0,00620 = 6, ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ. Γενικοί Κανόνες για τα Σημαντικά Ψηφία
|
|
- Τώβιας Παπακώστας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ Είναι απαραίτητο να πούμε μερικά πράγματα για μια επαναλαμβανόμενη πηγή προβλημάτων και δυσκολιών: τα σημαντικά ψηφία. Τα μαθηματικά είναι μια επιστήμη όπου οι αριθμοί και οι σχέσεις μπορούν να είναι ακριβείς όσο χρειάζεται. Αντίθετα, θα μπορούσε κάποιος να πει ότι η φυσική ασχολείται με τον πραγματικό κόσμο της αμφιβολίας και της ανακρίβειας. Είναι σημαντικό σε όλες τις περιοχές της επιστήμης να δηλώσετε καθαρά τι γνωρίζετε για μια κατάσταση όχι λιγότερα και, ειδικά, όχι περισσότερα. Τα νούμερα, που προκύπτουν κατά τη διαδικασία μιας μέτρησης, παρέχουν και πληροφορίες για το μετρητικό σύστημα που χρησιμοποιήθηκε. Για παράδειγμα, αν αναφέρετε ότι το μήκος ενός αντικειμένου έχει τιμή 6,2 m, το συμπέρασμα είναι ότι η πραγματική τιμή θα κυμαίνεται μεταξύ των τιμών 6,15 m και 6,25 m. Αν το αναμενόμενο αποτέλεσμα για τη συγκεκριμένη αυτή μέτρηση είναι πράγματι 6,2 m και εσείς αναφέρετε ότι το μήκος αυτό είναι απλά 6 m που αναφέρει λιγότερα από ότι γνωρίζετε, αποκρύπτετε πληροφορίες που έχουν σχέση με την ακρίβεια του μετρητικού συστήματος που χρησιμοποιήσατε. Από την άλλη μεριά, αν αναφέρετε ότι το μήκος του αντικειμένου είναι 6,213 m τότε, αυτός που σας ανέθεσε να κάνετε τη μέτρηση αυτή θα μεταφράσει την τιμή 6,213 m, με την έννοια ότι το πραγματικό μήκος βρίσκεται μεταξύ 6,2125 m και 6,2135 m. Σε αυτή την περίπτωση, ισχυρίζεστε ότι έχετε γνώσεις και πληροφορίες οι οποίες δε ανταποκρίνονται στις προδιαγραφές του μετρητικού συστήματος που χρησιμοποιήσατε. Ο τρόπος με τον οποίο δηλώνετε τις πληροφορίες ακριβώς γίνεται μέσω της σωστής χρήσης των σημαντικών ψηφίων. Μπορείτε να σκεφτείτε το σημαντικό ψηφίο ως ένα αριθμό που είναι αξιόπιστα γνωστός. Μια μετρούμενη τιμή ενός φυσικού μεγέθους, όπως το μήκος των 6,2 m, έχει δυο σημαντικά ψηφία επειδή το επόμενο δεκαδικό, δηλαδή το ένα εκατοστό (1 cm), δεν είναι αξιόπιστα γνωστό. Όπως δείχνει το ΣΧΗΜΑ 1, ο καλύτερος τρόπος να καθορίσουμε πόσα σημαντικά ψηφία έχει ένας αριθμός είναι να γράψουμε τον αριθμό αυτό σε επιστημονική γραφή. Τα μηδέν που είναι αριστερά σε ένα δεκαδικό αριθμό δεν είναι σημαντικά ψηφία 0,00620 = 6, Τα μηδέν που είναι δεξιά σε ένα δεκαδικό αριθμό είναι σημαντικά ψηφία. ΣΧΗΜΑ 1 Προσδιορίζοντας τα σημαντικά ψηφία. Γενικοί Κανόνες για τα Σημαντικά Ψηφία 1. Το πλήθος των σημαντικών ψηφίων ΔΕΝ είναι το πλήθος των δεκαδικών ψηφίων.
2 2. Το πλήθος των σημαντικών ψηφίων είναι το πλήθος των ψηφίων της αριθμητικής τιμής ενός φυσικού μεγέθους όταν αυτή γράφεται με επιστημονική μορφή. 3. Στους ακέραιους αριθμούς, τα μηδέν που βρίσκονται στο δεξιό μέρος του αριθμού δεν είναι σημαντικά ψηφία. Για παράδειγμα οι αριθμοί 320 ή 3200 έχουν δυο σημαντικά ψηφία. Σε επιστημονική μορφή, οι αριθμοί αυτοί γράφονται 3, και 3,2 10 3, αντίστοιχα. 4. Αλλάζοντας τις μονάδες ενός φυσικού μεγέθους αλλάζει θέση μόνο η υποδιαστολή στην αριθμητική τιμή του μεγέθους. Το πλήθος των σημαντικών ψηφίων παραμένει το ίδιο. 5. Όταν πολλαπλασιάζουμε ή διαιρούμε αριθμούς ή υπολογίζουμε ρίζες ή τριγωνομετρικούς αριθμούς ή λογαρίθμους, το πλήθος των σημαντικών ψηφίων στο αποτέλεσμα πρέπει να είναι ίσο με τον πλήθος των σημαντικών ψηφίων του αριθμού με τη μικρότερη ακρίβεια που χρησιμοποιήθηκε στον υπολογισμό. Με άλλα λόγια, στο αποτέλεσμα κρατάμε τόσα σημαντικά ψηφία όσα έχει ο αριθμός με τα λιγότερα σημαντικά ψηφία, 6. α. Όταν προσθέτουμε ή αφαιρούμε δεκαδικούς αριθμούς, το αποτέλεσμα θα έχει τόσα δεκαδικά ψηφία όσα ο αριθμός με τα λιγότερα δεκαδικά ψηφία. β. Όταν προσθέτουμε ή αφαιρούμε ακέραιους αριθμού, η απόλυτη ακρίβεια του αποτελέσματος θα είναι η ίδια με την απόλυτη ακρίβεια του αριθμού με την μικρότερη απόλυτη ακρίβεια. Για παράδειγμα, η απόλυτη ακρίβεια των αριθμών 235, 1850 και 5800 είναι αντίστοιχα στις μονάδες και στις δεκάδες και στις εκατοντάδες. Ο αριθμός 5800 έχει τη μικρότερη απόλυτη ακρίβεια. Υπάρχουν δυο σημαντικές εξαιρέσεις σε αυτούς τους κανόνες: 1. Συνηθίζεται να κρατάμε ένα επιπλέον σημαντικό ψηφίο αν (και μόνο αν) ο αριθμός ξεκινά με το ψηφίο ένα (1). Για παράδειγμα, ο αριθμός 10,43 μπορεί να χρησιμοποιηθεί σε υπολογισμό με τον αριθμό 8,91. Η λογική για αυτή την εξαίρεση είναι ότι τέσσερα σημαντικά ψηφία για αριθμό που ξεκινά με το νούμερο ένα (1) έχει περίπου την ίδια ποσοστιαία ακρίβεια με τους αριθμούς που έχουν τρία σημαντικά ψηφία και οι οποίοι αρχίζουν με νούμερα από το Είναι αποδεκτό να κρατάτε ένα ή δυο επιπλέον ψηφία κατά τη διάρκεια των ενδιάμεσων βημάτων του υπολογισμού, καθώς η τελική απάντηση αναφέρεται με τον κατάλληλο αριθμό σημαντικών ψηφίων. Ο στόχος είναι να ελαττώσουμε τα λάθη στρογγυλοποίησης στους υπολογισμούς. ΣΗΜΕΙΩΣΗ> Προσοχή! Πολλές αριθμομηχανές έχουν ένα δεδομένο τρόπο που παρουσιάζουν τα αποτελέσματα των αριθμητικών πράξεων, π.χ. με δυο ή τρία δεκαδικά ψηφία. Αυτό είναι επικίνδυνο να οδηγήσει σε εσφαλμένα αποτελέσματα. Συγκεκριμένα, στη περίπτωση που θέλουμε να διαιρέσουμε δυο μετρούμενα μεγέθη των οποίων η ακρίβεια τους καθορίζεται με τρία σημαντικά ψηφία, π.χ. τους αριθμούς 5,23 και 58,5 τότε, σύμφωνα με αυτά που έχουμε ήδη αναφέρει, το αποτέλεσμα τη διαίρεσης πρέπει να γραφεί με τρία σημαντικά ψηφία, δηλαδή 5,23/58,5=0,0894. Αντίθετα, αν η αριθμομηχανή είναι ρυθμισμένη να εκφράζει τα αποτελέσματα των αριθμητικών πράξεων απλά με δυο μόνο δεκαδικά ψηφία, τότε η διαίρεση που αναφέραμε θα έδινε ως αποτέλεσμα τον αριθμό 0,09. Αλλά κάνοντάς αυτό, έχετε ήδη μειώσει την ακρίβεια του αποτελέσματος από τρία σημαντικά ψηφία στο ένα σημαντικό ψηφίο. Για να αποφύγετε αυτό το λάθος πρέπει να ρυθμίσετε την αριθμομηχανή έτσι ώστε αυτή να απεικονίζει τα αποτελέσματα των αριθμητικών πράξεων με επιστημονική γραφή.
3 Κατάλληλη χρήση των σημαντικών ψηφίων είναι μέρος της «κουλτούρας» των επιστημόνων και των μηχανικών. Θα δίνουμε συχνά έμφαση σε αυτήν την «κουλτούρα» επειδή πρέπει να μάθετε να μιλάτε την ίδια γλώσσα αν θέλετε να επικοινωνείτε σωστά. Αναγνώριση σημαντικών ψηφίων Τα ψηφία τα οποία καθορίζουν την αριθμητική τιμή ενός μετρούμενου μεγέθους και τα οποία προσδιορίζουν την ακρίβεια της μέτρησης ονομάζονται σημαντικά ψηφία. Συγκεκριμένα: 1. Όλα τα μη μηδενικά ψηφία στην αριθμητική τιμή του μετρούμενου μεγέθους είναι σημαντικά ψηφία. 2. Όλα τα μηδέν που ευρίσκονται μεταξύ μη μηδενικών ψηφίων είναι σημαντικά ψηφία. 3. Στη περίπτωση που η αριθμητική τιμή ενός μετρούμενου μεγέθους είναι δεκαδικός αριθμός, τότε όλα τα μηδέν που ευρίσκονται δεξιά από το τελευταίο μη μηδενικό ψηφίο είναι σημαντικά ψηφία. Αντίθετα: α. Τα μηδέν που βρίσκονται δεξιά από το τελευταίο μη μηδενικό ψηφίο ακέραιου αριθμού, και β. Τα μηδέν που βρίσκονται αριστερά από το πρώτο μη μηδενικό ψηφίο δεκαδικού αριθμού δεν είναι σημαντικά ψηφία. Παραδείγματα: 1. Οι αριθμοί: 0,0006, 0,002, 0,5 καθώς και οι αριθμού 5, 10, 50, 200, 3000 κλπ έχουν ένα σημαντικό ψηφίο. 2. Οι αριθμοί: 0,0030, 2,0, 3,5, 1500, κλπ έχουν δυο σημαντικά ψηφία. 3. Οι αριθμοί: 0,00200, 0,0508, 5,00, 205, κλπ έχουν τρία σημαντικά ψηφία. 4. Ο αριθμός 2000 έχει ένα σημαντικό ψηφίο. Αν ο αριθμός αυτός είχε προκύψει από μέτρηση με ακρίβεια δυο σημαντικών ψηφίων, τότε θα γραφόταν: 2, Ένας άλλος τρόπος για να προσδιορίσετε το πλήθος των σημαντικών ψηφίων ενός μετρούμενου μεγέθους είναι να γράψετε την τιμή του μετρούμενου μεγέθους σε επιστημονική μορφή, δηλαδή ο αριθμός πρέπει να γραφεί με την εξής μορφή: [(ένα ακέραιο ψηφίο α),(δεκαδικά ψηφία δ)] x (δύναμη του 10) (α,δδδ... )x(δύναμη του 10) Το πλήθος όλων των ψηφίων που εκφράζουν το δεκαδικό αριθμός (ακέραιο και δεκαδικό μέρος) είναι ίσο με το πλήθος των σημαντικών ψηφίων. Η δύναμη του 10 δεν επηρεάζει το πλήθος των σημαντικών ψηφίων) Παραδείγματα:
4 2010=2,010x10 3 (ο αριθμός 2010 γράφηκε με 4 σημαντικά ψηφία) 2010=2,01x10 3 (ο αριθμός 2010 γράφηκε με 3 σημαντικά ψηφία) 2010=2,0x10 3 (ο αριθμός 2010 γράφηκε με 2 σημαντικά ψηφία) 2010=2x10 3 (ο αριθμός 2010 γράφηκε με 1 σημαντικό ψηφίο) 100=1,000x10 2 (ο αριθμός 100 γράφηκε με 4 σημαντικά ψηφία) 100=1,00x10 2 (ο αριθμός 100 γράφηκε με 3 σημαντικά ψηφία) 100=1,0x10 2 (ο αριθμός 100 γράφηκε με 2 σημαντικά ψηφία) 100=1x10 2 (ο αριθμός 100 γράφηκε με 1 σημαντικά ψηφία) 999,84=9,9984x10 2 (o αριθμός 999,84 γράφηκε με 5 σημαντικά ψηφία) 999,84=9,998x10 2 (o αριθμός 999,84 γράφηκε με 4 σημαντικά ψηφία) 999,84=1000=1,00x10 3 (o αριθμός 999,84 γράφηκε με 3 σημαντικά ψηφία) 999,84=1000=1,0x10 3 (o αριθμός 999,84 γράφηκε με 2 σημαντικά ψηφία) 999,84=1000=1x10 3 (o αριθμός 999,84 γράφηκε με 1 σημαντικά ψηφία) Άλλο παράδειγμα: 0,000452=4,520x10-4 (o αριθμός 0, γράφηκε με 4 σημαντικά ψηφία) 0,000452=4,52x10-4 (o αριθμός 0, γράφηκε με 3 σημαντικά ψηφία) 0,000452=4,5x10-4 (o αριθμός 0, γράφηκε με 2 σημαντικά ψηφία) 0,000452=5x10-4 (o αριθμός 0, γράφηκε με 1 σημαντικά ψηφία) Να προσέχετε τη στρογγυλοποίηση όταν διώχνετε κάποιο ή κάποια από τα τελευταία ψηφία του δεκαδικού αριθμού. Παρακάτω δίνονται οι κανόνες στρογγυλοποίησης. Στρογγυλοποίηση Αριθμών. Σε πολλές περιπτώσεις, όπως για παράδειγμα συμβαίνει μετά από μαθηματικές πράξεις μεταξύ μετρούμενων μεγεθών ή πράξης για τον υπολογισμός της μέσης τιμής και του σφάλματος ενός μετρούμενου μεγέθους, είναι αναγκαία η στρογγυλοποίηση των αντίστοιχων τιμών σε αριθμούς με το απαραίτητο πλήθος σημαντικών ψηφίων. Για το σκοπό αυτό εντοπίζουμε το τελευταίο σημαντικό ψηφίο που θέλουμε να κρατήσουμε στη τιμή του μετρούμενου μεγέθους, (η αρίθμηση των σημαντικών ψηφίων γίνεται από τα αριστερά προς τα δεξιά του αριθμού) το οποίο συμβολίζουμε με α και κάνουμε τους παρακάτω ελέγχους εξετάζοντας το αμέσως επόμενο σημαντικό ψηφίο το οποίο συμβολίζουμε με β: 1. Αν το ψηφίο β είναι μικρότερο του 5 (β<5) τότε το τελευταίο σημαντικό ψηφίο του αριθμού που μας ενδιαφέρει, δηλαδή το α παραμένει το ίδιο και όλα τα επόμενα από αυτό, συμπεριλαμβανομένου και του β, είτε διαγράφονται αν αυτά είναι δεκαδικά, ή αντικαθίστανται με μηδέ (0) αν αυτά δεν είναι δεκαδικά. Π.χ. Να στρογγυλοποιηθούν οι αριθμοί 17,24798 και σε αριθμούς με τρία (3) σημαντικά ψηφία. Στον δεκαδικό αριθμό το τρίτο σημαντικό ψηφίο που μας ενδιαφέρει είναι το 2 (α=2). Το αμέσως επόμενο σημαντικό ψηφίο είναι το β=4<5, οπότε το τρίτο σημαντικό ψηφίο παραμένει ως έχει (α=2) και τα δεκαδικά ψηφία 4, 7, 9 και 8 που ακολουθούν διαγράφονται. Οπότε: 17, ,2 (τρία σημαντικά ψηφία)
5 Στη περίπτωση του ακέραιου αριθμού , το α=4. Το αμέσως επόμενο σημαντικό ψηφίο είναι το β=3<5, οπότε το τρίτο σημαντικό ψηφίο, παραμένει το ίδιο (α=4) και τα ψηφία 3, 7 και 6 που ακολουθούν αντικαθίστανται με μηδενικά. Οπότε: (τρία σημαντικά ψηφία) 2. Αν το ψηφίο β είναι μεγαλύτερο του πέντε (β>5) τότε το σημαντικό ψηφίο α αυξάνεται κατά μια μονάδα. Τα σημαντικά ψηφία που είναι μετά το α ή διαγράφονται ή αντικαθίστανται με μηδενικά σύμφωνα με την προηγούμενη περίπτωση. Π.χ. Να στρογγυλοποιηθούν οι αριθμοί 0, και σε αριθμούς με 3 σημαντικά ψηφία. Στον δεκαδικό αριθμό 0, το τρίτο σημαντικό ψηφίο που μας ενδιαφέρει είναι το α=6 και το αμέσως επόμενο είναι το β=7>5, οπότε το α αυξάνεται κατά μια μονάδα και τα ψηφία που ακολουθούν διαγράφονται. 0, ,0207 (τρία σημαντικά ψηφία) Στον ακέραιο αριθμό το α=3 και το β=6>5 οπότε ο αριθμός α=4 αυξάνεται κατά μια μονάδα: (τρία σημαντικά ψηφία) 3. Αν το ψηφίο β=5 τότε: 3.1 Αν μετά το ψηφίο β (σε οποιαδήποτε θέση) υπάρχει έστω και ένα ψηφίο γ>0, τότε ισχύει εξ ολοκλήρου η περίπτωση 2, δηλαδή ο αριθμός α αυξάνεται κατά μια μονάδα.. Π.χ. Να στρογγυλοποιηθούν οι αριθμοί 0, και σε αριθμούς με 3 σημαντικά ψηφία: 0, , Αν μετά το ψηφίο β δεν υπάρχει κανένα ψηφίο ή αν υπάρχουν μηδενικά ψηφία, τότε σύμφωνα με το National Institute of Standards and Technology των Η.Π.Α., ισχύουν τα εξής: Αν το ψηφίο α είναι άρτιος αριθμός, τότε ισχύει εξ ολοκλήρου η περίπτωση 1. Π.χ. Να στρογγυλοποιηθούν οι αριθμοί 0,03245, 0, , 2325 και σε αριθμού με 3 σημαντικά ψηφία: 0, ,0324 0, , Αν το ψηφίο α είναι περιττός αριθμός, τότε ισχύει εξ ολοκλήρου η περίπτωση 2. Π.χ. Να στρογγυλοποιηθούν οι αριθμοί 0,02335, 0, , 3235 και σε αριθμούς με τρία σημαντικά ψηφία: 0, ,0234 0, , ΑΣΚΗΣΕΙΣ 1. Να γράψετε τον αριθμός 9452 με επιστημονική μορφή και να τον στρογγυλοποιήσετε με 3, με 2 και με 1 σημαντικό ψηφίο
6 2. Να γράψετε τον αριθμό 0, με επιστημονική μορφή και να στον στρογγυλοποιήσετε με 4, με 3, με 2 και με 1 σημαντικό ψηφίο 3. Ένας αμερικάνος μηχανικός μέτρησε το μήκος του Μαραθώνιου Δρόμου και το βρήκε ίσο με 26 μίλια. Δεδομένου ότι 1km=0,623 μίλια, να υπολογίσετε το μήκος του μαραθώνιου δρόμου σε χιλιόμετρα. 4. Ένας άγγλος μας λέει ότι το ύψος του είναι 74 ίντσες. Πόσο είναι το ύψος του ανθρώπου αυτού σε μέτρα; (1 ίντσα = 2,54 cm). 5. Να εκτελέσετε τις παρακάτω πράξεις. Οι αριθμητικές τιμές των μεγεθών που συμμετέχουν στις πράξεις έχουν προκύψει από μετρήσεις και έχουν γραφεί σύμφωνα με την ακρίβεια του αντίστοιχου μετρητικού συστήματος που κάθε φορά χρησιμοποιήθηκε. 2, ,5 = 1,23 + 2,50x10-3 = 321, , ,75 = 10,2 x 7,1 = 12,75 x 4,375 = 27,1/5,05 = 3 5 = (3,0) 5 = όπου 6. Να υπολογίσετε τον όγκο σε m 3 της σφαίρας που έχει ακτίνα (α) 3 cm (β) 3,0 cm. 7. Μια σφαίρα έχει όγκο 102 cm 3. Να υπολογίσετε την ακτίνα της σφαίρας σε m.
Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.
Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 1: Οι Αριθμοί. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 1: Οι Αριθμοί Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΤμήμα Τεχνολόγων Γεωπόνων - Φλώρινα
Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ
Διαβάστε περισσότερα5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ
5ο Μάθημα ΜΕΤΡΗΣΗ ΕΠΙΦΑΝΕΙΑΣ ΚΑΙ ΟΓΚΟΥ Μετρούμε αλλά και υπολογίζουμε Στο προηγούμενο μάθημα χρησιμοποιήσαμε το μέτρο, αλλά και άλλα όργανα με τα οποία μετρούμε το μήκος. Το σχήμα που μετρούμε με το μέτρο
Διαβάστε περισσότεραΑριθμητικά Συστήματα = 3 x x x x 10 0
Δεκαδικό Όταν αναφερόμαστε σε μία αριθμητική τιμή, απεικονίζουμε μία ποσότητα με ένα σύμβολο ή έναν συνδυασμό από σύμβολα. Το αριθμητικό σύστημα που χρησιμοποιούμε είναι το δεκαδικό. Αποτελείται από δέκα
Διαβάστε περισσότεραΦυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις
Φυσική για Επιστήμονες και Μηχανικούς Εισαγωγή Φυσική και μετρήσεις Φυσική Χωρίζεται σε έξι βασικούς κλάδους: Κλασική μηχανική Θερμοδυναμική Ηλεκτρομαγνητισμός Οπτική Σχετικότητα Κβαντική μηχανική είναι
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότεραΚεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΩΝ EΞΙΣΩΣΕΙΣ...47 ΠΡΟΛΟΓΟΣ... 9
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 9 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ...11 1.1 Βασικές θεωρητικές γνώσεις... 11 1.. Λυμένα προβλήματα... 19 1. Προβλήματα προς λύση... 4 1.4 Απαντήσεις προβλημάτων Πραγματικοί αριθμοί... 0 ΑΚΟΛΟΥΘΙΕΣ
Διαβάστε περισσότεραΦυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση
Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί
Διαβάστε περισσότερα2. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ
1. ΑΝΑΛΥΣΗ ΣΦΑΛΜΑΤΩΝ 1. Σφάλματα Κάθε μέτρηση ενός φυσικού μεγέθους χαρακτηρίζεται από μία αβεβαιότητα που ονομάζουμε σφάλμα, το οποίο αναγράφεται με τη μορφή Τιμή ± αβεβαιότητα π.χ έστω ότι σε ένα πείραμα
Διαβάστε περισσότεραΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
ΜΑΘΗΜΑΤΙΚΑ (Γ ΤΑΞΗ) ΟΝΟΜΑ:. (ΕΙΣΑΓΩΓΗ ΣΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΣΤΟΥΣ ΔΕΚΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ) ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΛΑΤΕ ΝΑ ΣΚΕΦΤΟΥΜΕ ΜΑΖΙ: Υπάρχουν άραγε αριθμοί ανάμεσα στο 0 και
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΕΚΑ ΙΚΟΙ ΑΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 3 Ο ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΚΕΦΑΛΑΙΟ 3 Ο ΕΚΑ ΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 3 Ο Δεκαδικοί Αριθμοί ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ 1. Δεκαδικό κλάσμα λέγεται... Βάλε σε κύκλο τα κλάσματα που είναι δεκαδικά 3 7 13
Διαβάστε περισσότεραΟδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος
Διαβάστε περισσότεραΜια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
Διαβάστε περισσότεραΟι φυσικοί αριθμοί. Παράδειγμα
Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς
Διαβάστε περισσότεραΓνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών
Φυσική Α Γενικού Λυκείου Γνωριμία με το Σχολικό Εργαστήριο Φυσικών Επιστημών (Μετρήσεις, αβεβαιότητα, επεξεργασία δεδομένων) Υποστηρικτικό υλικό 20 Οκτωβρίου 2016 Μαρίνα Στέλλα, Υπεύθυνη ΕΚΦΕ Σχολικό Εργαστήριο
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)
ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας
Διαβάστε περισσότεραΜεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.
Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη
Διαβάστε περισσότεραΑριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Διαβάστε περισσότεραΜΕΤΡΗΣΕΙΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΡΓΑΣΤΗΡΙΟ
ΜΕΤΡΗΣΕΙΣ ΓΝΩΡΙΜΙΑ ΜΕ ΤΟ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ Μετροταινία, Κανόνας (ΜΕΤΡΟ) Ακρίβεια 1mm ΜΕΤΡΗΣΕΙΣ ΜΗΚΟΥΣ ΔΙΑΣΤΗΜΟΜΕΤΡΟ Μέτρηση μήκους με μεγαλύτερη ακρίβεια από το μέτρο.(το διαστημόμετρο της εικόνας
Διαβάστε περισσότεραΜαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 4 ο, Τμήμα Α
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 4 ο, Τμήμα Α Τι συμβαίνει όταν η περίοδος δεν ξεκινάει αμέσως μετά το κόμμα όπως συμβαίνει με τον αριθμό 3,4555 και θέλουμε να γραφεί σαν κλάσμα; 345 Υπήρχαν πολλές
Διαβάστε περισσότεραΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ. 1. Στρογγυλοποίηση Γενικά Κανόνες Στρογγυλοποίησης... 2
ΣΗΜΑΝΤΙΚΑ ΨΗΦΙΑ, ΑΒΕΒΑΙΟΤΗΤΑ ΚΑΙ ΔΙΑΔΟΣΗ ΣΦΑΛΜΑΤΩΝ Περιεχόμενα 1. Στρογγυλοποίηση.... 2 1.1 Γενικά.... 2 1.2 Κανόνες Στρογγυλοποίησης.... 2 2. Σημαντικά ψηφία.... 2 2.1 Γενικά.... 2 2.2 Κανόνες για την
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Διαβάστε περισσότεραx 2,, x Ν τον οποίον το αποτέλεσμα επηρεάζεται από
Στη θεωρία, θεωρία και πείραμα είναι τα ΘΕΩΡΙΑ ΣΦΑΛΜΑΤΩΝ... υπό ισχυρή συμπίεση ίδια αλλά στο πείραμα είναι διαφορετικά, A.Ensten Οι παρακάτω σημειώσεις περιέχουν τα βασικά σημεία που πρέπει να γνωρίζει
Διαβάστε περισσότεραΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.2.1 : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ. Στο δυαδικό σύστημα αρίθμησης, αντί για δεκάδες, εκατοντάδες με τις
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος
Διαβάστε περισσότεραΑΡΧΕΣ ΧΗΜΕΙΑΣ. Κων/νος Μήλιος. Επ. Καθηγητής Ανόργανης Χημείας. Τμήμα Χημείας Παν/μιο Κρήτης Tηλ:
ΑΡΧΕΣ ΧΗΜΕΙΑΣ Κων/νος Μήλιος Επ. Καθηγητής Ανόργανης Χημείας Τμήμα Χημείας Παν/μιο Κρήτης email: komil@chemistry.uoc.gr Tηλ: 2810-545099 1) Ανόργανη και Βιοανόργανη Χημεία 2) Αναλυτική Χημεία 3) Οργανική
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών
Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα
Διαβάστε περισσότεραΑρβανιτίδης Θεόδωρος, - Μαθηματικά Ε
Δεκαδικά κλάσματα Δεκαδικοί αριθμοί Μάθημα 7 ο Σε κάθε κλάσμα έχουμε : όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική
Διαβάστε περισσότεραΕισαγωγή στην Πληροφορική & τον Προγραμματισμό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα
Διαβάστε περισσότεραΚ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις
Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό
Διαβάστε περισσότεραΟι Φυσικοί Αριθμοί. Παρατήρηση: Δεν στρογγυλοποιούνται αριθμοί τηλεφώνων, Α.Φ.Μ., κωδικοί αριθμοί κλπ. Πρόσθεση Φυσικών αριθμών
Οι Φυσικοί Αριθμοί Γνωρίζουμε ότι οι αριθμοί είναι ποσοτικές έννοιες και για να τους γράψουμε χρησιμοποιούμε τα αριθμητικά σύμβολα. Οι αριθμοί μετρούν συγκεκριμένα πράγματα και φανερώνουν το πλήθος της
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης
Διαβάστε περισσότεραΠληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης
Διαβάστε περισσότεραΔύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:
Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΛΧ1004 Μαθηματικά για Οικονομολόγους
ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
Διαβάστε περισσότεραΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 22/1/ :11 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας
ΘΕΜΑ : ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ ΔΙΑΡΚΕΙΑ: 1 περιόδους 22/1/2010 10:11 καθ. Τεχνολογίας 22/1/2010 10:12 Παραδείγματα Τι ονομάζουμε αριθμητικό σύστημα? Το σύνολο από ψηφία (αριθμοί & χαρακτήρες). Που χρησιμεύουν
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ
ΕΚΦΕ Αν. Αττικής Υπεύθυνος: Κ. Παπαμιχάλης ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΕΜΒΑΔΟΥ ΟΓΚΟΥ ΕΠΙΣΗΜΑΝΣΕΙΣ ΠΡΟΣ ΤΟΝ ΚΑΘΗΓΗΤΗ Κεντρική επιδίωξη των εργαστηριακών ασκήσεων φυσικής στην Α Γυμνασίου, είναι οι μαθητές να οικοδομήσουν
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ Τύποι δεδομένων Οι παρακάτω τύποι δεδομένων υποστηρίζονται από τη γλώσσα προγραμματισμού Fortran: 1) Ακέραιοι αριθμοί (INTEGER). 2) Πραγματικοί αριθμοί απλής ακρίβειας
Διαβάστε περισσότεραΦΥΣΙΚΗ. Ενότητα 1: Εισαγωγή. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
ΦΥΣΙΚΗ Ενότητα 1: Εισαγωγή Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΑριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος
Διαβάστε περισσότερα1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ
1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο
Διαβάστε περισσότεραΌλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.
1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,
Διαβάστε περισσότεραΦύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή
Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Όπως θα μάθεις αναλυτικότερα στη Β και Γ γυμνασίου: Η μέτρηση είναι πρωταρχική και σημαντική διαδικασία για τη φυσική
Διαβάστε περισσότεραΠρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση
Διαβάστε περισσότερα1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης
1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα
Διαβάστε περισσότεραΠερί σφαλμάτων και γραφικών παραστάσεων
Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης
Διαβάστε περισσότεραΜαθηματικά. Α'Γυμνασίου. Μαρίνος Παπαδόπουλος
Μαθηματικά Α'Γυμνασίου Μαρίνος Παπαδόπουλος Κεφάλαιο 1o : Οι Φυσικοί Αριθµοί ΜΑΘΗΜΑ 1 Υποενότητα 1.1: Φυσικοί Αριθµοί ιάταξη Φυσικών - Στρογγυλοποίηση Θεµατικές Ενότητες: 1. Φυσικοί Αριθµοί - ιάταξη Φυσικών
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ
Ονομ/μο:.... Τμήμα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 ΜΕΤΡΗΣΗ ΕΜΒΑΔΟΥ Πώς θα μετρήσουμε την επιφάνεια ενός θρανίου, ενός φύλλου, ή του πουκάμισου που φοράμε; Την έννοια της «επιφάνειας» τη συναντάμε στα αντικείμενα
Διαβάστε περισσότεραΠεριοδικοί δεκαδικοί αριθμοί. Περίοδος περιοδικού δεκαδικού αριθμού. Γραφή των περιοδικών δεκαδικών αριθμών. Δεκαδική μορφή ρητού :
Περιοδικοί δεκαδικοί αριθμοί Κάθε δεκαδικός αριθμός, ο οποίος έχει άπειρα δεκαδικά ψηφία τα οποία από ένα σημείο και μετά επαναλαμβάνονται ακριβώς τα ίδια, ονομάζεται περιοδικός δεκαδικός αριθμός. Πx.
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 2. ΑΡΙΘΜΗΤΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΜΕΡΟΣ Α 2 Τεχνολογία
Διαβάστε περισσότεραΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ
Διαβάστε περισσότερα10-δικό δικό
Προγραμματισμός Η/Υ - Ι Εαρινό Εξάμηνο 2018-2019 Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Αριθμητικά Συστήματα 1. Εισαγωγή Όπως γνωρίζουμε, οι υπολογιστές χρησιμοποιούν το δυαδικό σύστημα για την αναπαράσταση
Διαβάστε περισσότεραΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα
ΦΥΣ 114 - Διαλ.01 1 Θεωρία - Πείραμα Μετρήσεις - Σφάλματα q Θεωρία: Η απάντηση που ζητάτε είναι αποτέλεσμα μαθηματικών πράξεων και εφαρμογή τύπων. Το αποτέλεσμα είναι συγκεκριμένο q Πείραμα: Στηρίζεται
Διαβάστε περισσότεραΚεφάλαιο 1. Συστήματα αρίθμησης και αναπαράστασης
Κεφάλαιο 1 Συστήματα αρίθμησης και αναπαράστασης 1.1 Εισαγωγή Οι υπολογιστές αναπαριστούν όλα τα είδη πληροφορίας ως δυαδικά δεδομένα. Έτσι, για την ευκολότερη και ταχύτερη επεξεργασία των διαφόρων πληροφοριών,
Διαβάστε περισσότεραΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ
Διαβάστε περισσότεραΤμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Διαβάστε περισσότεραΝα υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού.
Ενότητα 3 Ρίζες Πραγματικών Αριθμών Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής Ρ x x ν α. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Τις ιδιότητες
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 5 ΚΕΦΑΛΑΙΟ 25. Δεκαδικά Κλάσματα - Δεκαδικοί Αριθμοί ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ
ΕΝΟΤΗΤΑ 5 ΚΕΦΑΛΑΙΟ 25 Δεκαδικά Κλάσματα - Δεκαδικοί Αριθμοί ΟΛΑ ΟΣΑ ΠΡΕΠΕΙ ΝΑ ΞΕΡΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Πως μπορούμε να χωρίσουμε Η ακέραια μονάδα μπορεί να χωριστεί σε 10, 100, 1.000 κλπ. ίσα μέρη. 1 = 10
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί
Διαβάστε περισσότεραΤμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών
Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού
Διαβάστε περισσότερα2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
Διαβάστε περισσότεραΔύο είναι οι κύριες αιτίες που μπορούμε να πάρουμε από τον υπολογιστή λανθασμένα αποτελέσματα εξαιτίας των σφαλμάτων στρογγυλοποίησης:
Ορολογία bit (binary digit): δυαδικό ψηφίο. Τα δυαδικά ψηφία είναι το 0 και το 1 1 byte = 8 bits word: η θεμελιώδης μονάδα σύμφωνα με την οποία εκπροσωπούνται οι πληροφορίες στον υπολογιστή. Αποτελείται
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ. Κεφάλαιο 11ο ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Στρογγυλοποίηση φυσικών και δεκαδικών αριθμών. 1η θεματική ενότητα. Αριθμοί και πράξεις
ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Κεφάλαιο 11ο 1η θεματική ενότητα Αριθμοί και πράξεις Στρογγυλοποίηση φυσικών και δεκαδικών αριθμών Πρόχειροι λογαριασμοί Κεφάλαιο 11ο Στρογγυλοποίηση φυσικών και δεκαδικών
Διαβάστε περισσότεραΣύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος και Αναπαράσταση Αριθμών Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση θετικών και αρνητικών ακεραίων σε έναν
Διαβάστε περισσότερααριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΣύστημα Πλεονάσματος. Αναπαράσταση Πραγματικών Αριθμών. Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής
Σύστημα Πλεονάσματος Αναπαράσταση Πραγματικών Αριθμών Αριθμητικές Πράξεις σε Αριθμούς Κινητής Υποδιαστολής Σύστημα Πλεονάσματος (Excess System) - 1 Είναι μια άλλη μια μορφή αναπαράστασης για αποθήκευση
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραÊåöÜëáéï 1 ï. -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí. -Ç Ýííïéá ôçò åîßóùóçò
ÊåöÜëáéï 1 ï Öõóéêïß êáé Äåêáäéêïß áñéèìïß âéâëéïììüèçìá 1: -Öõóéêïß áñéèìïß -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí âéâëéïììüèçìá 2: -Ç Ýííïéá ôçò ìåôáâëçôþò -Ç Ýííïéá
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ
Εισαγωγή ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ Όπως για όλες τις επιστήμες, έτσι και για την επιστήμη της Πληροφορικής, ο τελικός στόχος της είναι η επίλυση προβλημάτων. Λύνονται όμως όλα τα προβλήματα;
Διαβάστε περισσότεραΕισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας
Διαβάστε περισσότεραΣύστημα αρίθμησης. Τρόπος αναπαράστασης αριθμών Κάθε σύστημα αρίθμησης έχει μία βάση R
Συστήματα αρίθμησης Σύστημα αρίθμησης Τρόπος αναπαράστασης αριθμών Κάθε σύστημα αρίθμησης έχει μία βάση R Η βάση δείχνει πόσες μονάδες μιας τάξης φτιάχνουν μια μονάδα της επόμενης τάξης Μπορεί να είναι
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί
Α Γυμνασίου, Μέρο Α : Αριθμητική Άλγεβρα, Κεφάλαιο 1 - Οι φυσικοί αριθμοί Μαθηματικά Α Γυμνασίου Μέρο Α - Κεφάλαιο 1 Α. 1.2. Οι αριθμοί 0, 1, 2, 3, 4, 5, 6... 98, 99, 100... 1999, 2000, 2001,... ονομάζονται
Διαβάστε περισσότεραΓ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι
Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο
Διαβάστε περισσότερα2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ
ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)
Διαβάστε περισσότεραΜαθηματικά. Ενότητα 1: Βασικές Γνώσεις Άλγεβρας. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 1: Βασικές Γνώσεις Άλγεβρας Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΑριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού
Διαβάστε περισσότερα! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΠράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς
Διαβάστε περισσότερα3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ
1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία
Διαβάστε περισσότεραΦυσική για Επιστήµονες και Μηχανικούς. Εισαγωγή και Κεφάλαιο Μ1 Φυσική και µετρήσεις
Φυσική για Επιστήµονες και Μηχανικούς Εισαγωγή και Κεφάλαιο Μ1 Φυσική και µετρήσεις Φυσική Θεµελιώδης επιστήµη Ασχολείται µε τις βασικές αρχές του σύµπαντος. Αποτελεί τη βάση γι άλλες επιστήµες. Οι βασικές
Διαβάστε περισσότεραΤμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.
Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης
Διαβάστε περισσότεραΥπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Τύποι δεδομένων Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΦύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή
Φύλλο Εργασίας 1 Μετρήσεις Μήκους Η Μέση Τιμή α. Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι Όπως θα μάθεις αναλυτικότερα στη Β και Γ γυμνασίου: Η μέτρηση είναι πρωταρχική και σημαντική διαδικασία για τη φυσική
Διαβάστε περισσότεραΑριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης
Διαβάστε περισσότεραΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ. Μετρήσεις με Διαστημόμετρο και Μικρόμετρο
ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΥΛΙΚΩΝ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε διαστάσεις στερεών σωμάτων χρησιμοποιώντας όργανα ακριβείας και θα υπολογίσουμε την πυκνότητα τους. Θα κάνουμε εφαρμογή της θεωρίας
Διαβάστε περισσότεραΣυστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version
Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε
Διαβάστε περισσότεραΜετρήσεις Αβεβαιότητες Μετρήσεων
Μετρήσεις Αβεβαιότητες Μετρήσεων 1. Σκοπός Σκοπός του μαθήματος είναι να εξοικειωθούν οι σπουδαστές με τις βασικές έννοιες που σχετίζονται με τη θεωρία Σφαλμάτων, όπως το σφάλμα, την αβεβαιότητα της μέτρησης
Διαβάστε περισσότεραΤμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί
Διαβάστε περισσότερα