από τα παρακάτω μονώνυμα είναι όμοια ; α) 6 β) γ) ω δ) ω ε) στ) ζ) η) θ) ω ι) ΑΠΑΝΤΗΣΗ
3 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ 9 Όμοια μονώνυμα είναι αυτά των ερωτημάτων α, στ και η. Επίσης αυτά των ερωτημάτων β, δ,ζ και ι. Τέλος όμοια είναι αυτά των ερωτημάτων γ, ε και θ γιατί έχουν αντ ίστοιχα το ίδιο κύριο μέρος, και ω.. Να συμπληρώσετε τον παρακάτω πίνακα: Μονώνυμο Συντελεστής Κύριο Βαθμός Βαθμός Βαθμός ως μ έρος ως προς ως προς προς, ος ος ος - ος ος ος ος 0 ος ος. Ένα μονώνυμο έχει συντελεστή και κύριο μέρος ω. Να βρείτε το ίσο του και το αντίθετο μονώνυμό του. ΑΠΑΝΤΗΣΗ Το ίσο μονώνυμο είναι : ω Το αντίθετο μονώνυμο είναι : ω. Να λύσετε το σταυρόλεξο. ος ος ος
4 0 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ ΟΡΙΖΟΝΤΙA. Έκφραση που περιέχει αριθμούς και μεταβλητές συνδεόμενες με τα σύμβολα των πράξεων (δύο λέξεις).. Είναι τα μονώνυμα 8,, 0,.. Είναι ο βαθμός του μονωνύμου ω ως προς.. Στο μονώνυμο είναι το. 6. Είναι τα μονώνυμα,. 6. Ο συντελεστής του μονωνύμου.. Είναι το ω στο μονώνυμο ω ( δύο λέξεις ). 8. Η απλούστερη αλγεβρική παράσταση. ΚΑΘΕΤA. Το μονώνυμο αυτό δεν έχει βαθμό.. Στο μονώνυμο ω ως προς είναι.. Παράσ ταση που μεταξύ των μετα- οι πρά- ξεις της πρόσθεσης και του πολλαπλα- βλητών της σημειώνονται μόνο σιασμού.. Είναι τα μονώνυμα,.. Είναι τα μονώνυμα α β, α β. 6. Η του μονωνύμου για και είναι 8.. Είναι ο βαθμός των σταθερών μονωνύμων 6,,. 8. Η πράξη αυτή δε σημειώνεται μετα- ξύ των μεταβλητών ενός μονωνύμου. ΑΠΑΝΤ ΗΣΗ Α Λ Γ Ε Β Ρ Ι Κ Η Π Α Ρ Α Σ Τ Α Σ Η Α Ν Ι Σ Τ Α Θ Ε Ρ Α Τ Μ Μ Α Ι Μ Η Δ Ε Ν Μ Ο Κ Θ Α Η Σ Υ Ν Τ Ε Λ Ε Σ Τ Η Σ Φ Δ Ρ Τ Ι Σ Α Ε Μ Ο Ν Α Δ Α Ο Μ Ι Ν Ι Μ Η Ρ Ι Α Ο Δ Ε Κ Κ Υ Ρ Ι Ο Μ Ε Ρ Ο Σ Μ Ο Ν Ω Ν Υ Μ Ο Α Ν Η
5 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ ΑΣΚΗΣΗ Να βρείτε την αριθμητική τιμή των αλγεβρικών παραστάσεων α) + για και β) ω + ω για και ω Οι αριθμητικές τιμές των παραστάσεων είναι : α) ( ) + ( ) ++ + β) ( ) ( ) ( - ) + ( 8) ( ) 8 ΑΣΚΗΣΗ Ένα μονώνυμο έχει συντελεστή και μεταβλητές α, β.να προσδιορίσε- τε το μονώνυμο, αν ο βαθμός του ως προς α είναι και ως προς α, β είναι. Ο βαθμός του μονωνύμου ως προς β είναι : και το ζητούμενο μονώ- νυμο είναι: α β ΑΣΚΗΣΗ Να προσδιορίσετε την τιμή του φυσικού αριθμού ν, ώστε το μονώνυμο ν α) να είναι μηδενικού βαθμού ως προς β) να είναι πέμπτου βαθμού ως προς, γ) να έχει αριθμητική τιμ ή 8, για και. α) Αφού είναι μηδενικού βαθμού ως προς το ν 0 β) Πρέπει : ν +. Άρα ν ) Πρέπει : ν (-) ν ν 8 8 ή 8 ή ν γ 6 ή ή ν
6 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ ΑΣΚΗΣΗ Να βρείτε τους αριθμούς κ, λ, ν,ώστε τα μονώνυμα α) όμοια β) ίσα γ) αντίθετα ν, λ κ να είναι: α) Για να είναι όμοια πρέπει κ και ν και λ οποιοσδήποτε αριθμός, γιατί τότε θα έχουν το ίδιο κύριο μέρος το. β) Για να είναι ίσα πρέπει μαζί με τις προηγούμενες προϋποθέσεις κ και ν να είναι και οι συντελεστές ίσοι, δηλαδή λ. γ) Για να είναι αντίθετα πρέπει μαζί με τις προηγούμενες προϋποθέσεις κ και ν να είναι οι συντελεστές αντίθετοι, δηλαδή λ-. ΑΣΚΗΣΗ Να γράψετε τα μονώνυμα που εκφράζουν το εμβαδόν και τον όγκο μιας σφαίρας που έχει ακτίνα ρ. Να προσδιορίσετε το συντελεστή, το κύριο μέρος και το βαθμό κάθε μονωνύμου. Ποια είναι η αριθμητική τιμή κάθε μονωνύμου, για ρ 0 ; Ο τύπος που μας δίνει το εμβαδόν της επιφάνειας μιας σφαίρας είναι: Ε σφ πρ όπως παρατηρούμε είναι ένα μονώνυμο με συντελεσ τή το π, κύριο μέρος το ρ και βαθμό ο γιατί το π δεν είναι μεταβλητή αλλά πραγματικός αριθμός(άρρητος). Ο τύπος που μας δίνει τον όγκο μιας σφαίρας είναι: V πρ σφ όπως ένα μονώνυμο με συντελεστή παρατηρούμε είναι το π, κύριο μέρος το ρ και βαθμό ο γιατί το π δεν είναι μεταβλητή αλλά πραγματικός αριθ- ια ρ0 είναι ( ) μός(άρρητος). 60 Γ Ε 0 π0 00π 6 και V ( 0) π0
7 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ ΑΣΚΗΣΗ 6 Mία ομάδα καλαθοσφαίρισης έδωσε 9 αγώνες. Να γράψετε την αλγεβρική παράσταση που εκφράζει τους βαθμούς που συγκέντρωσε, αν σε κάθε νίκη παίρνει βαθμούς και σε κάθε ήττα βαθμό. Έστω ότι έκανε νίκες οπότε θα έκανε 9- ήττες (γιατί δεν υπάρχουν ισοπαλίες). Επομένως οι βαθμοί που πήρε ήταν:. + ( 9 ) Άρα η αλγεβρική παράσταση που εκ- γράψετε την αλγεβρική παράσταση που φράζει τους βαθμούς είναι η +9 ΑΣΚΗΣΗ Να εκφράζει το εμβαδόν του τετραγώνου ΒΓΔΕ. Ποιο είναι το εμβαδόν, όταν ; Το εμβαδόν του τετραγώνου είναι ΕΒΓ + +(Πυθαγόρειο θεώρημα) Το εμβαδόν για είναι E + + ( ) 69
8 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ Β. Πράξεις με μονώνυμα Οι μεταβλητές ενός μονωνύμου αντιπροσωπεύουν κάποιους αριθμούς οπότ ε στις πράξεις που γίνονται μεταξύ μονωνύμων ισχύουν όλες οι ιδιότητες των πράξεων που ισχύουν και στους αριθμούς. Πρόσθεση μονωνύμων Το άθροισμα όμοιων μονώνυμων είναι ένα μονώνυμο όμοιο προς αυτά που έχει συντελεστή το άθροισμα των συντελεστών τους ( η πρόσθεση όμοιων μονώνυμων λέγεται αναγωγή ομοίων όρων) π. χ + (+ ) και αβ+αβ αβ(+ )αβαβ Στην περίπτωση που τα προστιθέμενα μονώνυμα δεν είναι όμοια τότε το άθροισμα δεν είναι μονώνυμο,αλλά μία αλγεβρική παράσταση που λέγεται πολυώνυμο. π. χ + και α +β +γ +δ+ε Πολλαπλασιασμός μονωνύμων Το γινόμενο μονώνυμων είναι ένα μονώνυμο που έχει συντελεστή το γινόμενο των συντελεστών τους και ως κύριο μέρος όλες τις μεταβλητές με εκθέτη σε κάθε μεταβλητή το άθροισμα των εκθετών της. π.χ ( z) ( ) 6 zz zz z + Διαίρεση μονωνύμων z z ( 6 z ) 9 z Όπως είναι φανερό χρησιμοποιούμε την προσεταιριστική ιδιότητα του πολλαπλασιασμού για να βάλουμε τους αριθμούς και τις μεταβλητές μαζί και την ιδιότητα των δυνάμεων μ ν μ+ ν α.α α (γενικευμένη) για τον πολλαπλασιασμό των μεταβλητών Το πηλίκο δύο μονώνυμων είναι ένα μονώνυμο που έχει ως συντελε- στή το πηλίκο των συντελεστών τους και κ ύριο μέρος όλες τις μετα- βλητές με εκθέτη σε καθεμία τη διαφορά των εκθετών της.
9 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ π.χ 8 και ( 8 )( : ) ( 6 )( : ) Μετατρέπουμε την διαίρεση σε πολλαπλ ασιασμό με τον αντίστροφο. Εφαρμόζουμε την ιδιότητα των δυνάμεων μ α μ-ν α ν.ομοίως. 6 α 6 ΣΗΜ. Όπως είναι φανερό ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ από το δεύτερο παράδειγμα το πηλίκο μονώνυμων δεν είναι πάντα μονώνυμο.. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ) αν είναι λανθασμένες. α) Το άθροισμα ομοίων μονωνύμων είναι μονώνυμο. β) Η διαφορά δύο μονωνύμων είναι μονώνυμο. γ) Το γινόμενο μονωνύμων είναι μονώνυμο. δ) Το πηλίκο δύο μονωνύμων είναι μονώνυμο. ΑΠΑΝΤΗΣΗ α) Είναι σωστή (Σ), για παράδειγμα +. β) Είναι λάθος (Λ), για παράδειγμα η διαφορά δεν είναι μονώνυμα αλλά πολυώνυμο. γ) Είναι σωστή (Σ), για παράδειγμα. δ) Είναι λάθος (Λ), για παράδειγμα το πηλίκο. δεν είναι μο- νώνυμο.. Να συμπληρώσετε τις ισότητες: α) β) -. δ) ζ) ω ΑΠΑΝΤΗΣΗ... ε) ( )( ) 6... γ) στ) 6 :... 6 (...) 0 ω η) θ)...
10 6 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ α) - + δ) ζ) ω β) - ε) ( ω) 0 ω η) θ) γ) - στ) 6 + : ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ ΑΣΚΗΣΗ Να κάνετε τις πράξεις: α) - + δ) 0,αβ - 0,αβ β) α + 0,αβ 6α ε) + α ω γ) 6, ω 9 στ) - + α) - + β) α 6α + α -α 9 γ) 6 δ) 0,αβ - 0,αβ 0,αβ 0, αβ ε) ω, ω -0,8 ω στ) ΑΣΚΗΣΗ α) Εφαρμόζουμε την επιμεριστική ιδιότητα για να προσθέσουμε τους συντελεστές των ομοίων μονωνύμων. β) Ομοίως γ) Ομοίως + δ) Ομοίως ε) Ομοίως στ) Ομοίως Να υπολογίσετε τα γινόμενα: α). β) 6. γ).( ) δ). ( ω) ε ) - αβ. αβ στ ) α. α ζ ). (- ω) - ω 6
11 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ α). β) 6. γ) δ) ε ) - αβ στ ) ζ ) - 9.( ) -6. ( ω) 6 ω.αβ. α. α - α β 6 (- ω) - ω - ω 6 - α α) Πολλαπλασιάζουμε τους συντελεστές των μονωνύμων και για τον πολλαπλασιασμό των κυρίως μερών εφαρμόζουμε την ιδιότητα των δυνάμεων μ ν μ+ ν α.α α. β) Ομοίως γ) Ομοίως δ) Ομοίως ε) Πολλαπλασιάζουμε τους συντελεστές των μονωνύμων και για τον πολλαπλασιασμό των κυρίως μερών εφαρμόζουμε την ιδιότητα των δυνάμεων στ) Ομοίως ζ) Ομοίως ΑΣΚΗΣΗ Να υπολογίσετε τα πηλίκα: α) α δ) α) δ) ε) : (- α) β) 8 : ( ) ( 0,8 ω ): (- 0,ω ) ε) (- α ω) : - α στ) ( 0,α β ) β) 8 α : : (- α) ( ) -α - 6 ) - : γ α β α β στ ( 0,8 ω ): (- 0,ω ) ( ): - - α ω α ) ( 0,α ): - β α β 0-8 -ω α ω α.β - αβ γ) - α β 6 : α β : - 0 α α) Διαιρούμε τους συντελεστές των μονωνύμων και για την διαίρεση των κυρίως μερών εφαρμόζουμε την ιδιότητα των δυνάμεων α : α α. μ ν μ ν β) Ομοίως γ) Ομοίως δ) Ομοίως ε) Ομοίως στ) Ομοίως β
12 8 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ ΑΣΚΗΣΗ Να κάνετε τις πράξεις: α) - ( 6 ) β) (- ) : (- 8 ) γ) (- ω ).( ) α) - 9 β) γ) ( 6 ) ( 6 ) (- ) : (- 8 ) 6 9 ( 8 ):(-8 ) (- ω ).( ) ( ω )(. ) 8 ω 6 α) Πολλαπλασιάζουμε τους συντελεστές των μονωνύμων και για τον πολλαπλασιασμό των κυρίως μερών εφαρμόζουμε την ιδιότητα των δυνάμεων α.α α. μ ν μ+ ν β) Εφαρμόζουμε την ιδιότητα των δυνάμεων (α.β) ν α ν.β ν Διαιρούμε τους συντελεστές των μονωνύμων και για την διαίρεση των κυρίως μερών εφαρμόζουμε την ιδιότητα μ ν μ ν των δυνάμεων α : α α. γ) Εφαρμόζουμε την ιδιότητα των δυνάμεων (α.β) ν α ν.β ν και κατόπιν πολλαπλασιάζουμε όπως στο α ερώτημα. ΑΣΚΗΣΗ Να βρείτε το εμβαδόν των παρακάτω σχημάτων. Ποιες από τις εκφράσεις που βρήκατε είναι μονώνυμα; α) + + β) + γ) + α) Το εμβαδόν του πρώτου σχήματος είναι το άθροισμα των εμβαδών τετραγώνων πλευράς. β) Το εμβαδόν του δεύτερου σχήματος είναι το άθροισμα των εμβαδών ορθογωνίων διαστάσεων και. γ) Το εμβαδόν του τρίτου σχήματος είναι το άθροισμα των εμβαδών ενός ορθογωνίου διαστάσεων και και ενός τετραγώνου πλευράς.
13 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ-ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ 9 π δ) ( ) + π + π ε) + ΑΣΚΗΣΗ 6 π + δ) Το εμβαδόν του τέταρτου σχήματος είναι το άθροισμα των εμβαδών ενός τετραγώνου πλευράς και ενός ημικυκλίου ακτίνας. ε) Το εμβαδόν του πέμπτου σχήματος είναι το άθροισμα των εμβαδών ενός ορθογωνίου διαστάσεων, και ενός ημικυκλίου ακτίνας. Οι εκφράσεις των ερωτημάτων α, β, δ είναι μονώνυμα. Να συγκρίνετε το εμβαδόν του πράσινου τριγώνου με το άθροισμα των εμβαδών των κίτρινων τριγώνων. ( ΔΕΓ). Το πράσινο τρίγωνο έχει εμβαδόν και το άθροισμα των κίτρινων εμβαδών είναι επίσης το οποίο προκύπτει αν προσθέσουμε τα εμβαδά των δύο κίτρινων τριγώνων που εκφράζο- νται με δύο μονώνυμα ΑΕ. ΕΒ. ( ΑΕΔ) + ( ΕΒΓ) + ( ΑΕ + ΕΒ). ΣΥΜΠΛΗΡΩΜΑΤΙΚΑ ΘΕΜΑΤΑ. Ένα ορθογώνιο έχει μήκος τριπλάσιο από το πλάτος του. Το μονώνυμο που εκφράζει το εμβαδόν του είναι: α ), β), γ), δ) Εφόσον το πλάτος είναι το μήκος θα είναι και το εμβαδόν του ορθογωνίου θα είναι: Ε ορθογωνίου. άρα η σωστή απάντηση είναι η β.. Η Μαρία έχει ευρώ, ενώ η Ελένη έχει ευρώ λιγότερα από το τριπλάσιο ποσό της Μαρίας. Η αλγεβρική παράσταση που εκφράζει το χρηματικό ποσό της Ελένης είναι : α ) -, β) +, γ), δ) - Σύμφωνα με την εκφώνηση του προβλήματος η αλγεβρική παράσταση που εκφράζει το χρηματικό ποσό της Ελένης είναι.. Χρησιμοποιώντας τους τύπους του παραδείγματος ( σελίδα του βιβλίου σας) να υπολογίσετε το ιδανικό βάρος ενός άνδρα ηλικίας ετών και ύψους cm και μιας γυναίκας ηλικίας ετών και ύψους 6 cm.
14 0 ΜΕΡΟΣ Α. ΜΟΝΩΝΥΜΑ ΠΡΑΞΕΙΣ ΜΕ ΜΟΝΩΝΥΜΑ Το ιδανικό βάρος ενός άνδρα ηλικίας t ετών και ύψους υ cm είναι t βάσει το τύπου Β κ. υ , Β 0,9. ( +,) 0,9.6, 68,8 κιλά(κ0,9 για τον άνδρα) Επίσης το ιδανικό βάρος μιας γυναίκας ηλικίας t ετών και ύψους t υ6 cm είναι βάσει το τύπου Β κ. υ , Β 0,8. 6 +, 0,8.69,,. ( ) κιλά. Να βρεθούν οι τιμές των κ και λ, ώστε να ισχύουν οι ισότητες α) κ- λ κ κ- λ κ+ λ+ (- ): (- ), β) ( α β ): ( α β ) α) - κ- λ κ ( ): (- ) κ--κ κ- λ- κ - λ- και λ - κ- λ κ+ λ+ ( α β ): ( α β ), οπότε πρέπει να είναι ή κ και λ ή κ και λ αβ β) αβ, κ--(κ+ ) λ-(λ+ ).α β αβ κ--κ- λ-λ- α β αβ κ- λ- α β αβ οπότε πρέπει να είναι κ - και λ - ή κ και λ ή κ και λ. Δύο κύκλοι έχουν ακτίνες και αντιστοίχως. Να βρεθεί η ακτίνα του κύκλου που έχει εμβαδόν ίσο με το άθροισμα των εμβαδών των δύο αρχικών κύκλων. Ε Ε + Ε πρ + πρ π + π ( ) ( ) ( ) π π( ) π9 + π6 π Επομένως η ακτίνα του κύκλου που έχει εμβαδόν ίσο με το άθροισμα των εμβαδών των δύο αρχικών κύκλων είναι.,
Αλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.2 Μονώνυμα-Πράξεις με Μονώνυμα 1 1.2 Μονώνυμα-Πράξεις με Μονώνυμα Α Άλγεβρικές Παραστάσεις-Μονώνυμα Πολλές φορές για να λύσουμε ένα πρόβλημα, καταλήγουμε σε εκφράσεις που περιέχουν
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ Α': ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο: Αλγεβρικές παραστάσεις Παράγραφος A..: Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Β: Πράξεις με μονώνυμα Τα σημαντικότερα σημεία
Διαβάστε περισσότερα1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ
ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
Διαβάστε περισσότερα1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών
Διαβάστε περισσότεραΑπαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)
Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ
ΜΕΡΟΣ Α 1. ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 51 1. ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Πολυώνυμα Όπως είδαμε στην προηγούμενη ενότητα Το άθροισμα όμοιων μονώνυμων είναι ένα μονώνυμο όμοιο
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότερα9 Πολυώνυμα Διαίρεση πολυωνύμων
4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε
Διαβάστε περισσότεραΕπίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 016-17 1. Τι ονομάζεται αλγεβρική παράσταση; Ονομάζεται κάθε έκφραση που περιέχει πράξεις μεταξύ αριθμών και μεταβλητών.. Τι ονομάζεται αριθμητική τιμή αλγεβρικής
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότερα1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,
. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -
Διαβάστε περισσότεραAπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.
ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+
Διαβάστε περισσότεραΚεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.
Μαθηματικά Γ Γυμνασίου Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις. Μέρος Α Θεωρία. 1. Πως προσθέτουμε δύο πραγματικούς αριθμούς; 2. Πως πολλαπλασιάζουμε δύο πραγματικούς αριθμούς; 3. Ποιες είναι οι ιδιότητες
Διαβάστε περισσότεραΝα γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
Διαβάστε περισσότεραΜονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Μονώνυμα Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πράξεις με μονώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης ενότητας είναι να μάθουν
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότεραΑλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΌταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε
Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι
Διαβάστε περισσότεραΑ. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Διαβάστε περισσότεραΑ. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ
ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΔ = δπ + υ με υ < δ. (Ταυτότητα της Ευκλείδειας διαίρεσης),
ΜΕΡΟΣ Α 1.7 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 19 1. 7 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Διαίρεση πολυωνύμων Αν έχουμε δύο φυσικούς αριθμούς Δ (διαιρετέος) και δ (διαιρέτης) με δ και κάνουμε τη διαίρεση Δ : δ, τότε βρίσκουμε δύο άλλους
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε
Διαβάστε περισσότεραΜ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότερααριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Διαβάστε περισσότεραB Γυμνασίου. Ενότητα 9
B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΕΠΙΜΕΛΕΙΑ ΒΑΣΙΛΗΣ ΑΥΓΕΡΙΝΟΣ 1 ΚΕΦΑΛΑΙΟ 1ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Οι Πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι είναι οι πραγματικοί αριθμοί ; Ποιοι είναι οι
Διαβάστε περισσότερααπλοποιείται, γιατί οι όροι της είναι γινόμενα και έχουν κοινό παράγοντα το xy. Αν διαιρέσουμε και τους δύο όρους με τον κοινό παράγοντα,
ΜΕΡΟΣ Α 9 ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 9 ΡΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Ρητές αλγεβρικές παραστάσεις Μια αλγεβρική παράσταση με την μορφή κλάσματος που οι όροι του είναι πολυώνυμα λέγεται ρητή αλγεβρική
Διαβάστε περισσότερα1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ
ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότεραΑφιερώνεται στην κόρη μου Καλυψώ-Σοφία
Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύμβαση. Αφιερώνεται στην κόρη μου Καλυψώ-Σοφία «Το παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου, Κεφάλαιο 1ο
1 Ερωτήσεις θεωρίας Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ 1. Τι ονομάζουμε μονώνυμο;. Τι ονομάζουμε ρητή αλγεβρική παράσταση; 3. Ποιες τιμές δεν μπορούν να πάρουν οι μεταβλητές
Διαβάστε περισσότεραΤετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
Διαβάστε περισσότεραΌταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι
ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 9. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ Χρήσιμες ιδιότητες πράξεων Αν αβ τότε α+γβ+γ Αν αβ τότε α-γβ-γ Αν αβ τότε α γ α β γ β Αν αβ τότε γ γ με γ 0 Η έννοια της εξίσωσης Μια ισότητα, που αληθεύει
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότεραΆλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.
ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα
Διαβάστε περισσότεραΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΚ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών
Άλγεβρα Α Λυκείου, Κεφάλαιο ο ΘΕΩΡΙΑ-ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΠΟΔΕΙΞΕΙΣ ΠΡΟΤΑΣΕΩΝ-ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΥΠΟΥΡΓΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. Οι Πράξεις και οι Ιδιότητές
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 2 - Κλάσματα Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 2 Α. 2.1. Όταν ένα μέγεθο ή ένα σύνολο ομοειδών αντικειμένων χωρισθεί σε ν ίσα μέρη, το κάθε ένα
Διαβάστε περισσότεραΠ.χ. Ιδιότητα Πρόσθεση Πολλαπλασιασμός. Αντιμεταθετική α + β = β + α αβ = βα. Προσεταιριστική α + (β + γ) = (α + β) + γ α(βγ) = (αβ)γ
Η θεωρία της Γ Γυμνασίου 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί αριθμοί είναι όλοι οι αριθμοί που γνωρίσαμε στις προηγούμενες
Διαβάστε περισσότεραΠρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί
Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις
Διαβάστε περισσότερα1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι
_ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Διαβάστε περισσότεραΘέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 2007 Σχ. Έτος ΤΑΞΗ Γ ΑΣΚΗΣΕΙΣ
Θέματα Γραπτών Απολυτήριων Εξετάσεων Στο Μάθημα των Μαθηματικών Περιόδου Μαΐου-Ιουνίου 007 Σχ. Έτος 006-007 ΤΑΞΗ Γ ΘΕΩΡΙΑ 1. α.) Να συμπληρώσετε τις ταυτότητες : 3 ( α + β ) = ( β ) = α 3 3 3 β.) Να αποδείξετε
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότερα4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή). 2. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της
Διαβάστε περισσότεραΦύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ
Φύλλα Αξιολόγησης Β ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2014 2015 Πρότυπο Πειραματικό Γυμνάσιο Αγίων Αναργύρων Τάξη Β 2 ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ A ΕΝΟΤΗΤΑ : Πράξεις Ρητών αριθμών 1. Να χαρακτηρίσετε τις παρακάτω
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ. Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥΣΤΗΝ ΑΛΓΕΒΡΑ 1)Ποιοι αριθμοί ονομάζονται άρτιοι και ποιοι περιττοί ; Άρτιοι αριθμοί ονομάζονται οι αριθμοί που διαιρούνται με το 2 και περιττοί εκείνοι που δεν διαιρούνται
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
Διαβάστε περισσότεραΣυνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα
Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ
Διαβάστε περισσότεραΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ
ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =
Διαβάστε περισσότεραΚάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός.
ΜΕΡΟΣ Α. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 69. ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ-ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΡΡΗΤΟΙ ΑΡΙΘΜΟΙ Κάθε αριθμός που δεν είναι ρητός, ονομάζεται άρρητος αριθμός. Για παράδειγμα ο αριθμός που στην προηγούμενη
Διαβάστε περισσότεραΔιορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου
Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες
Διαβάστε περισσότερα2.2 ιαίρεση Πολυωνύμων
ιαίρεση Πολυωνύμων Ταυτότητα διαίρεσης Όπως στους ακέραιους αριθμούς, έτσι και στα πολυώνυμα ισχύει η ταυτότητα της διαίρεσης Πιο συγκεκριμένα ισχύει ότι: Για κάθε ζεύγος πολυωνύμων Δ ( ) και δ ( ), με
Διαβάστε περισσότερα1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Διαβάστε περισσότεραΠρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί
Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραWeb page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
Διαβάστε περισσότερα1 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Α Γυμνασίου Ακέραιοι Αριθμοί -Η ευθεία των αριθμών
κέραιοι ριθμοί -Η ευθεία των αριθμών κέραιοι αριθμοί είναι οι φυσικοί αριθμοί μαζί με τους αντίστοιχους αρνητικούς αριθμούς. Τα σύμβολα «+» και «-» που γράφονται μπροστά από τους αριθμούς λέγονται πρόσημα.
Διαβάστε περισσότερα1.2 Εξισώσεις 1 ου Βαθμού
1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση
Διαβάστε περισσότεραΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΕΝΑ ΑΠΟ ΤΑ ΔΥΟ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΚΑΙ ΔΥΟ ΑΠΟ ΤΙΣ ΤΡΕΙΣ ΑΣΚΗΣΕΙΣ ΟΙ ΑΣΚΗΣΕΙΣ ΚΑΙ ΤΑ ΘΕΜΑΤΑ ΤΗΣ ΘΕΩΡΙΑΣ ΕΙΝΑΙ
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότερα1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ Η εξίσωση με και 0 ή 0 λέγεται γραμμική εξίσωση. Οι μεταβλητές είναι οι άγνωστοι της εξίσωσης αυτής. Οι αριθμοί λέγονται συντελεστές των αγνώστων
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Μεθοδική Επανάληψη
Μαθηματικά Γ Γυμνασίου Μεθοδική Επανάληψη Στέλιος Μιχαήλογλου www.askisopolis.gr Η επανάληψη των Μαθηματικών βήμα - βήμα Άλγεβρα Κεφάλαιο 1ο: Αλγεβρικές παραστάσεις 1.1. Πράξεις με πραγματικούς αριθμούς
Διαβάστε περισσότεραR={α/ αρητός ή άρρητος αριθμός }
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.
Διαβάστε περισσότεραI. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Διαβάστε περισσότεραΔιαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 7. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ Ίσα τμήματα μεταξύ παραλλήλων ευθειών Αν παράλληλες ευθείες ορίζουν ίσα τμήματα σε μια ευθεία, τότε θα ορίζουν ίσα τμήματα και σε οποιαδήποτε
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα
Διαβάστε περισσότερα4.1. Πολυώνυμα. Η έννοια του πολυωνύμου
4.1 Πολυώνυμα Η έννοια του πολυωνύμου ΟΡΙΣΜΟΙ 1. Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής αx ν, όπου α R, ν N (σταθερές) και x R (μεταβλητή).. Πολυώνυμο του x ονομάζουμε κάθε παράσταση της μορφής:
Διαβάστε περισσότεραΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος
Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ
ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ 1. Να αναπτύξετε τις ταυτότητες: α. (α+8) β. (-) γ. (γ+k) δ. (+γ) ε. (3k-5λ) ζ. (5/κ - 4/λ) η. (/3-χ/4) θ. (χ - 3/χ) ι. (χ/3+3ψ/4) κ. (3χ+χ/) λ. (χ+8)(χ-8)
Διαβάστε περισσότερα1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ
ΜΕΡΟΣ Α.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ 67.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΟΡΙΣΜΟΣ Οομάζουμε ταυτότητα κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές τω μεταβλητώ αυτώ. Τετράγωο αθροίσματος
Διαβάστε περισσότεραΠρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών
2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ημήτριος Αργυράκης Παναγιώτης Βουργάνας Κωνσταντίνος Μεντής Σταματούλα Τσικοπούλου Μιχαήλ Χρυσοβέργης ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΕΡΟΣ Α Τόμος
Διαβάστε περισσότερα